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Using distinct prediction and control horizons, nonlinear model-based predictive control can
guarantee: (i) computational ezciency, (ii) enlargement of the stability domain and (iii) local
optimality.

Abstract

Predictive control of nonlinear systems subject to state and input constraints is considered. Given an auxiliary linear control law,
a good nonlinear receding-horizon controller should (i) be computationally feasible, (ii) enlarge the stability region of the auxiliary
controller, and (iii) approximate the optimal nonlinear in"nite-horizon controller in a neighbourhood of the equilibrium. The
proposed scheme achieves these objectives by using a prediction horizon longer than the control one in the "nite-horizon cost
function. This means that optimization is carried out only with respect to the "rst few input moves whereas the state movement is
predicted (and penalized) over a longer horizon where the remaining input moves are computed using the auxiliary linear control law.
Closed-loop stability is ensured by means of a penalty on the terminal state which is a computable approximation of the
in"nite-horizon cost associated with the auxiliary controller. As an illustrative example, the predictive control of a highly nonlinear
chemical reactor is discussed. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, the state-feedback control of discrete-
time nonlinear systems subject to state and input con-
straints is considered. In principle, a conceptually elegant
solution would be given by the optimal in"nite-horizon
(IH) controller, obtained through the minimization of an
IH cost function subject to the state and input con-
straints (Keerthi &Gilbert, 1988). On the other hand, it is
apparent that the practical implementation of such
a control law poses formidable computational problems
since it involves a nonlinear optimization in an in"nite-

dimensional decision space. Hence, the commonly ad-
opted solution is to use a control law designed on the
basis of the linearized dynamics around the desired equi-
librium. However, in view of the system nonlinearity and
the presence of constraints, both the performance and the
stability region of the controller may be unsatisfactory.
Predictive controllers are based on the receding-

horizon (RH) methodology that o!ers a powerful ap-
proach to the design of state feedback controllers for
constrained systems (Garcia, Prett, & Morari, 1989),
(Mayne, Rawlings, Rao, & Scokaert, 2000). In particular,
the main advantage with respect to IH optimal control is
that the control input is computed by solving a "nite-
horizon optimization problem (where constraints are
explicitly taken into account). Although predictive
controllers of the "rst generation did not guarantee
closed-loop stability even in the linear case (Bitmead,
Gevers, & Wertz, 1990), by now there are several predic-
tive control schemes with guaranteed stability for nonlin-
ear systems (Keerthi & Gilbert, 1988; Chen & Shaw,
1982; Mayne & Michalska, 1990; Michalska & Mayne,
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1993; Yang & Polak, 1993; Parisini & Zoppoli, 1995;
Chen & AllgoK wer, 1998; De Nicolao, Magni, &
Scattolini, 1998; Magni & Sepulchre, 1997). In general,
stability is enforced by means of suitable penalties and
constraints on the state at the end of the "nite optimiza-
tion horizon (Mayne et al., 2000). Most methods use an
auxiliary linear control law in order to derive the
terminal penalties and constraints.
A nonlinear predictive controller is preferable to the

direct use of the auxiliary linear controller only if it
enjoys some properties. First of all, the solution of the
"nite-horizon optimization problem should be computa-
tionally a!ordable, meaning that the number of decision
variables should not grow too much. The second require-
ment is that the stability region should be at least as large
as that of the linear controller (enlargement property).
Finally, one would like the RH control law to be close to
the IH optimal control law at least in a neighborhood of
the equilibrium (local optimality).
These properties could be enforced by constraining

the terminal state to belong to the stability region of the
auxiliary linear controller, and adding a penalty on
the terminal state equal to the IH cost incurred by the
application of the auxiliary control law to the nonlinear
system (De Nicolao et al., 1998). Unfortunately, the
stability region of the auxiliary controller is hardly com-
putable in practice and the exact evaluation of the IH
cost involves the simulation of the closed-loop nonlinear
system over an in"nite horizon. The control schemes
available in the literature circumvent these problems in
various ways. For instance, the terminal state is con-
strained to belong to an inner bound of the stability
region for the auxiliary controller (usually, a level set of
a quadratic Lyapunov function) (Michalska & Mayne,
1993), and a suitable quadratic terminal penalty is
adopted (Parisini & Zoppoli, 1995; Chen & AllgoK wer,
1998). As a drawback, however, the enlargement and
local optimality properties can be recovered only at the
cost of a possibly substantial increase of the optimization
horizon, which directly a!ects the number of decision
variables.
In the present paper, we develop a new RH control

scheme that enjoys all the desired properties without
becoming computationally prohibitive. The scheme is
based on two main ideas. First, by working out suitable
bounds, it is shown how to truncate the series expressing
the IH cost associated with the auxiliary linear control
law without losing stability. Second, the use of a long
(prediction) horizon in the cost function is made possible
by dividing the horizon in two parts. The inputs asso-
ciated with the "rst part (control horizon) are the only
free decision variables, whereas the subsequent inputs are
obtained through the auxiliary linear control law. In this
way, the dimension of the decision space depends only on
the number of `freea input variables belonging to the
control horizon which can be kept relatively short. Al-

though the use of distinct control and prediction hor-
izons has a long history in linear predictive control
(Clarke, Mothadi, & Tu!s, 1987), in the nonlinear case
the only attempt at using a prediction horizon longer
than the control one was so far limited to locally open-
loop stable systems using the trivial constant-control
strategy as auxiliary controller (Chen & AllgoK wer, 1997;
Zheng, 2000). When applicable, the constant-control
auxiliary strategy is indeed computationally e$cient but
it does not meet the local optimality requirement.

