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Abstract

Model predictive controlNIPC) is a wide popular control technique that can be applied starting from several model structures. In this paper
black-box models are considered. In particular it is analysed the sets of regressors that it is better to use in order to obtain the best model for
multi-step prediction. It is observed that for each prediction a different set of real data output and predicted output are available. Based on
this observation a multi-model structure is proposed in order to improve the predictions heeded in the computatigiP@f¢batrol law.

A comparison with a classical one-model structure is discussed. A simulation experiment is presented.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction the input signal, past observations of the output, simulated
outputs from past input only, prediction errors, simulation
Model predictive controlf)IPC) has gained wide popular-  errors. Each set of regressors defines a particular class of
ity in industrial process control due to the possibility of re- models that can be suitable for different issues. One of the
formulating the control problem as an optimization problem most common application of a model is the forecast of pro-
in which many physical constraints and nonlinearities can cess behavior. Two cases have to be distinguished: simu-
be allowed for(Clarke, 1994; Camacho & Bordons, 1995; lation and prediction. If the response of the model to an
Kouvaritakis & Cannon, 2001Another reason for the suc-  input sequence has to be calculated while the process out-
cess is its ability to obtain good performances starting from puts are unknown, this is called simulation. If, however, the
rather intuitive design principles and simple models, such process outputs are known up to the current time instant
as truncated impulse responses or step responses, see e.gnd it is asked for the model output at the next step, this
Richalet, Rault, Testud, and Papon (19a8)d Cutler and is called one-step-ahead prediction. It is well known that a
Ramaker (1980algorithms. In order to reduce the modeling good model for prediction can be not suitable for simulation
and identification phase black-box model are often used in and vice versa. The aim of this paper is to characterize the
MPC packages. Black-box identification techniques, see e.g.most suitable class of models for model predictive control.
Ljung (1987), Sjoberg et al. (1998ndNelles (2001)canin In particular because, in order to compute the cost function
fact used to quickly derive models from experimental data by to be minimized, the output must be prediciestep in the
means of an estimation parameters procedure. The generdluture with/ = 1, ..., N, whereN, is the prediction hori-
problem is to find a relationship between past observation zon, the use of different models to make each prediction is
and future outputs. The choice of this map can be decom-proposed. Each model is obtained with a proper set of re-
posed into two partial problems: how to choose the regres- gressors that contain the different composition of the past
sor vector from past inputs and outputs and how to chooseobservations of the output and of the simulated outputs. The
the mapping from the regressor space to the output spaceorganization of the paper is as follows. $ection 2we in-
The regressors are generally given by past observations oftroduce the main model structure used in system identifi-
cation. InSection 3the MPC control strategy is proposed
mpondmg aUthor. Tel:39-0382-505437: and the use of an inte_rnal model is discussié_dctiqp 4
fax: +39-0382-505373. ' describes the new multi-model structure. The identification
E-mail addressestederico.dipalma@unipv.it (F. Di Palma), and prediction algorithms for this structure are discussed. In
lalo.magni@unipv.it (L. Magni). Section 5a simulation example is given.
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2. Nonlinear black-box structures

In this section a general black-box identification problem
is introduced for nonlinear systems. Given two vectors
ut™ = [u(t) u(t—1) u(t+1—ny)] @)
Y =[y@® y@—1) )

wheret is the discrete time index; € R™ is the input,
y € R™ is the output whiler,, andn, are two real positive

y(t+1—ny)]
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(i) ¥,(t — k), simulated outputs from pastonly;
(iv) e(t — k) := y(t — k) — y(t — k), prediction errors;
(V) e,(t — k) := y(t — k) — y,(t — k), simulation errors.

The simulated outpuf, (r — k, 6) is the output from the
model(4) if all measured outputg(z — k) in the regressors
are replaced by the last computgd: —k, ). The regressors
(ii)—(v) depend on the black-box modé3), so we should
write ¢(z, ) instead ofp(z) in (4).

