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Neural Network Implementation of Nonlinear Receding-
Horizon Control*

L. Cavagnari, L. Magni and R. Scattolini
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The Receding Horizon(RH) approach is an effective
way to derive control algorithms for nonlinear sys-
tems with stabilising properties also in the presence
of state and control constraints. However,RH
methods imply a heavy computational burden for
on-line optimisation, therefore they are not suitable
for the control of ‘fast’ systems, for example mech-
anical ones, which call for the use of short sampling
periods. The aim of this paper is to show through
an experimental study how a NonlinearRH (NRH)
control law can be computed off-line, and sub-
sequently approximated by means of a neural net-
work, which is effectively used for the on-line
implementation. The proposed design procedure is
applied to synthesise a neuralNRH controller for a
seesaw equipment. The experimental results reported
here demonstrate the feasibility of the method.
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1. Introduction

In recent years, many Nonlinear Receding Horizon
(NRH) control algorithms have been proposed with
guaranteed local stability properties even when
constraints are imposed on the evolution of the
control and state variables [1–6]. In particular, the
technique presented by De Nicolao et al. [5] pro-
vides exponential stability of the equilibrium under
the mild assumption of stabilisability of the associa-
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ted linearised system. The corresponding NRH con-
trol law is computed through the solution of a Finite
Horizon (FH) optimisation problem with optimis-
ation horizonN and terminal state penalty equal to
the cost that would be incurred by applying a local
stabilising linear control law thereafter. It is remark-
able, however, that the linear control law is never
applied in practice, but is just used to compute
the terminal state penalty. Moreover, the region of
attraction of the equilibrium grows withN, and
tends to that of the associated Infinite Horizon (IH)
optimisation problem. For this reason, one should
select long horizonsN in order to improve the
overall performance and to enlarge the exponential
stability region. On the other hand, asN increases
the optimisation problem becomes more and more
difficult to solve, and it is surely intractable for an
on-line implementation on ‘fast’ applications, i.e.
when the dynamics of the system under control
force the use of a small sampling period.

In these cases, the procedure first suggested by
Parisini and Zoppoli [3] can be followed. Specifi-
cally, one can compute off-line the optimal NRH
control law kRH(x) for a (large) set of admissible
values of the initial statex P X. Then, it is possible
to approximatekRH(x) with any suitable interpolation
technique, for example by means of a Neural Net-
work (NN). Finally, the approximating function so
obtained is effectively implemented for on-line com-
putations.

Although the above implementation procedure is
conceptually very attractive and has been used in
simulation experiments [3], to the author’s knowl-
edge, no real applications have been presented so
far.

The aim of this paper is to present some experi-
mental results obtained in the control of a seesaw
apparatus with a NN approximation of the NRH
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control law presented by De Nicolao et al. [5]. To
reduce the computational burden required to deter-
mine the control sequences used for the training of
the NN, the NRH control law is computed for initial
values of the system state which are far from the
equilibrium, while the standard optimal Linear
Quadratic (LQ) technique is applied in its neighbour-
hoods.

The paper is organised as follows. In Section 2,
the state feedback NRH control law [5] is briefly
summarised together with its properties. Moreover,
since the state of the seesaw equipment is not
completely accessible, the extension of the NRH
control law to the case of output feedback is
presented together with the associated stabilising
results, recently presented by Magni et al. [7]. Sec-
tion 3 describes the guidelines followed to derive
the NN approximation of the NRH control law. In
Section 4, the experimental apparatus is presented;
the implemented NRH/NN control law is described,
and some experimental results are reported to wit-
ness the applicability of the approach. Finally, some
concluding remarks are reported in Section 5.

2. Nonlinear Receding-Horizon
Control

In this section, we briefly review the results in De
Nicolao et al. [5] and Magni et al. [7] on state
feedback and output feedback RH control of nonlin-
ear systems, which form the basis of all the sub-
sequent developments.