2. Problem statement

Consider the nonlinear discrete-time dynamic system

x(k#1)"f (x(k), u(k)), x(t)"x� , k*t, (1)

where k is the discrete time index, x(k)3R�, u(k)3R�,
f ( ) , ) )3C� and f (0,0)"0. The state and control variables
are required to ful"ll the following constraints:

x(k)3X, u(k)3;, k*t, (2)

where X and ; are compact subsets of R� and R�,
respectively, both containing the origin as an interior
point. In order to design a state-feedback control law
u"�(x) for (1), one may consider the minimization with
respect to u( ) ) of the IH cost function

J
��
(x� , u( ) ))"

�
�
���

x(k)�Qx(k)#u(k)�Ru(k) (3)

subject to (1) and (2). In (3) Q and R are positive de"nite
weighting matrices.

De5nition 1. Given a control law u"�(x), the term out-
put admissible set (Keerthi & Gilbert, 1988), referred to
the closed-loop formed by (1) joined with u(k)"�(x(k)),
denotes an invariant set XM which is a domain of attrac-
tion of the origin and such that x� 3XM implies that x(k)3X
and �(x(k))3;, k*t.

LetX�� be the set of states x� such that the IH problem
is solvable. If u"���(x) denotes the optimal IH control
law, then X�� is an output admissible set for
x(k#1)"f (x(k),���(x(k))) (Keerthi & Gilbert, 1988). In
general, the IH nonlinear optimal control problem is
computationally intractable since it involves an in"nite
number of decision variables. Nevertheless, it constitutes
a touchstone for suboptimal approaches. For instance, it
is desirable to design a regulator whose output admiss-
ible set approximates X�� as much as possible. The
simplest way to obtain an easy-to-compute suboptimal
solution is to resort to linearization techniques. Letting
A"(�f/�x)(0,0), B"(�f/�u)(0,0), the linearized dynamics
is

x(k#1)"Ax(k)#Bu(k), x(t)"x� , k*t. (4)
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Assumption A1. The pair (A,B) is stabilizable.

Hereafter, a gain K will be said to be stabilizing if
A

��
:"A#BK is stable. Moreover, given a stabilizing

linear control law

u"Kx, (5)

we denote by �(K) the output admissible set associated
with the closed-loop dynamics

x(k#1)"f (x(k),Kx(k)), x(t)"x� , k*t. (6)

In the following,�M (K) will denote a closed output admiss-
ible set that coincides with the maximum output admiss-
ible set, if exists, or is su$ciently close to the supremum
of the output admissible sets. In general, it is not possible
to compute the supremum (or the maximum) of the
output admissible sets. However, an ellipsoidal output
admissible set (i.e. an inner bound of �M (K)) can be ob-
tained as a by-product of the following lemma. Hereafter,
�
�
(k, t,x� ,K), k*t, indicates the solution x(k) of (6) and,

given a matrix Q, �
���
(Q) and �

���
(Q) are the minimum

and maximum eigenvalue of Q, respectively.

Lemma 1. Assume that K is stabilizing. Let QI be a positive
dexnite matrix, and � a real positive scalar such that
�(�

���
(QI ). Let � be the unique symmetric positive dexnite

solution of the following Lyapunov equation:

A�
��
�A

��
!�#QI "0. (7)

Then, there exists a constant c3(0,R) specifying a
neighborhood �

�
(K) of the origin of the form

�
�
(K)"�x3R� �x��x)c	 such that

(i) x3X, Kx3;, for all x3�
�
(K);

(ii) ∀x3�
�
(K), f (x,Kx)��f (x,Kx)!x��x)!�x�x

that is <
�
(x)"x��x is a Lyapunov function for the

nonlinear closed-loop system (6);
(iii) ∀x� 3�

�
(K), ���

�
(k, t, x� ,K)��)ae������	��x� ��, ∀k*t,

with

a"

�
���
(�)

�
���
(�)
, b"ln�

�
���
(�)

�
���
(�)!��'0. (8)

Note that, in view of (ii), the set �
�
(K) is invariant

under (6) so that, since constraints ful"llment is ensured
by (i), �

�
(K) is an output admissible set for the closed-

loop formed by (1) joined with linear state feedback
u(k)"Kx(k). For what concerns the practical computa-
tion of the constant c, the interested reader is referred to
(Polak, Mayne, & Stimmler, 1984). Under Assumption
A1, the solution of the minimization of (3) subject to the
linearized dynamics (4) leads to the control law

u"K��x (9)

where K��"(R#B�PB)�
B�PA and P is the (unique)
positive de"nite solution of the algebraic Riccati

equation

P"A�PA#Q!A�PB(R#B�PB)�
B�PA. (10)

If the linear control law u(k)"K��x(k) is applied to the
nonlinear system (1), the origin will be stabilized with
a nonzero-measurable domain of attraction. On the
other hand, the extent of the associated supremum out-
put admissible set may be unsatisfactory and even more
so the extent of the inner bound provided by �

�
(K��).

The previous discussion justi"es the search for sub-opti-
mal regulator schemes that yield a nonlinear control law
�(x) enjoying the following properties:

(i) Performance/ complexity trade-ow: by suitably tuning
the design parameters of the regulation scheme it
should be possible to choose a compromise between
an arbitrarily good approximation of the optimal
(but computationally intractable) IH controller
��� and the computationally cheap (but largely
suboptimal) linear controller u"Kx.

(ii) Enlargement property: the output admissible set asso-
ciated with �(x) should be larger than the output
admissible set �M (K) associated with the auxiliary
controller (5).

