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Abstract. This paper considers piecewise affine models of genetic regu-
latory networks and focuses on the problem of detecting switches among
different modes of operation in gene expression data. This task consti-
tutes the first step of a procedure for the complete identification of the
network and complements the algorithms proposed in [1]. We propose
two methods for switch detection. The first one is based on the compu-
tation of suitable indexes that emphasize the occurrence of switches in
the data. The second one exploits nonlinear identification techniques in
order to recast switch detection into an hypothesis testing problem. In
both cases we assume that the expression of individual genes obeys to
an output-error piecewise affine dynamics and we study the performance
of the proposed algorithms for different noise levels. We also illustrate
the application of our methods to the reconstruction of switching times
in data produced by a piecewise affine model of the network regulating
the carbon starvation response in Escherichia coli.

1 Introduction

The reconstruction of biochemical networks from experimental data is nowadays
recognized as one of the most important goals of Systems Biology. Research
in this field has been promoted by the availability of experimental techniques
for measuring the concentration of various molecules regulating the functioning
of cells. As far as Genetic Regulatory Networks (GRN) are concerned, several
measurements techniques have been developed for sampling gene expression,
ranging from DNA microarrays [2] to RT-PCR and gene reporter systems [3].
These methods differ under many aspects including the number of genes that can
be measured simultaneously and the allowed sampling time, thus highlighting
different features of the network at different timescales.

We consider the problem of identifying the dynamics of GRNs using gene
expression data collected with a sampling time that is sufficiently short with



respect to the time constants of the network. As an example, data produced by
gene reporter systems possess this feature and can capture transitory phenomena
[3]. Moreover, we restrict our attention to PieceWise Affine (PWA) models of
GRNs [4,5] since they are attractive under many respects. First, they preserve the
nonlinear character of the underlying biological process thus capturing behaviors
that cannot be represented by means of linear models. Second, they usually
involve a reduced number of parameters with respect to general nonlinear models
of GRNs, a feature that is appealing from the identification viewpoint. Third,
powerful techniques exist for analysis and qualitative simulation of PWA models
of GRNs [6,7].

Recently, many different algorithms have been proposed for the identification
of PWA input-output models [8,9,10,11], and in principle they could be used
for the data-based reconstruction of GRNs. However, PWA systems describing
GRNs possess a specific structure that must be preserved in order to guarantee
the biological interpretability of the identified model and all existing identifica-
tion methods have a limited capability of incorporating such constraints.

In this paper we focus on a basic task in the whole identification proce-
dure: the detection of switches in data generated by PWA input-output models
of GRNs. In particular, our aim is to find switches between different modes of
operation without assuming any knowledge of the model parameters. For gen-
eral piecewise affine autoregressive exogenous systems, this problem has been
addressed in [12], where the links with fault detection techniques are also dis-
cussed. However, our methods differ from those proposed in [12] under two re-
spects: first, we focus on Output-Error (OE) models of GRNs and second, we
exploit the structure of these models for improving the switch detection capa-
bilities of our algorithms.

Two different techniques for switch detection are proposed. The first one, de-
scribed in Section 5, is based on the construction of switching indexes that have
a constant value in absence of switches and a non constant profile at switching
times. We provide a statistical characterization of these indexes and compute
their confidence sets that are used in an iterative algorithm for aggregating
consecutive data points generated by the same mode of operation. The second
method, presented in Section 6, is based on the iterative identification of an OE
nonlinear model that allows switches to be detected by means of hypothesis
testing. In Section 7, we provide an extensive experimental comparison of the
two algorithms and highlight the pros and cons of each method. In particular,
our analysis reveals that the method based on switching indexes produces bet-
ter results when the noise is sufficiently small. On the contrary, the algorithm
based on nonlinear identification is preferable for higher noise levels. Finally,
Section 8 presents the detection of switching times in gene expression data gen-
erated by a PW-OE model of the GRN governing the carbon starvation response
in Escherichia coli.



2 PWA Models of Genetic Regulatory Networks

PWA models of GRNs have been introduced by Glass and Kauffmann [4] by ap-
proximating sigmoidal functions, commonly used for describing gene activation,
with step functions, hence modeling genes as switching units that can be turned
on and off. In this section we summarize the main features of the resulting class
of PWA models, deferring the reader to [4], [5] and [1] for further details.