The nonlinear discrete-time dynamic system is
assumed to be described by

x(k11) = f(x(k),u(k)), x(t) = x k $ t (1)

y(k) = h(x(k)) (2)

where x P Rn is the state,y P Rm is the output,
and u P Rm is the input. The functionsf(·,·) andh(·)
are C1 functions of their arguments andf(0,0) = 0,
h(0) = 0.

For the system (1), we search for a NRH control
law u = kRH(x) which regulates the state to the ori-
gin, subject to the input and state constraints

x(k) P X, u(k) P U, k $ t (3)

where X and U are closed subsets ofRn and Rm,
respectively, both containing the origin as an
interior point.

To derive the NRH control law, first let

x(k 1 1) = Ax(k) 1 Bu(k)

y(k) = Cx(k) (4)

be the linearisation of system (1)–(2) around the
equilibrium point (x,u) = (0,0), i.e.

A =
­f
­x

(0,0), B =
­f
­u

(0,0), C =
­h
­x

(0)

Assuming that the pair (A,B) is stabilisable, well
known results of linear control theory state that it
is possible to find a matrixK such that the eigenval-
ues of (A1BK) are inside the unit circle in the
complex plane. Note thatK is the gain matrix of a
linear state feedback control lawu(k) = Kx(k) which
stabilises the linear system (4). Hence,K can be
computed by means of standard synthesis methods
for linear systems, for example LQ [8] or pole-
placement [9] techniques.

Now, for a given stabilising matrixK, at any
time instantt let x = x(t) and minimise with respect
to ut,t1N21 := [u(t) u(t11) % u(t 1 N 2 1)], N $ 1,
the cost function

J(x,ut,t1N21,N,K) = ON21

i=0

x9(t1i)Qx(t1i)

1 u9(t1i)Ru(t1i) 1 Vf(x(t1N),K) (5)

subject to (1) and (3), withQ . 0, R . 0 and the
terminal state penaltyVf defined as

Vf(x,K) = O`
i=0

x9(t1i)(Q1K9RK)x(t1i)

where x(t1i), i $ 0 satisfies (1) withu(k) = Kx(k).
The optimal control sequenceuo

t,t1N21 solving the
above optimisation problem is termedadmissibleif,
when applied to system (1)

x(k) P X, u(k) P U, t # k , t 1 N

x(t 1 N) P X(K)

where X(K) stands for the exponential stability
region (see [1] and [5]) of the nonlinear closed-loop
system composed by the nonlinear system (1) and
the linear control lawu(k) = Kx(k). In other words,
x P X(K) implies the fulfillment of the constraints
(3), i.e. x(k) P X, Kx(k) P U,k $ t.

Finally, the state-feedback NRH control lawu =
kRH(x) is obtained by applying at any time instant
t the control u(t) = uo(x) where uo(x) is the first
column of uo

t,t1N21. Letting X0(N,K) be the set of
statesx such that any admissible control sequence
uo

t,t1N21 exists, the following result holds:

Theorem 1 [5] Assume that (A,B) is stabilisable
and let K be such that the eigenvalues of (A1BK)
are inside the unit circle in the complex plane.
Then, if the NRH control lawu = kRH(x) is applied
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to the nonlinear system (1), the origin is an exponen-
tially stable equilibrium point of the resulting closed-
loop system havingX0(N,K) as exponential stab-
ility region.

A very practical procedure for stabilising the non-
linear system (1) is to design first a linear control
law u = kIH

L (x) = Kx by minimising an IH perform-
ance index subject to the linearised state dynamics
(4). In this respect, well-established tools are avail-
able for the tuning of the weighting matricesQ and
R in a standard LQ control problem so as to achieve
the desired specifications for the linearised closed-
loop systemx(k11) = (A1BK)x(k). Then, the same
Q and R are used to implement the nonlinear RH
controller. Under regularity assumptions, asixi →
0, it turns out thatkRH(x) → kIH

L (x) = Kx. Moreover,
(­kRH(x)/­xix=0 = K so that the NRH control law
can be regarded as a consistent nonlinear extension
of the linear control lawu = Kx.