(iii) Local optimality: close to the origin the control law
should behave as the in"nite-horizon one: d�(x)/
dx�

	��
"d���(x)/dx�

	��
"K��.

An e!ective strategy for designing suboptimal control-
lers is to resort to the RH strategy. However, none of the
RH schemes currently available is completely satisfac-
tory with respect to properties (i)}(iii).

3. Receding horizon control algorithm

In order to introduce the new algorithm, a "nite-
horizon optimization problem is "rst de"ned. De"ne,
u
�
 ���
:"[u(t



) u(t



#1)2u(t

�
)], t

�
*t



.

Finite horizon optimal control problem (FHOCP).
Given a stabilizing gainK, consider the set �

�
(K) and the

positive real numbers a, b de"ned in Lemma 1. Then,
given the positive integers N

�
(control horizon) and

N
�
(prediction horizon), N

�
)N

�
, the positive de"nite

matrices Q, R, and the real number 
, 0(
(1, minim-
ize, with respect to u

���
���

, the performance index

J(x� , u
���
���


,N
�
,N

�
)"

�
���

�
���

�x(k)�Qx(k)#u(k)�Ru(k)	

#<
�
(x(t#N

�
), x� ) (11)

subject to (i) the state dynamics (1); (ii) the constraints (2);
(iii) the auxiliary control law u(k)"Kx(k), k3

[t#N
�
, t#N

�
!1]; and (iv) the terminal state con-

straint x(t#N
�
)3�

�
(K).
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Recalling that �
�
(k, t,x� ,K), k*t, denotes the solution

x(k) of (6), the terminal state penalty <
�
is de"ned as

<
�
(x(t#N

�
,x� ))

"

�
��

�

�

���
��

���
�
(k, t#N

�
,x(t#N

�
),K)���

�
�
��
, (12)

where M is the smallest positive integer such that

a

1!e��
���

�
(t#N

�
#M, t#N

�
, x(t#N

�
),K)���

��
���
(Q#K�RK)(
x� �Qx� . (13)

For M"R, the penalty (12) coincides with the IH
cost associated with the auxiliary control law u"Kx.
SinceM is "nite, (12) is just a computable approximation
of such an IH cost. Inequality (13) is a technical condition
on M, that will be used in the proof of closed-loop
stability (Theorem 2), and whose scope is to ensure that
the approximation is accurate enough. It is now possible
to de"ne the new stabilizing nonlinear receding horizon
(SNRH) control law: at every time instant t, de"ne
x� "x(t) and "nd the optimal control sequence
u	
���
���


by solving the FHOCP. Then, apply the control
u(t)"���(x� ), where ���(x� )"u	

���
(x� ) is the "rst column of

u	
���
���


. In practice, the SNRH algorithm consists of
the following steps.

Ow-line
(1) Choose Q, R, N

�
, N

�
, and 
.

(2) Find K such that A#BK is asymptotically stable
(for instance K"K�� de"ned in (9)).

(3) Choose QI and � such that �(�
���
(QI ) and "nd the

solution� of the Lyapunov equation (7). In particu-
lar, if K"K��, and QI "Q# K��
RK��, then
�"P, where P is the solution of the ARE (10).

(4) According to Lemma 1, determine c corresponding
to a region �

�
(K)3X such that f (x,Kx)��f (x,Kx)!

x��x)!�x�x and Kx3;, ∀x3�
�
(K)"

�x3R�: x��x)c	.
(5) Calculate a and b according to (8).

On-line: At each step, solve the FHOCP and determine
the current control variable.

The SNRH algorithm de"nes a nonlinear control law
u"���(x) that, applied to system (1), yields the closed-
loop system

x(k#1)"f (x(k)), ���(x(k)), x(t)"x� , k*t (14)

whose stability is established in the following result.

Theorem 2. Let X	(N
�
,N

�
) be the set of states x� such that

there exists a control sequence u	
���
���


that solves the
FHOCP. Then, the SNRH control algorithm applied to (1)

exponentially stabilizes the origin with output admissible set
X	(N

�
,N

�
).

The method proposed in this paper can be interpreted
as posing a (nonquadratic) terminal penalty at time
t#N

�
, which is obtained through an approximation of

the cost-to-go of the auxiliary controller applied to the
nonlinear plant. According to this point of view, the
constraints on the input u

���
���

must account for the

need of bringing x(t#N
�
) inside the ellipsoidal invariant

set �
�
. Compared to methods that use a quadratic ter-

minal penalty at time t#N
�
with the constraint that

x(t#N
�
)3�

�
, there are two possible advantages. First of

all the constraints of our method are less restrictive (for
given N

�
and �

�
). Second the nonquadratic terminal

penalty, di!erently from the quadratic one, takes into
account the nonlinear dynamics of the plant with pos-
sible performance bene"ts, see e.g. Section 4.3.

4. Properties of the SNRH algorithm

In this section, with reference to the three issues high-
lighted at the end of Section 2, the properties of the
SNRH algorithm are discussed.

4.1. Performance/complexity trade-ow

The algorithm has two design parameters N
�
and

N
�
that directly a!ect the computational complexity. As

a matter of fact the complexity mainly depends on
N

�
because it is proportional to the number of decision

variables. Conversely, for a "xed N
�
, an increase of

N
�
involves integration of system (6) over a longer inter-

val and the ful"llment of a larger number of input and
state constraints but does not a!ect the dimensionality of
the optimization space. It is remarkable that the algo-
rithm is well de"ned and guarantees stability even for
N

�
"1. On the other hand, it is ideally possible to

approximate the optimal IH controller arbitrarily well by
increasing the value N

�
. An objective way to assess per-

formance would be to measure the value of the IH cost (3)
when a controller is applied to (1). In order to avoid the
in"nite-horizon simulation of the closed-loop system (6)
or (14), one can compute an upper bound of the IH
performance as shown below for both the auxiliary and
the SNRH control law.