We assume that the regulation mechanism is described by the interactions
of n genes, each one coding for a molecule (e.g. a protein). Molecule concen-
trations are denoted with xi, for i = 1, . . . , n, and the concentration vector
x = [x1, . . . , xn] lies within a bounded hyperrectangle Ω ⊆ IRn

+ containing the
origin. To the i-th concentration variable it is associated a (possibly empty) set
of positive thresholds {θ`i

i }pi

`i=1. All thresholds define the grid

Θ =
⋃

i∈{1,...,n},`i∈{1,...,pi}{x ∈ Ω : xi = θ`i
i }

that splits Ω into open hyperrectangular regions ∆j , j = 1, . . . ,
∏n

i=1(pi + 1),
called regulatory domains. The dynamics of the GRN is then captured by the
autonomous PWA system

ẋ = µj − νjx , if x ∈ Dj , with j ∈ {1, . . . , s} , (1)

where µj = diag{µj
1, . . . , µ

j
n} ≥ 0, νj = diag{νj

1 , . . . , νj
n} > 0 and the s regions

Dj are disjoint unions of regulatory domains. Without loss of generality, we also
assume that all pairs (µj ,νj) are different, meaning that if i 6= j then µi 6= µj

or νi 6= νj . For subsequent use, we define the set D =
⋃s

j=1 Dj = Ω \ Θ. Note
that the r.h.s. of (1) is the difference of synthesis rates µj and degradation rates
νjx. In particular, spontaneous degradation is always present, and the i-th gene
is off when µj

i = 0.
In this paper we consider the problem of detecting switches in the dynamics

of a single molecule. Therefore it is important to characterize regions in Ω where
the i-th molecule concentration obeys to the same dynamics. To this purpose,
consider the set

Ri =
{(

µj
i , ν

j
i

)
, for j = 1, . . . , s

}
(2)

collecting all distinct pairs of synthesis and degradation rates for the i-th molecule,
and denote with si its cardinality. Molecule domains M j

i , j = 1, . . . , si, are de-
fined as:

M j
i =

s⋃

`=1

{
D` | (µ`

i , ν
`
i

)
=

(
κj

i , γ
j
i

)}
, (3)

where
(
κj

i , γ
j
i

)
is the j-th element of Ri. Apparently, for a fixed i, {M j

i }si
j=1 is

a partition of D. The dynamics of xi is then given by the PWA system

ẋi = κj
i − γj

i xi , if x ∈ M j
i , (4)

where the variables xj , ∀j 6= i, play the role of inputs.



Experimental data are measurements yi of the gene expression xi, collected
with a uniform sampling time T > 0. In order to account for the measurement
noise, we introduce the PW Output Error (OE) model

{
xi(k + 1) = κ̃j

i − γ̃j
i xi

yi(k) = xi(k) + ni(k)
, if x(k) ∈ M j

i , (5)

where κ̃j
i =

(
κj

i/γj
i

)(
1 − e−γj

i T
)
, γ̃j

i = −e−γj
i T , ni(k) is a white gaussian noise

with zero mean and variance σ2
n, and k ∈ IN denotes the sampling instant t = kT .

The modes of operation in (5) are the triples
(
κ̃j

i , γ̃
j
i ,M j

i

)
.

Note that the ODE (1) has a discontinuous r.h.s. on Θ. When x ∈ Θ, solu-
tions to (1) must be understood in the sense of Filippov [5], possibly giving rise
to sliding modes on Θ. The results of this paper hinge on the assumption that
sliding-mode behaviors are absent in the measured data. For the sake of simplic-
ity we also assume that x(k) /∈ Ω, ∀k ∈ IN, thus enforcing the well-posedness of
(1) and (5).

3 Identification of PWA Models of Genetic Regulatory
Networks

At a first sight, the data-based reconstruction of model (5) seems a classic hy-
brid identification problem, for which identification methods exist [8,9,10,11].
However, most of such algorithms assume gene expression data generated by an
autoregressive exogenous model in each regulatory domain, and therefore they
are not tailored to Output-Error models like (5). Identification of PW-OE mod-
els has been considered in [13] and [14]. However, in both papers, it is assumed
that the number of modes of operation composing the system is known in ad-
vance, that is seldom the case in the context of GRNs. Moreover, as pointed
out in [1], all the above-mentioned procedures do not preserve the particular
structure of PWA models of GRNs, and then could generate models that are
meaningless from a biological viewpoint. Finally, existing hybrid identification
techniques produce a single model while scarcity of expression data does not
allow one to uniquely reconstruct the switching mechanisms characterizing the
GRNs.