In this procedure, onceQ and R have been selec-
ted, the only free parameter is the optimisation
horizon N, which can be tuned to trade compu-
tational complexity (which grows withN) for per-
formance (kRH(x) → kIH(x) as N → `, wherekIH(x)
is the unknown optimal control law for the IH
nonlinear problem). Furthermore, asN grows, the
stability region enlarges andX0(N,K) → XIH, where
XIH is the region of attraction of the optimal IH
nonlinear control lawkIH(x). It can also be proven
that X0(N11,K) $ X0(N,K) $ X(K) ∀N . 0 [5].

The NRH state-feedback control law previously
introduced assumes the knowledge of the system
statex at any time instantt. In many practical cases,
for example in the application described in Section
4, only the system outputs are measured. Then, the
state-feedback control law must be combined with
a suitable state observer producing at any time
instant t the estimationx̂(t) of the state vectorx(t)
from the measures of the system inputs and outputs.
Finally, the truly implemented NRH ‘output feed-
back type’ control law is computed on the estimated
state, that isu = kRH(x̂). However, this procedure
raises an important theoretical issue: to what extent
the stabilising properties of the state feedback con-
trol law (see Theorem 1) still hold in the output
feedback case? This problem has been analysed in
depth by Magni et al. [7], where it has been shown
that, under mild observability properties on the orig-
inal nonlinear system (1)–(2), combining the NRH
state-feedback control law with popular observer
methods, such as the Kalman filter, the asymptotic
(or exponential) stability of the equilibrium is still
guaranteed.

3. Neural Network Implementation of
the NRH Control Law

The main drawback of the RH approach is the
necessity to solve a nonlinear optimisation problem
on-line. This is possible for ‘slow’ systems such as
the one considered by Magni et al. [10] or chemical
and petrochemical plants where NRH control is
already widely industrially applied. However, not-
withstanding the improvements of the hardware tech-
nology, a direct on-line implementation of NRH
control may be still quite impossible for ‘fast’
systems.

To apply the NRH approach also when a short
sampling interval must be used, one can consider
to solve the FH optimisation problem off-line for
many different initial statesx and to store the com-
puted sequences of control variables, i.e. the ‘realis-
ations’ of kRH(x), in the computer’s memory. Then,
in the real application, one has to select or interp-
olate the computed control sequence that best fits
with the current state of the plant. Clearly, this
strategy has the disadvantage that an excessive
amount of computer memory may be required to
store the closed-loop control law. Moreover, some
interpolating procedure must be implemented in
practice to effectively compute the control variable.

An interesting way to solve these implementation
problems is to resort to a functional approximation
k̃RH(x) of the optimal control lawkRH(x) [3]. More
specifically, we search for a functionk̃RH(x,w), with
a given structure, which depends upon a vector of
parametersw. The values ofw must be optimised
with respect to the approximation error

E(w) = ONc

i=0

ikRH(x(i)) 2 k̃RH(x(i),w)i

where x(i), i = 1, %, Nc, are the states of the
sequences which have been computed off-line, and
that form the training set.

Among the many different approximation stra-
tegies nowadays available, in this work we have
concentrated on multilayer feedforward neural net-
works [11]. In particular, we assume that the
approximating neural functionk̃RH(x,w) contains
only one hidden layer composed ofn neural units
(perceptron) with a sigmoidal activation function

fs(y) = (1 1 e2by)21

and that the output layer is composed of linear
activation units. It is well known that continuous
functions can be approximated to any degree of
accuracy on a given compact set by feedforward
neural networks based on sigmoidal functions, pro-
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vided that the number of perceptronsn is sufficiently
large. However, the choicea priori of the number
of perceptrons to use is an open problem of neural
network approximation theory. In Parisini and Zop-
poli [3], a theoretical study of the approximating
properties of the receding-horizon neural regulator
is reported.

4. NRH Control of a Seesaw

The design procedure described in the previous sec-
tions has been followed for the synthesis of a neural
controller for a seesaw. The apparatus, schematically
shown in Fig. 1, consists of two long arms hinged
onto a triangular support. The axis is coupled to a
potentiometer which allows one to measure the see-
saw angle. A cart slides on a ground strainless steel
shaft. The cart is equipped with a motor and a
potentiometer. These are coupled to a rack and
pinion mechanism to input the driving force to the
system and to measure cart position respectively.
The control objective is to design an output feedback
control law that controls the position of the cart to
maintain the seesaw in the horizontal position.