Theorem 3. Let J�
��
(x� ) be equal to (3) subject to (6) (in other

words, J�
��
(x� ) is the IH cost associated with the linear

control law (5)) Then, for any 
, 0(
(1, it results that
J�
��
(x� ))JM �

��
(x� ) :"<

�
(x� , x� )#
x� �Qx� , where <

�
is dexned

in (12) and (13). Moreover, lim���
<

�
(x� ,x� )"J�

��
(x� ).

Theorem 4. Let J��
��
(x� ,N

�
,N

�
) be equal to (3) subject to

(14) (in other words J��
��

is the IH cost associated with the
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nonlinear RH control law u"���(x)) and J	(x� ,N
�
,N

�
)

be equal to J(x� , u	
�� �
���


,N
�
,N

�
) (i.e. J	 is the optimal

value of the FH cost (11)). Then, it results that
J��
��
(x� ,N

�
,N

�
))JM ��

��
(x� ,N

�
,N

�
) :"lim���

(J	(x� ,N
�
,N

�
)

#
x� �Qx� ) where 
 is the positive real number appearing in
the dexnition of the FHOCP.

It is unfortunate that the upper bound involves the
limit for 
 tending to zero. However from (13) it is
possible to see that an exponential decrease of 
 requires
only a linear increase ofM. Therefore, good approxima-
tions of the limit may be obtainable with relatively small
values of 
. It is hardly possible to prove that the J��

��
is

a monotone non increasing function of N
�
. Nevertheless,

the next theorem shows that there is a monotonicity
relationship between the performance bounds.

Theorem 5. For a given N
�
)M(x� , x� ), assume that

N
�
(N

�
. Then, JM ��

��
(x� ,N

�
#1,N

�
))JM ��

��
(x� ,N

�
,N

�
))J�

��
.

As already observed, in general it cannot be guaran-
teed that an increase of N

�
yields an automatic decrease

of J��
��
. Nevertheless, when N

�
increases, the FHOCP

tends to an IH minimization problem and the actual IH
performance of the SNRH control scheme must event-
ually decrease because it converges to the IH cost
achieved by the IH nonlinear optimal controller ���.

4.2. Enlargement property

The advantage of having introduced N
�
is that it is

possible to enlarge the stability region without increas-
ing N

�
.

Theorem 6. Let X	(N
�
,N

�
) be the output admissible set

associated with the closed-loop system (14). Then
(i) X	(N

�
,N

�
).�

�
(K), ∀N

�
,N

�
; (ii) X	(N

�
,N

�
#1).

X	(N
�
,N

�
), ∀N

�
,N

�
; (iii) there exists a xnite NM

�
such that

X	(N
�
,NM

�
).�M (K), ∀N

�
, where �M (K) is any closed output

admissible set associated with u"Kx (see Section 2).

Point (ii) of the previous result shows that increasing
N

�
results in a direct improvement of the extent of the

output admissible set. More importantly, point (iii)
shows that it is possible (with an arbitraryN

�
) to achieve

an output admissible set which is not smaller than that
guaranteed by the linear controller. Remarkably, without
introducing two di!erent horizons, the only way to reach
the output admissible set of the linear controller is by
suitably increasing the control horizon N

�
with obvious

computational drawbacks. Note also that, in general, by
increasing only N

�
it is not possible to reach the output

admissible set X�� achievable with the optimal IH con-
trol law. To do this also the control horizon N

�
must be

increased. Another parameter that a!ects the size of the

output admissible set is �. More precisely a smaller � will
produce a larger�

�
and consequently a largerX	(N

�
,N

�
)

(see Theorem 6(i)). On the other hand, in view of (8),
a smaller � yields a value of b closer to zero and this
requires a larger M (see (13)).

4.3. Local optimality

A somewhat undesirable feature of RH control is that
even in the nominal case (no disturbances), the open-loop
predicted state movement (i.e. the one computed in the
solution of the FHOCP) is in general di!erent from the
actual closed-loop state movement. On the other hand, it
is well known that the two state movements do coincide
only when an in"nite horizon optimal controller is ap-
plied. A less demanding but more realistic requirement is
that the distance between the predicted and actual state
movements tends to zero as the initial state x� gets closer
to the origin. This is just what is obtained by imposing
the local optimality property de"ned in Section 2. In
order to assess the local discrepancy between the SNRH
control law and the optimal IH one, in the following
lemma we compute the linearization of the SNRH con-
trol law u"���(x) around the origin.

Lemma 7. The SNRH control law is diwerentiable
around the origin and ����(x)/�x�

	��
"K��"

!(R#B��(N
�
)B)�
B��(N

�
)A where �(N

�
) is obtained

by integrating the Lyapunov equation S(k#1)"
A�

��
S(k)A

��
#Q in k3[0,N

�
#M!N

�
] with the initial

condition S(0)"0 and the Riccati equation

�(k#1)

"A��(k)A#Q!A��(k)B(R#B��(k)B)�
B��(k)A

in k3[0,N
�
] with the initial condition �(0)"

S(N
�
#M!N

�
).

Theorem 8. For any given N
�
, if K"K��, then

lim
����

K��"K��.

This theorem shows that the SNRH controller can
approximate the local optimality condition with arbit-
rary precision by properly increasing N

�
.