The data-based reconstruction of GRNs can be conceptually split in the
following tasks:

1. detection of the switches in single time series of gene expression data (without
assuming any knowledge of the mode parameters and regions);

2. attribution of the data to distinct modes of operation of the whole GRN
(classification problem);

3. reconstruction of thresholds on concentration variables and of all combina-
tions of thresholds consistent with the data;

4. estimation of the kinetic parameters in each mode of operation for all models
generated in point 3.
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Fig. 1. Behavior of switching indexes o(k), ō(k; 4, 2) and ō(k; 5, 2). The sam-
ples x(k) are depicted in the upper left panel together with switching instants,
represented by vertical lines.

In the sequel, we propose two algorithms for solving task 1. Ad hoc methods
for task 2 are currently under study, while task 3 can be performed, under
suitable assumptions, using the multicut algorithm proposed in [1]. As pointed
out in [8], task 4 can be easily carried out relying on the data classification
produced in step 2.

4 Switching Indexes

This section is devoted to the study of indexes that are at the core of the switch
detection algorithm proposed in Section 5.

Without loss of generality, in the following we will denote with x ∈ IR+ a
concentration variable and with y its noisy measurement, omitting the subscript
i.

In order to detect switches in a molecule concentration dynamics, we intro-
duce the switching index o(k), which performs a nonlinear filtering on experi-
mental data and emphasizes switches. The index is defined as follows:

o(k) =
x(k + 1)− x(k)
x(k)− x(k − 1)

. (6)

From (5) it is easy to verify that o(k) takes the constant value −γ̃j = e−γjT

for every k such that x(k−1), x(k), x(k+1) are generated by the j-th mode. As
we can see in Fig. 1, a switch causes the index to move away from its constant
value at times k − 1 and k. Therefore, switching instants can be detected by
looking for instants at which o(k) is not constant.

Since we aim at using noisy experimental data, it is interesting to consider
the behavior of switching indexes computed on Moving Average (MA) values x̄



of concentrations

x̄(k) =
1

W − 2

W−2∑

i=1

x(k − w + i) , (7)

where W ≥ 3 and 0 ≤ w < W is an offset. Parameters W and w give rise to the
family of switching indexes

ō(k) = ō(k;W,w) =
x̄(k + 1)− x̄(k)
x̄(k)− x̄(k − 1)

=
x(k − w + W − 1)− x(k − w + 1)

x(k − w + W − 2)− x(k − w)
,

(8)
where W is the number of samples between the first and the last concentration
values involved in the index definition and w is the offset between the first sample
of x used in the index and the instant k at which the index is defined. Notice
that ō(k; 3, 1) ≡ o(k).

As shown in Fig. 1, ō(k) behaves like o(k), taking the constant value −γ̃j
i =

e−γjT when all samples x(k − w), . . . , x(k − w + W − 1) belong to the same
mode. However, the MA operation smooths out the behavior of ō(k) and leads
to an increase in the number of instants where ō(k) is nonconstant because of a
switch.

4.1 Statistical Analysis of Switching Indexes

In this section, we study the statistical properties of ō(k) when it is computed
on the basis of the noisy measurements y(k). Let õ(k; W,w) be defined as in
(8) but replacing x(k) with y(k). Denoting with Y1 and Y2 the numerator and
denominator of õ(k) respectively, one has

Y1 = y(k − w + W − 1)− y(k − w + 1)
Y1 ∼ N

(
x(k − w + W − 1)− x(k − w + 1), 2σ2

n

) (9)

Y2 = y(k − w + W − 2)− y(k − w)
Y2 ∼ N

(
x(k − w + W − 2)− x(k − w), 2σ2

n

)
.

(10)

The Random Variables (RVs) Y1 and Y2 are jointly Gaussian and independent
for W > 3 or characterized by a correlation coefficient ρ = − 1

2 for W = 3.
Therefore, the problem of finding the probability density function (pdf) of õ(k)
amounts to the problem of characterizing the pdf of the ratio of two RVs, which
has been investigated since the thirties [15,16,17,18].