4.1. Nonlinear Continuous Time Model

Denoting byp and v the cart position and velocity
and byu and w the angle position and velocity (see
Fig. 1), the nonlinear model of the plant is given
by the following differential equations:

p· = v

v· = Fmp21J1mh2

mp21J G SF
m

1 w2pD 1

2
g

mp21J
[(Mhc2mp22J)sin(u)

1 (mhpcos(u))] 1
2mhwvp
mp21J

u
· = w

Fig. 1. Mechanical scheme of the seesaw.

w· = F2
mh

mp21JG SF
m

1w2pD 1
1

mp21J

[Mgcsin(u) 1 mgpcos(u)] 2
2mwvp
mp21J

(6)

where M and m are the seesaw and cart masses,J
is the moment of inertia,h is the height of the track
from pivot point, c is the centre of mass seesaw
(height from pivot point),g is the acceleration due
to gravity and F is the force applied to the cart.
The force is from a DC motor coupled to a track
via a rack and pinion mechanism. It depends upon
the input voltageu in the following way:

F =
kgKm

rRa

u 2 SkgKm

r D2 1
Ra

v (7)

where Ra is the armature resistance,kg is the built-
in gear ratio of motor,r is the radius of output
pinion andKm is the torque constant. In the experi-
mental apparatus used in this study, the values of
the parameters are:m = 0.455 Kg, M = 3.3 Kg, h
= 0.1397 m,c = 0.058 m, J = 0.427 Kgm2, g =
9.81 m/s2 with kg = 3.7, Km = 0.00767 Nm/A,r =
0.0064 m,Ra = 2.6 V. The maximum allowed value
of u is of about613° for physical constraints.

Note that model (6) does not account for the
presence of friction, which can be viewed in the
control synthesis phase as an unmodelled dynamics.
The robustness of the controller will also be tasted
against this uncertainty.

In the (unstable) equilibriumx = [p v u w]9 =
[0 0 0 0]9, the seesaw is horizontal and the cart is
located at the centre of the triangular support. The
system is assumed to be controlled with a digital
controller with sampling period equal to 5 ms.

4.2. NRH Control Law and Neural
Approximation

According to the procedure outlined in Section 2,
the linearlisation of model (6)–(7) around the origin
has first been computed and discretised. The
obtained discrete-time linear model is defined by
the matricesA and B reported in the Appendix, and
is able to describe with accuracy the seesaw dynam-
ics for angle positionsu roughly ranging in the
interval (28°,8°). On the contrary foruuu$8° the
nonlinear behaviour dominates.

With reference to the discrete-time linearised sys-
tem (4), the stabilising gainK (see again the
Appendix) of the linear control lawu = Kx has been
determined by means of the LQ method [8] with
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state and control weighting matricesQ and R
given by

Q = diag{3000,0.1,3000,0.1}, R = 2 (8)

Note that, since the seesaw behaviour is almost
linear for uu0u,8°, the control valueu computed
with the linear control law is almost equal to the
one which could be determined through the minimis-
ation of the performance index (5) referred to the
nonlinear system (6)–(7), i.e.u = Kx.kRH(x). For
this reason, starting from different initial conditions
x0 = [0 0 u0 0]9, uu0u , 8°, the control lawu = Kx
has been used to generate with a negligible compu-
tational effort the control sequences to be sub-
sequently used for the training of the neural net.

To enlarge the stability region and to improve
the control performance, the NRH control algorithm
of Section 2 has been used to compute off-line the
optimal control sequences corresponding to various
initial conditions x0 = [0 0 u0 0]9, with 8°
#uu0u#13°. The optimisation horizonN = 10 has
been used together with theQ and R matrices again
given by Eq. (8). As discussed in Section 3, the
computed sequences are ‘realisations’ of the truly
optimal NRH control lawu = kRH(x), and have been
subsequently used in the training of the approximat-
ing net. Observe that the solution of the optimisation
problem requires a significant computational burden.