5. Illustrative example

In this section, the new SNRH algorithm is applied to
the highly nonlinear model of a continuous stirred tank
reactor (CSTR), see (Seborg, Edgar, & Mellichamp,
1989, page 5). Assuming constant liquid volume, the
CSTR for an exothermic, irreversible reaction, APB, is
described by the following dynamic model based on
a component balance for reactant A and an energy
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Fig. 1. Open-loop responses for#5 K (a) and !5 K (b) step changes in ¹
�
.

balance:

CQ
�

"

q

<
(C

�

!C

�
)!k

�
exp�!

E

R¹�C�
,

¹Q "
q

<
(¹



!¹)#

(!�H)

C

�

k
�
exp�!

E

R¹�C�

#

;A

<
C
�

(¹
�
!¹), (15)

whereC
�
is the concentration of A in the reactor,¹ is the

reactor temperature, and ¹
�
is the temperature of the

coolant stream. The constraints are 280 K)¹
�
)

370 K, 280 K)¹)370 K, 0)C
�

)1 mol/l. The ob-
jective is to regulate C

�
and ¹ by manipulating ¹

�
. The

nominal operating conditions, which correspond to an
unstable equilibrium C��

�
"0.5 mol/l, ¹��"350 K,

¹��
�

"300 K are: q"100 l/min, ¹


"350 K, <"100 l,


"1000 g/l, C
�
"0.239 J/g K, �H"!5�10� J/mol,

E/R"8750 K, k
�
"7.2�10
� min�
, ;A"5�10� J/

min K. The open-loop responses for$5 K step changes
in ¹

�
, reported in Fig. 1, demonstrate that the reactor

exhibits highly nonlinear behavior in this operating re-
gime. The nonlinear discrete-time state-space model (1)
of system (15) can be obtained by de"ning the state vector
x"[C

�
!C��

�
, ¹!¹��]�, the manipulated input

u"¹
�
!¹��

�
and by discretizing equations (15)

with sampling period �t"0.03 min. With reference
to the discrete-time linearized system (4), letting
Q"diag(1/0.5,1/350) and R"1/300, the stabilizing ¸Q
control gain K�� is obtained. For several pairs (QI , �), the
solution � of (7) with K"K�� was computed, and the
parameter c was optimized so as to maximize the extent
of the invariant region �

�
(K��) de"ned in Lemma 1. The

best result was obtained in correspondence of QI "0.05I
and �"0.01, yielding c"0.0915. The SNRH control law
was synthesized as described in Section 3 using the ¸Q
control law as auxiliary controller, and letting
Q"diag(1/0.5, 1/350) and R"1/300, N

�
"3, N

�
"75,


"0.1. The optimizations required by the algorithm
were performed using the MatLab Optimization Tool-
box.

5.1. Simulation results

Starting from the three di!erent initial states reported
in Table 1, the closed-loop system (6) was simulated and
the resulting trajectories were plotted in Fig. 2, where
also the region �

�
(K��) is depicted. In Table 1, for each

experiment, the number of sample times needed to reach
the terminal region �

�
(K��), and the value of the in"-

nite-horizon cost J�
��
(x(0)) de"ned in Theorem 3 are re-

ported. It is interesting to note that all the initial points of
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Fig. 2. Closed-loop state trajectories: ¸Q control law (dashed line), SNRH control law withN
�
"3,N

�
"75 (continuous line), and NRH control law

with N
�
"N

�
"15 (dash-dotted line).

Table 1
¸Q experiments

Experiment [C
�
(0) ¹(0)]� Samples to reach

�
�
(K��)

J�
��
(x(0))

1 [0.3 363]� 48 9.8874
2 [0.3 335]� 20 59.6827
3 [0.6 335]� 75 20.3420

these experiments belong to an output admissible set
�M (K��) which is much larger than the ellipssoidal inner
bound �

�
(K��). In fact, in these examples the state and

control constraints are never violated. However, starting
from [C

�
(0) ¹(0)]�"[0.7 350.5]� the control constraint

is violated, see Fig. 3, and therefore such a state is
external to any output admissible set for K��.
The same simulation experiments performed with the

¸Q control law were made also with the SNRH control
algorithm. In view of the number of samples needed by
the ¸Q controller to reach the terminal region �

�
(K��),

we chose a long prediction horizon (N
�
"75), whereas

a very short control horizon (N
�
"3) was selected to

maintain a low computational e!ort. The resulting
closed-loop trajectories are plotted in Fig. 2. In Table 2,
the #ops, as well as the values of the in"nite-horizon
performance J��

��
and its upper bound J� ��

��
, both de"ned

in Theorem 4, are reported. Notably, in all cases but one
J� ��
��
(computed just after the "rst optimization at time 0)

is very close to the true IH performance J��
��
of the RH

control law. This means that the di!erence between the
(open-loop) state trajectory predicted at time 0 and the
actual closed-loop trajectory is relatively small. As ob-
served in Section 4.3, this is a symptom of the closeness of
the SNRH controller to the optimal IH one. A compari-
son between Tables 1 and 2 shows that the SNRH con-
trol law improves on the closed-loop performance. In
order to assess the advantage of using two distinct con-
trol and prediction horizonsN