Let fõ(k) be the pdf of õ(k). From [15] and [18], fõ(k) can be expressed as
the pdf of a modified Cauchy distribution. Possible shapes of fõ(k) are plotted
in Fig. 2. In particular, the mean of Cauchy distributions is not defined and
also the median can be a misleading estimator of the true index value ō(k) (see
Fig. 2), especially for high noise levels. However, Fieller’s theorem [19] allows one
to construct confidence sets for ō(k), as shown in the next theorem.

Theorem 1. Let Y1 and Y2 be the jointly Gaussian RVs defined by (9)–(10) and
characterized by a correlation coefficient ρ = − 1

2%, with

% =
{

1, if W = 3
0, if W > 3 . (11)
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Fig. 2. Possible shapes of the pdf fõ(k) of õ(k) = Y1/Y2.

Let ō(k) be defined as in (8), i.e. ō(k) = E[Y1]/E[Y2], where E[ · ] denotes the
expectation operator.
Then,

T
(
[Y1 Y2], ō(k)

)
=

Y1 − ō(k)Y2

σn

√
2 (ō(k)2 + %ō(k) + 1)

∼ N(0, 1) (12)

is a pivotal quantity [20] for ō(k) and (1 − α)-level confidence sets for ō(k) are
given by

Sα

(
[Y1 Y2]

)
=





[ō∗1, ō
∗
2] , if Y 2

2 > 2z̄2
ασ2

n

IR \ (ō∗1, ō
∗
2) , if Y 2

2 < 2z̄2
ασ2

n and
2

(
Y 2

1 + %Y1Y2 + Y 2
2

)
> (4− %)z̄2

ασ2
n

IR, if Y 2
2 < 2z̄2

ασ2
n and

2
(
Y 2

1 + %Y1Y2 + Y 2
2

) ≤ (4− %)z̄2
ασ2

n

, (13)

with

ō∗1,2 =
Y1Y2 + %z̄2

ασ2
n ∓ z̄ασn

√
2 (Y 2

1 + %Y1Y2 + Y 2
2 )− (4− %)z̄2

ασ2
n

Y 2
2 − 2z̄2

ασ2
n

, (14)

where z̄α = −zα/2 = z1−α/2 > 0 and zp is the generic p-th quantile of the
standard normal distribution.

Proof. According to the rationale of Fieller’s theorem [19], a pivotal quantity for
ō(k) can be obtained considering the following linear combination of Y1 and Y2:

Y1 − ō(k)Y2 ∼ N(0, 2σ2
n

(
ō(k)2 + %ō(k) + 1

)
. (15)

Quantity T
(
[Y1 Y2], ō(k)

)
defined in (12) is obtained standardizing the normal

RV (15) and is therefore a pivotal quantity for ō(k) since its distribution does
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Fig. 3. Switching indexes õ(k; 3, 1), õ(k; 4, 2) and õ(k; 5, 2), computed on noisy
data y(k) with σn = 10−3, and confidence sets for ō(k).

not depend on ō(k).
Since T

(
[Y1 Y2], ō(k)

) ∼ N(0, 1), it holds that

P
(∣∣T (

[Y1 Y2], ō(k)
)∣∣ ≤ z̄α

)
= 1− α . (16)

Therefore a (1− α)-level confidence set for ō(k) is

Sα

(
[Y1 Y2]

)
=

{
ō(k) ∈ IR :

∣∣T (
[Y1 Y2], ō(k)

)∣∣ ≤ z̄α

}
. (17)

To get an explicit expression of Sα

(
[Y1 Y2]

)
, one has to find the values of ō(k)

verifying the inequality

T
(
[Y1 Y2], ō(k)

)2 =
(Y1 − ō(k)Y2)

2

2σ2
n (ō(k)2 + %ō(k) + 1)

≤ z̄2
α , (18)

which can be conveniently rewritten as
(
Y 2

2 − 2z̄2
ασ2

n

)
ō(k)2 − 2

(
Y1Y2 + %z̄2

ασ2
n

)
ō(k) +

(
Y 2

1 − 2z̄2
ασ2

n

) ≤ 0 . (19)

Solutions to (19) depend on the sign of
(
Y 2

2 − 2z̄2
ασ2

n

)
and of the discriminant

∆ of the associated quadratic equation, given by:

∆ = 4z̄2
ασ2

n

[
2

(
Y 2

1 + %Y1Y2 + Y 2
2

)− (4− %)z̄2
ασ2

n

]
. (20)

Noticing that if Y 2
2 −2z̄2

ασ2
n > 0 then ∆ > 0, confidence sets Sα

(
[Y1Y2]

)
obtained

as solutions to (19) are given by (13). ut

From (13) it follows that the sets Sα

(
[Y1 Y2]

)
become smaller as W increases,

as shown in Fig. 3.