Finally, a multilayer feedforward neural net with
30 perceptrons and sigmoidal activation function
with b = 1 has been used to approximate the state-
feedback NRH control law. As already stated, the
training-set has been composed both of the
sequences computed with the linear control law
(uu0u , 8°) and of those determined through the
optimisation phase. In so doing, a smooth passage
from the nonlinear control law to the linear LQ one
has been guaranteed by the training process itself.

4.3. Output Feedback Control Law

In the seesaw experimental apparatus only the cart
and the angle positions are directly measured and
coincide with the outputs of the system, while the
cart and angle velocities must be reconstructed with
an observer. In particular, a standard Kalman filter
[12] has been derived for the discrete-time linearised
system, and used for on-line closed-loop control.
This filter has been designed assuming that two
Gaussian and mutually independent white noisesj
| WGN(0,Q*), Q* = diag[0.0001 0 0 0] andc |
WGN(0,R*), R* = diag[0.0004 0.0004] act on the
state and output vectors, respectively. Correspond-
ingly, the filter gainL reported in the Appendix has
been computed.

Fig. 2. Control scheme.

Fig. 3. Experimental results.
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In summary, the scheme used for on-line control
is shown in Fig. 2. It is composed by the plant, the
Kalman observer, the NRH neural network
(NRH/NN) state-feedback control law and a satu-
ration block. This control scheme has been im-
plemented on a PC-133 MHz using a C-language
program and a commercial data acquisition system.

4.4. Experimental Results

To test the performance of the NRH/NN control
law, some perturbations have been imposed to the
seesaw. In particular, ‘impulse-type’ forces have
been provided to one extremum of the apparatus,
so that the task of the control system has been to
bring back the seesaw in the horizontal position.

Some of the results achieved are presented in
Fig. 3, where the transients of the cart position, of
the angle position and of the input voltage are
reported. Concerning these figures, two facts have
to be noted. First, the NRH/NN control law guaran-
tees good results also for perturbations of the angle
position u greater than 80 where the nonlinear con-
trol synthesis procedure is effective. Second, there
is a small steady-state error both in the cart and in
the angle positions. Correspondingly, in the steady-
state the input voltage is different from zero. This
is caused by the presence of friction forces that for
small values of the inputu prevent the cart from
moving. To eliminate these errors, one should
include suitable integral action into the feedback
loop.

5. Conclusion

The results reported in this paper clearly illustrate
that the Receding Horizon approach is a practical
way to solve nonlinear control problems also for
‘fast’ systems. In these cases, the true nonlinear
control law must be computed off-line first. Then,
it can be approximated through the use of nowadays
standard tools, such as Neural Nets. The approach
followed here has been used also to control a labora-
tory inverted pendulum with excellent results [13].
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Appendix

Locally stabilising control law

K = [92.63 8.67 97.53 36.50]

designed by solving an LQ problem with theQ and
R matrices given by Eq. (8) based on the discrete-
time linearised system

x(k11) = Ax(k) 1 Bu(k)

with

A=









1.0000 0.0048 0.0001 0.0000

20.0070 0.9187 0.0441 0.0001

0.0001 0.0000 1.0001 0.0050

0.0522 0.0120 0.0223 1.0001







;

B=









0.0000

0.0185

0.0000

20.0027








Kalman Filter gain
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L = 3
0.3904 0.0004

20.0037 0.0130
0.0004 0.0288
0.0320 0.0843

4
derived from the following noisy discrete-time
linearised systems:

x(k11) = Ax(k) 1 Bu(k) 1 j(k) x(0) = x

y(k) = Cx(k) 1 c(k)

where

C = [1 0 1 0]

and x, j(k) and c(k) are assumed jointly Gaussian
and mutually independent. Furthermore,x | N(0,I),
j(k) | WN(0,Q*), c(k) | WN(0,R*), with Q* =
diag[0.0001 0 0 0] andR* = diag[0.0004 0.0004].