�
and N

�
, we applied also

a nonlinear RH (NRH) regulator with N
�
"N

�
"15

and a quadratic terminal penalty, see (Chen & AllgoK wer,
1998), (Mayne et al., 2000). The resulting closed-loop
trajectories are plotted in Fig. 2. In Table 3, the values of
the IH performance and the #ops are reported. By com-
paring Tables 2 and 3, in all cases the SNRH scheme
requires a signi"cantly smaller amount of computations
and its performances are generally superior except for
Experiment 4 where there is a negligible deterioration of
the performance. Moreover, by comparing Tables 1 and
3 it is seen that in Experiment 1 the performance of the
NRH regulator is worse than that of the ¸Q regulator.
The transients in Experiment 4 are reported in Fig. 3 for
all the three controllers (recall that with the uncon-
strained ¸Q controller the control variable ¹

�
violates

the constraints).
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Table 2
SNRH experiments with N

�
"3 and N

�
"75

Experiment [C
�
(0) ¹(0)]� J��

��
(x(0), 3, 75) JM ��

��
(x(0), 3, 75) Flops

1 [0.3 363]� 9.3547 9.7150 2.8418�10�
2 [0.3 335]� 41.6681 52.3820 3.6592�10�
3 [0.6 335]� 19.0880 19.4300 4.1187�10�
4 [0.7 350.5]� 13.2135 13.3334 3.7017�10�

Fig. 3. Experiment 4: closed-loop responses with the ¸Q control law (dashed line), the SNRH control law withN
�
"3 andN

�
"75 (continuous line),

and the NRH control law with N
�
"N

�
"15 (dash-dotted line).

Table 3
NRH experiments with N

�
"N

�
"15

Experiment [C
�
(0) ¹(0)]� J��

��
(x(0), 15, 15) Flops

1 [0.3 363]� 10.2105 4.3725�10�
2 [0.3 335]� 42.6423 5.1299�10�
3 [0.6 335]� 19.6796 6.3381�10�
4 [0.7 350.5]� 13.1397 4.4623�10�

6. Conclusions

In the novel nonlinear RH control scheme proposed in
this paper, the introduction of the notion of prediction
and control horizons allows one to enlarge the size of the

domain of attraction without prohibitively increasing the
computational burden. For all other existing methods
the enlargement can be obtained only by lengthening the
control horizon with a consequent increase of the num-
ber of decision variables. Previously, it was not even
possible to guarantee that the domain of attraction of the
nonlinear RH controller is larger than that of the auxili-
ary local linear controller while our new method enjoys
this important property (Theorem 6). Finally, the optimal
in"nite horizon behavior can be recovered, at least lo-
cally, by acting only on the prediction horizon. Again,
other methods can achieve such a recovery only through
a computationally expensive increase of the control hor-
izon. The simulation experiments con"rm the good prop-
erties of the new algorithm and show its advantages over
¸Q control and RH schemes that do not apply distinct
prediction and control horizons.
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Appendix. Proofs of lemmas and theorems

Proof of Lemma 1. (i) The existence of a constant
c


3(0,R), such that x3X, Kx3;, for all x3�

�

(K) is

proven in (Michalska & Mayne, 1993). Thus, let
c3(0, c



).

(ii) Letting �(x)"f (x,Kx)!A
��
x, the inequality

f (x,Kx)��f (x,Kx)!x��x)!�x�x ∀x3�
�
(K) (A.1)

is equivalent to

2�(x)��A
��
x#�(x)���(x)#x�A

��
�A

��
x!x��x

)!�x�x. (A.2)

From Eq. (7) it is easy to see that inequality (A.2) is
equivalent to

x�QI x!�x�x*2�(x)��A
��
x#�(x)���(x). (A.3)

Now, de"ne ¸
�
"sup

	���
���(x)��/��x�� where B

�
"

�x : ��x��)r	 (¸
�
exists "nite because f3C�). Then,∀x3B

�
(A.3) is satis"ed, if

(�
���
(QI )!�)��x���*�2¸

�
�������A

��
��#¸�

�
�����	��x���. (A.4)

By the de"nition of �, it holds that �
���
(QI )!�'0. Then,

since ¸
�
P0 as rP0, there exists c3(0, c



) such that

inequality (A.4) holds ∀x3�
�
(K), which implies that in-

equality (A.1) holds as well. Moreover, from (A.1) it
follows that, ∀x3�

�
(K), <

�
(f (x,Kx)))<

�
(x) so that,

x3�
�
(K) implies f (x,Kx)3�

�
(K) (�

�
(K) is an invariant

set for system (1) controlled by the linear feedback
u"Kx). In conclusion, <

�
"x��x is a Lyapunov func-

tion satisfying, ∀x3�
�
(K), 
��x���)<

�
(x))���x���,

<
�
(x)!<

�
(f (x,Kx))*���x���, with 
"�

���
(�) and

�"�
���
(�).

(iii) In view of the previous point and the standard
Lyapunov stability theorem, the origin is an exponenti-
ally stable equilibrium point and there exist positive
numbers a, b such that, for all x� 3�

�
(K),

���
�
(k, t, x� ,K)���)ae������	��x� ���, ∀k*t. (A.5)

From (7) it follows that �*QI and therefore
�(�

���
(QI ))�

���
(�)"�. Hence, �(�. Observing

that !��x���)!<
�
(x)/�, it follows that

<
�
(�

�
(t#1, t, x� ,K)))<

�
(x� )!���x� ���)(1!�/�)<

�
(x� ).

Then, 
���
�
(k, t,x� ,K)���)<

�
(�

�
(k, t,x� ,K))) (1!�/�)����	

<
�
(x� ))(1!�/�)����	���x� ��� so that ���

�
(k, t,x� ,K)���)

(�/
)(1!�/�)����	��x� ���"(�/
) e����
����	�����	��x� ��� and con-
sequently a"�/
, b"ln(�/(�!�)).