5 Switch Detection Based on the Index ō(k)

In this section we introduce a first algorithm to detect switches between molecule
domains from noisy data y(k) of molecule concentrations. The proposed method
uses the confidence sets for ō(k) given in Theorem 1 in order to decide whether
consecutive data points have been generated by the same mode or not. Moreover,
the algorithm uses indexes with different values of W in order to exploit the
statistical advantages of MA-based switching indexes.

For illustrating the core of the algorithm, we assume that WM consecutive
data up to y(kM ) have been already aggregated, i.e. attributed to the same mode
of operation. The question is whether to aggregate a subsequent data y(ka), with
ka > kM . Aggregated data are characterized by a switching index involving all of
them, namely õ(kM ; WM , WM −1). To decide about the aggregation of y(ka), we
consider the switching index involving Wa data up to y(ka), i.e. õ(ka; Wa, Wa −
1), using a small value of Wa to avoid an excessive smoothing which could
compromise switch detection.

In a noiseless setting one would perform the aggregation of y(ka) if ō(ka;Wa,Wa−
1) = ō(kM ;WM ,WM −1). However, from the noisy data y(k) one can only com-
pute the confidence sets IM and Ia, for ō(kM ;WM ,WM−1) and ō(ka; Wa,Wa−1)
respectively. As a decision rule, we detect a switch if IM ∩ Ia = ∅. It is easy to
prove that, with such a rule, the probability of detecting an erroneous switch
is lower than 2α, where (1 − α) is the confidence level. The main drawback of
the proposed decision rule is that it does not allow one to detect switches if
confidence sets are overlapping and this problem becomes critical for high noise
levels.

Algorithm1 shows the whole method for switch detection. The basic aggre-
gation strategy is enhanced with a backtracking strategy, in lines 14–20, which
double checks already aggregated data exploiting the new information carried by
the most recent data. Moreover, infinite confidence sets are treated in a specific
way and the aggregation test at the corresponding time instants is skipped (func-
tion firstFiniteConfidenceSet). The output of Algorithm 1 is the set E of time
intervals corresponding to sets of data generated by the same mode. Such inter-
vals could be overlapping, when switching instants are not precisely detected.
Note also that the only piece of information about data needed in Algorithm1
is the noise variance σ2

n.

6 Switch Detection Based on Nonlinear Estimation

In this section we present an algorithm where data aggregation is based on the
estimation of the model describing the concentration dynamics within a molecule
domain.



Algorithm 1 Index based switch detection
Require: Y = [y(1) y(2) . . . y(N)], Wa ≥ 3, gmax > 0, σn > 0
1: initialize E = ∅ WM = Wa, kM = WM

2: kM , IM = firstFiniteConfidenceSet(Y, kM , WM )
3: ka, Ia = firstFiniteConfidenceSet(Y, kM + 1, Wa)
4: while (kM < N) and (ka ≤ N) do
5: if (IM ∩ Ia = ∅) or (ka − kM > gmax) then
6: if WM > Wa then
7: E = E ∪ [kM −WM + 1, kM ]
8: end if
9: WM = Wa

10: kM , IM = firstFiniteConfidenceSet(Y, kM + 1, WM )
11: else
12: WM = WM + ka − kM

13: kM = ka

14: IM = confidence set for ō(kM −WM + 2; WM − 1, 0)
15: Ia = confidence set for ō(kM −WM + 1; Wa, 0)
16: while (WM > Wa) and

�
(IM ∩ Ia = ∅) or (Ia is not a finite interval)

�
do

17: WM = WM − 1
18: IM = confidence set for ō(kM −WM + 2; WM − 1, 0)
19: Ia = confidence set for ō(kM −WM + 1; Wa, 0)
20: end while
21: IM = confidence set for ō(kM ; WM , WM − 1)
22: end if
23: ka, Ia = firstFiniteConfidenceSet(Y, kM + 1, Wa)
24: end while
25: if WM > Wa then
26: E = E ∪ [kM −WM + 1, kM ]
27: end if
28: return E

function firstFiniteConfidenceSet(Y, k, W )

1: I = confidence set for ō(k; W, W − 1)
2: while (I is not a finite interval) and (k ≤ N) do
3: k = k + 1
4: if k ≤ N then
5: I = confidence set for ō(k; W, W − 1)
6: end if
7: end while
8: return k, I

If x(k0), x(k0 + 1), . . . , x(k̄) have been all generated by the j-th mode of
operation, the output measurements y(k), k = k0, k0 + 1, . . . , k̄, are given by

y(k) = x(k) + n(k)

=
κj

γj
−

(
κj

γj
− xj

0

)
e−γj(kT−tj

0) + n(k) , (21)



Algorithm 2 Nonlinear estimation based switch detection
Require: Y = [y(1) y(2) . . . y(N)], Wa ≥ 3, σn > 0
1: initialize E = ∅, WM = Wa, kM = WM

2: while kM < N do
3: compute estimates bκj , bγj , cxj

0 on y(kM −WM + 1), . . . , y(kM )
4: Ia = confidence interval for y(kM + 1) under H0

5: if y(kM + 1) /∈ Ia then
6: if WM > Wa then
7: E = E ∪ [kM −WM + 1, kM ]
8: end if
9: WM = Wa

10: kM = kM + 1
11: else
12: WM = WM + 1
13: kM = kM + 1
14: compute estimates bκj , bγj , cxj

0 on y(kM −WM + 2), . . . , y(kM )
15: Ia = confidence interval for y(kM −WM + 1) under H0

16: while (WM > Wa) and (y(kM −WM + 1) /∈ Ia) do
17: WM = WM − 1
18: compute estimates bκj , bγj , cxj

0 on y(kM −WM + 2), . . . , y(kM )
19: Ia = confidence interval for y(kM −WM + 1) under H0

20: end while
21: end if
22: end while
23: if WM > Wa then
24: E = E ∪ [kM −WM + 1, kM ]
25: end if
26: return E

where n(k) ∼ WGN
(
0, σ2

n

)
, T and tj0 = k0T are known values and κj , γj ,

xj
0 = x(k0) represent the unknown model parameters. The estimates κ̂j , γ̂j and

x̂j
0 of κj , γj and xj

0 can be obtained using nonlinear least squares [21].
In order to illustrate the decision rule for aggregation, assume that WM

consecutive data up to y(kM ) have been aggregated and let κ̂j , γ̂j and x̂j
0 be

the estimates produced by nonlinear least squares methods using these data. We
can perform an hypothesis test to evaluate if y(kM + 1) can be described by the
estimated model. The null hypothesis H0 is that y(kM + 1) belongs to the same
dynamics of the aggregated data. Under H0, we consider the confidence interval
Ia for the measurement at kM + 1 generated according to the estimated model.
Aggregation of y(kM + 1) is therefore performed if y(kM + 1) ∈ Ia, detecting
a switch otherwise. As described in [21], the interval Ia can be computed by
linearizing model (21).

In Algorithm 1, the decision rule based on the comparisons of confidence
sets can be replaced by the hypothesis test described above, thus obtaining
Algorithm2 listed below.



7 Algorithms Validation

In order to test the proposed algorithms, we considered a set of simulated time
series. We generated 42 typical noiseless behaviors for gene expression, each
containing two switches among different modes of operation. Then we produced
16800 time series by adding noise with σn ∈

{
10−5, 10−4, 10−3, 10−2

}
. The total

number of noisy data was 702400.
The performances of Algorithm 1 and 2 can be evaluated introducing suitable

performance indexes. Such quantities are computed comparing the algorithms
output (the set E of estimated time intervals) with the true intervals collecting
data generated by the same mode of operation in each time series. Comparisons
are performed between corresponding intervals, where the correspondence crite-
rion is chosen in term of maximum overlap. A formal introduction of performance
indexes is based on a set description of estimated and true intervals.