Proof of Theorem 2. Let JI (x� , u
���
���


,N
�
,N

�
) be the

cost functional (11) with <
�
( ) , ) ) de"ned as

<
�
(x� ,x� )"��

���
��

�
(k, t, x� ,K)�(Q#K�RK)�

�
(k, t, x� ,K)	.

Recall that J(x� , u
���
���


,N
�
,N

�
) is the cost functional

formed by (11) and (12), and u	
���
���


(x� ) is the associated
optimal solution. Let u� 	

���
���

(x� ) be the optimal solution

of the optimization problem with cost function JI and
terminal region �

�
(K). Furthermore, de"ne �"f (x,�(x)),

JI 	(x� ,N
�
,N

�
)"JI (x� , u� 	

���
���

,N

�
,N

�
). In order to prove

that the SNRH control law

u"���(x)"u	
���
(x) (A.6)

stabilizes the origin of (1) with output admissible set
X	(N

�
,N

�
), it will be shown that, ∀x3X	(N

�
,N

�
),

<(x) :"JI 	(x,N
�
,N

�
) is a Lyapunov function for the

closed-loop system (14). To this aim, the main point is to
prove that

JI 	(�,N
�
,N

�
))JI 	(x,N

�
,N

�
)!x��x, ∀x3X	(N

�
,N

�
),

(A.7)

where � is a positive de"nite matrix. The keystone of the
proof is the monotonicity property

JI 	(x� ,N
�
,N

�
))JI 	(x� ,N

�
!1,N

�
). (A.8)

For this purpose, let u� 	
���
����

be the optimal solution of
the FHOCP where the cost function to be minimized is
JI (x� , u

���
����
,N

�
!1,N

�
). It is clear that u�

���
���

"

[u� 	
���
����

Kx] is an admissible solution for the
FHOCP where the cost function to be minimized
is JI (x� , u

���
���

,N

�
,N

�
) so that, by optimality, the

monotonicity property follows. To demonstrate (A.7)
we have to show that

JI 	(�,N
�
!1,N

�
))JI 	(x,N

�
,N

�
)!x��x. (A.9)

By de"nition, a sequence u
���
���


is admissible for the
FHOCP with cost function J and terminal constraints
�

�
(K) i! it is admissible for the optimization problem

with cost function JI and terminal region �
�
(K). By opti-

mality arguments, and since in J the series is truncated
after a "nite number of terms,

J(x� , u	
���
���


,N
�
,N

�
))J(x� ,u� 	

���
���

,N

�
,N

�
)

)JI 	(x� ,N
�
,N

�
). (A.10)

Letting

�
�
(M) :"JI (x� , u	

���
���

,N

�
,N

�
)!J(x� , u	

���
���

,N

�
,N

�
)

(A.11)

and x� :"�
�
(t#N

�
, t#N

�
,�(t#N

�
, t, x� , u	

���
���

),K),

where �(k, t, x� , u
����

) is the solution x(k) of (1)

for k*t, with initial state x� and subject to the
control sequence u

����

, we have that �

�
(M))

��
���
��



���
�
(k, t#N

�
,x� ,K)����

���
(Q#K�RK). Since

x� 3�
�
(K), from Lemma 1(iii) it follows

�
�
(M))a���

�
(t#N

�
#M, t#N

�
, x� ,K)�����

���
(Q#

K�RK)��
���
��



e�������
��

		. Observe that, the series

L. Magni et al. / Automatica 37 (2001) 1351}1362 1359



in the above expression can be written as
��

���
(e��)�"1/(1!e��). Then, from (13), it follows that

�
�
(M))
x� �Qx� . (A.12)

In view of (A.10)}(A.12)

JI (x� , u	
���
���


,N
�
,N

�
)"J(x� , u	

���
���

,N

�
,N

�
)#�

�
(M)

)JI 	(x� ,N
�
,N

�
)#
x� �Qx� . (A.13)

Now, consider the following inequalities:

JI 	(�,N
�
!1,N

�
))JI (�, u	

�

��
���

,N

�
!1,N

�
)

"JI (x� , u	
���
���


,N
�
,N

�
)!x� �Qx�

! u	

���
Ru	

���
. (A.14)

Then, in view of (A.13) and (A.14) JI 	(�,N
�
!1,N

�
))

JI 	(x� ,N
�
,N

�
)!(1!
)x� �Qx� which proves (A.9) with

�"(1!
)Q'0 and hence (A.7).

Proof of Theorem 3. Using the same notation as in the
proof of Theorem 2, it su$ces to observe that
J�
��
(x� )"<

�
(x� ,x� )#�

�
(M))<

�
(x� ,x� )#
x� �Qx� . The limit

follows from the fact that lim���
�
�
(M)"0.

Proof of Theorem 4. Using the same notation as in the
proof of Theorem 2, and de"ning ���(k, t,x� ) as the solution
x(k) of (14), observe that

J	(x� ,N
�
,N

�
)#
x� �Qx�

*JI 	(x� ,N
�
,N

�
)*JI 	(���(t#1, t,x� ),N

�
,N

�
)

#x� ��x� #���(x� )�R���(x� )

*JI 	(���(t#2, t, x� ),N
�
,N

�
)

#

�


�
���

���(k, t, x� )�����(k, t, x� )

#���(���(k, t, x� ))�R���(���(k, t, x� ))

*2*

�
�
���

���(k, t, x� )�����(k, t, x� )

#���(���(k, t, x� ))�R���(���(k, t, x� )).

Then, by taking the limit as 
P0, the last term in the
chain of inequalities tends to J��

��
(x� ,N

�
,N

�
).