Let 2IN be the powerset of IN and I ⊂ 2IN be the set of all intervals of
consecutive natural numbers, defined as follows:

∀I ∈ I ∃ a(I), b(I) ∈ IN such that a(I) ≤ k ≤ b(I), ∀k ∈ I , (22)

where a(I) and b(I) represent the endpoints of a generic interval I. The set of
true intervals, denoted by T , is characterized as follows:

T =
{
IT
1 , IT

2 , . . . , IT
nT

} ⊂ I

with IT
i ∩ IT

j = ∅, ∀i 6= j, and
nT⋃

i=1

IT
i ∈ I . (23)

The set E of estimated intervals is defined assuming a particular order:

E =
{
IE
1 , IE

2 , . . . , IE
nE

} ⊂ I
with a(IE

i ) < a(IE
i+1) and b(IE

i ) < b(IE
i+1), ∀i = 1, . . . , nE − 1 . (24)

Since intervals in E could be overlapped, we decided to remove common
points between intervals IE

i ∈ E, obtaining the new set of intervals

E′ =
{

IE′
1 , IE′

2 , . . . , IE′
nE′

}
⊂ I , (25)

constructed as follows:

E′ =
{
I ′Ei 6= ∅, i = 1, . . . , nE

}

where I ′Ei = IE
i r

(
IE
i−1 ∪ IE

i+1

)
, ∀i = 1, . . . , nE ,

and IE
0 = IE

nE+1 = ∅ . (26)

Every IE′
i ∈ E′ is associated to an interval IT

ti
∈ T , where ti ∈ {1, . . . , nT } is

computed as follows:

ti = arg max
j∈{1,...,nT }

∣∣∣IE′
i ∩ IT

j

∣∣∣ , ∀i ∈ {1, . . . , nE′} . (27)



Notice that more than one ti might satisfy (27). In these situations, ti is assigned
as the index of the first true interval according to the temporal order.

In a similar way to (27), each true interval IT
j ∈ T is associated to the

estimated interval IE′
mj

∈ E′ having the maximum overlap with IT
j . This corre-

spondence is achieved finding mj ∈ {1, . . . , nE′}, ∀j ∈ {1, . . . , nT }, as:

mj =





−1, if @i ∈ {1, . . . , nE′} | ti = j

arg max
∣∣∣IE′

i ∩ IT
j

∣∣∣ , otherwise
i∈{1,...nE′}

s.t.ti=j

. (28)

Possible ambiguities are solved as for ti.
Starting from definitions (23)–(28), we introduce particular sets to formally

define quantities useful for performance evaluation:

1. let M = {mj 6= −1, j = 1, . . . , nT }, then:

(a) nM = |M | , (b) NM =
∑

i∈M

∣∣∣IE′
i ∩ IT

ti

∣∣∣ ; (29)

2. let S = {1, . . . , nE′}rM , then:

(a) nS = |S| = nE′ − |M | , (b) NS =
∑

i∈S

∣∣∣IE′
i ∩ IT

ti

∣∣∣ . (30)

Quantity nM is the number of true intervals having a correspondence with at
least one estimated interval, while NM is the total number of instants belonging
to both true intervals and estimated intervals characterized by the maximum
correspondence. On the other hand, nS is the number of estimated intervals
with a non-maximum correspondence with a true interval, and NS is the total
number of instants belonging to such intervals and to the corresponding true
intervals.

Starting from quantities (29)–(30) it is possible to define performance indexes
which highlight important characteristics of the algorithms. In particular, we
can consider a classification accuracy index acc and a fragmentation index frag.
Accuracy is evaluated considering NM as the number of correctly classified data,
thus defining

acc =
NM

NT
, (31)

where NT is the total number of analyzed data. The fragmentation index ex-
presses the tendency of an algorithm to overestimate the number of switches by
fragmenting a true interval into different estimated intervals. Since such a frag-
mentation leads to estimated intervals characterized by a non-maximum corre-
spondence, frag is defined as

frag =
nS

(nS + nM )
=

nS

nE′
. (32)



Table 1. Accuracy and fragmentation performances of Algorithm1 and 2 at
different noise levels.

Algorithm 1

σn 10−5 10−4 10−3 10−2

acc 97.1% 93.8% 69.7% 22.3%

frag 4.4% 5.2% 16.4% 34.3%

Algorithm 2

σn 10−5 10−4 10−3 10−2

acc 75.3% 80.7% 69.7% 63.8%

frag 34.4% 26.9% 30.7% 15.2%

stable RNAs
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gyrAB
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FisGyrAB CRP

gene
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Fig. 4. Graphical representation of the simplified carbon starvation response
network in E. coli.

Good performances are characterized by values of acc and frag close to 1 and
0 respectively.

The results are reported in Table 1. We can observe that Algorithm 1 has
good performances for noise levels σn = 10−5 and σn = 10−4. In these cases,
Algorithm2 has lower accuracy and exhibits the tendency to overestimate the
number of switches thus fragmenting true intervals. As σn increases, we notice
the sensitivity of Algorithm 1 to noise. Such a behavior is consistent with the
statistical analysis of switching indexes presented in Section 4.1. On the contrary,
Algorithm2 exhibits lower performance degradation. Notice that at the highest
noise level the use of Algorithm 1 is heavily compromised.

8 Switch Detection in a PWA Model of the Carbon
Starvation Response of E. coli

In this section, we present the application of switch detection algorithms to
data generated by the GRN regulating carbon starvation response in E. coli. A
complete model of this network has been proposed in [22]. For this study we
considered the simplified GRN used by Drulhe et al. in [1] and shown in Fig. 4.

The network involves interactions between genes crp, fis, gyrAB and their
products (proteins CRP, Fis, GyrAB), regulating the synthesis of stable RNAs.
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Fig. 5. Switch detection results on simulated data of the GRN depicted in Fig. 4.
Variables yCRP, yFis, yGyrAB, and yrrn denote the concentration measurements
of proteins CRP, Fis, GyrAB, and stable RNAs. Vertical lines denote detected
switches, while crosses correspond to real switching times.

In response to a carbon starvation signal, the regulatory mechanisms inhibit the
synthesis of stable RNAs and then E. coli cells abandon their exponentially-
growth state to enter a more resistent non-growth state called stationary phase.

Switch detection algorithms have been applied to time series of concentration
data simulated with initial conditions, sampling time and noise level similar to
the data used in [1]. In particular, data refer to the reentry into an exponential
growth phase after a carbon upshift, while noise and sampling characteristics are
close to ones that characterize measurements produced by gene reporter systems.
Figure 5 shows switches detected using Algorithm 2. In this case, the noise level
was too high to obtain reasonable results with Algorithm1. All switches have
been identified except for the concentration of protein Fis where a spurious
switch has been introduced.

9 Conclusions

In this paper we considered the problem of detecting switches in gene expression
profiles, by assuming that the underlying model of the GRN has a PW-OE struc-
ture. First, we proposed a method based on switching indexes that emphasizes
the occurrence of switches without exploiting any information on the parame-
ters of the PW-OE model. Then, we introduced a second algorithm based on
nonlinear identification techniques and hypothesis testing. An extensive testing
of the two methods highlighted that they are complementary since the first al-
gorithm outperforms the second one for low noise levels while the second one
produces better results for high noise levels. Future research will consider the
generalization of the algorithms to the case of data sets including sliding-mode



behaviors. We will also study methods based on the knowledge of switching times
for attributing data points to the modes of operation of the whole network. In a
broader perspective, these procedures will be integrated with the algorithm pro-
posed in [1] with the goal of reconstructing all parameters characterizing PWA
models of GRNs.
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14. Rosenqvist, F., Karlströmb, A.: Realisation and estimation of piecewise-linear
output-error models. Automatica 41(3) (2005) 545–551

15. Fieller, E.: The distribution of the index in a normal bivariate population.
Biometrika 24(3-4) (1932) 428–440

16. Marsaglia, G.: Ratios of normal variables and ratios of sums of uniform variables.
J. Amer. Stat. Assoc. 60(309) (1965) 193–204

17. Hinkley, D.: On the ratio of two correlated normal random variables. Biometrika
56(3) (1969) 635–639

18. Pham-Gia, T., Turkkan, N., Marchand, E.: Density of the ratio of two normal
random variables. Technical Report 8, Université de Moncton and University of
New Brunswick, Canada (2004)

19. Fieller, E.: A fundamental formula in the statistics of biological assay, and some
applications. Quart. J. Pharm. Pharmacol. 17(2) (1944) 117–123

20. Rohatgi, V., Saleh, A.: An Introduction to Probability and Statistics. 2nd edn.
John Wiley & Sons, New York (2001)

21. Ljung, L.: System Identification: Theory for the User. 2nd edn. Prentice-Hall,
Upper Saddle River, NJ (1999)

22. Ropers, D., de Jong, H., Page, M., Schneider, D., Geiselmann, J.: Qualitative
simulation of the carbon starvation response in Escherichia coli. BioSystems 84(2)
(2006) 124–152