Proof of Theorem 5. Using the same notation as in the
proof of Theorem 2, it su$ces to observe that
JM ��
��
(x� ,N

�
,N

�
)"lim���

(J	(x� ,N
�
,N

�
)#
x� �Qx� )"JI 	(x� ,

N
�
,N

�
) and then from (A.8) it immediately follows that

JM ��
��
(x� ,N

�
#1,N

�
))JM ��

��
(x� ,N

�
,N

�
). Moreover, from

Theorem 3 and the de"nition of the FHOCP it follows
that JM ��

��
(x� ,1,N

�
))J�

��
.

Proof of Theorem 6. (i) Given a state x� 3�
�
(K), the control

sequence obtained using the linear control law u"Kx is

a feasible solution for the FHOCP, ∀N
�
, N

�
so that

x� 3X	(N
�
,N

�
). (ii) Given a state x� 3X	(N

�
,N

�
), let

u
���
���


be an associated feasible control sequence. Since
�

�
(K) is an invariant set for the linear control law (5),

u
���
���


is a feasible solution also for the FHOCP with
prediction horizon N

�
#1, so that x� 3X��(N

�
,N

�
#1).

(iii) If x� 3�M (K), since �M (K) is a closed set, the linear control
law (5) steers x� into the terminal inequality set �

�
(K) in

a "nite number of stepsNM
�
. Then,∀N

�
'NM

�
there always

exists a feasible solution for the FHOCP, and therefore
x� 3X��(N

�
,N

�
).

Proof of Lemma 7. Since the linearization of the RH
control law is evaluated in a neighborhood of the origin,
we can neglect the state and control constraints (2). First it
is shown that the control law is di!erentiable in the origin.
Letting u� :"u

���
���

, re-write (11) subject to (1) as

J(x� , u� )"x� �=x� #x� �>u� #u� �Zu� #h(x� , u� ), (A.15)

where =, >, Z, derive from the terms of J of order less
than three and of f (x, u) of order less than two. The
function h(x� , u� ), conversely, contains all the higher order
terms.
The optimal control sequence u� 	 :"u	

���
���

, that is the

minimum of (A.15), satis"es the necessary conditions
�J(x� , u� 	)/�u� "0, ��J(x� ,u� 	)/�u� �'0 that is


(x� , u� 	) :"x� �>#2u� 	
Z#�h(x� , u� 	)/�u� "0, (A.16)

�
(x� , u� 	)/�u� "2Z#��h(x� , u� 	)/�u� �'0. (A.17)

Since a term of order n has the "rst n!1 derivatives equal
to zero in the origin, inequality (A.17) is satis"ed in
a neighborhood of the origin becauseR'0 impliesZ'0.
The proof of the theorem is then obtained by applying
Lemmas 9 and 10 (see the end of appendix), to the function
(A.16). In fact h(x,u� ), being the composition of a "nite
number of C� functions, is a C� function and then also

(x� , u� )3C
. Moreover, f (0, 0)"0, implies that h(0, 0)"0.
Finally, �h(x� ,u� )/�u� �

	� ����� ��
"0 because h(x, u� ) is of order

greater than two so that 
(0, 0)"0. Then, Lemmas 9 and
10, guarantee that, by an appropriate choice of the sets
� and �, there exists one and only one solution u� "�(x� )
such that (A.16) is satis"ed with �(x� )3C
. Obviously, also
the RH control law u"�(x) that is the "rst column
of �(x� ) is a C
 function of x. The linearization of �(x)
around the origin is now computed.
Imposing 
(x,�(x))"0, we have that

�
(x,�(x))
�x

"

�
(x,�(x))
�x

#

�
(x,�(x))
�u

��(x)
�x

"0

and then

��
�x

"!�2Z#

��h
�u��

�


�>#

�
�x�

�h
�u��
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Since h is o(x�), then

��
�x �

	��

"!

1

2
Z�
>

and

��
�x �

	��

"![I020]
1

2
Z�
> (A.18)

that represents the linearization of the control law around
the origin.
The rest of the proof follows simply noting that (A.18)

coincide with the linear RH gain relative to the linearized
system (4) subject to the cost functional (11). This linear
RH control law has the expression u"���x (Bitmead
et al., 1990).

Proof of Theorem 8. For N
�
tending to in"nity, the solu-

tion S(k) of the di!erence Lyapunov equation in Lemma
7 converges to the unique constant equilibrium SM "P,
where P is the solution of the algebraic Riccati equation
(10). Then, �(0)"P implies �(k)"P, ∀k*0 so that
K��"K��.

The following two lemmas, used in the proof of
Lemma 7, are reported without proof, which consists in an
application of the implicit function theorem.

Lemma 9. Let � be an open subset of R��R� and

(x, u) :�PR� be a C
 function of its arguments. Let, more-
over, (x

	
, u

	
) be a point of � such that 
(x

	
, u

	
)"0 and

(�
/�u)(x
	
,u

	
) be nonsingular. Then there exists an open

neighborhood � of x
	

and an open neighborhood � of
u
	
such that, ∀x3�, equation


(x, u)"0 (A.19)

has, in �, one and only one solution u"�(x). Finally, it is
possible to choose � and � such that the function �, is
continuous.

Lemma 10. Let � be an open subset of R��R�, 
 :�PR�

be a C� function with k*1, � be an open subset of R� and
� :�PR� be a continuous function whose graphic is in-
cluded in �, such that 
(x,�(x))"0, ∀x3�, and let
��"�x3� : det(�
/�u)(x,�(x))O0	. Then �� is an open
subset of R� and � is C� in ��.
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