Based on different combinations of the regressors we

constants, we are looking for a relationship between presentcould thus distinguish between the following model classes:

and past observations'["«, y*"»] and future outpuy (s +1)
Yt +1) = g@"™, y"") + vt + 1)

The termu(z + 1) accounts for the fact that the next output
y(t + 1) will not an exact function of past data. However,
a goal must be thai(s + 1) is small, so that we may think
of g(u"" y:") as a good prediction of(z + 1) given past
data. In order to find the functiop let us parametrize a
family of function within we have to search for it:

g, . 6) 3)

e NFIR(Nonlinear Finite Impulse Response) models, which
use onlyu(t — k) as regressors;

¢ NARX(Nonlinear AutoRegressive with eXogenous input)
models, which usa(r — k) andy(r — k) as regressors;

o NARXAR (Nonlinear AutoRegressive with eXogenous
AutoRegressive input) models, which use—k), y(r—k)
andy, (r — k, ) as regressors;

e NOE(Nonlinear Output Error) models, which ugé& — k)
andy, (r — k, ) as regressors;

o NARMAX (Nonlinear AutoRegressive Moving Average
with eXogenous input) models, which us@ —k), y(t—k)

The target is to find a suitable parametrization in order to
obtain a good model. Because a parametrization of the func-e
tion g with a finite-dimension vecta? is an approximation,

in order to decide the structure it is crucial to know what the
model will be used for. Once we have decided the structure

ande(t — k, 0) as regressors;

NBJ(Nonlinear Box-Jenkins) models, which usg — k),
Yt —k, 0), et — k,0) and g, (t — k, 0) as regressors; in
this case the simulated outpyt is obtained as the output
from (3), by using the same structure, replacingnde,

and we have collected/ data the parametér can be ob- by zeros in the regression vectar§, 0).
tained by means of the fit between the model and the dat

record: aThe aim of this paper is to find the better model structure

in order to make prediction for nonlinear model predictive
N i idn control. In the next section the control problem and its main
Z (@) — gl =", y =", 0)|l peculiarity are discussed.

t=max(ny le)

The model structure famil{3) is quite general, and it turns
out to be useful to writgg as a concatenation of two map-
pings: one that takes the increasing number of past obser- ) .

vations and maps them into a finite-dimensional vegtoy The system under control is assumed to be described by

of fixed dimension and one that takes vector to the space of@" unknown state equation of the form

outputs: x(t+1) = fx@®), u(@®), e(®), ©)
tny , f,n)-’ 0 — t , 9 4

g™,y ) = g(p(1), 6) (4) y(k) = h(x(r)) ()

According to a rather classical terminology, we shall call the . o
wheretg is the initial statex € R" represents the system

vectory(r) the regression vector, and its components will be e . -
referred to as regressors. The choice of the nonlinear map-Stt€: € R™ is the input vectory € R™ is the output and

ping (3) has thus been decomposed into two partial problems ¢(*) € R” is the noise. _ _

for dynamic systems: how to choose the regression vector _ 1€ Problem here considered is to design a control algo-
o(t) from past inputs and outputs and how to choose the non-ithm such that the output must track the reference signal
linear mappingg(¢p) from the regressor space to the output Yref(")-

space. We thus work with prediction models of the kind If the model of the syster(6) and (7) is known, e(r) =
A 0 and any equilibrium associated with a constant input
Y+ 1,0) =g, 0) 5)

is asymptotically stable, théMPC control law Mayne,
. . Rawlings, Rao, & Scokaert, 20p@an be solved by the
The regressors, in the general case, are given by following
Finite Horizon Optimal Control ProblertFHOCP): given
the state systerm the last control value (s — 1), the positive

3. Nonlinear model predictive control

x(tg) = x

(i) u(r— k), past inputs;
(i) y(t — k), past outputs;
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integersN, (control horizor) and N, (prediction horizo,
N, < N,, the positive definite matrice®, R, minimize,
with respect ta//tNe=1Ne the performance index

JE u@t — 1), u™NemNe NN

t+Np—1
= Y {OG®) — yret®) Q(k) — yret (k) + (k)
k=t
—u(k — 1))’ R(u(k) — u(k — 1))} (8)
subject to
(i) the model system dynami¢6) and(7);
(ii) the control signal
uTNe=LNe ke [0, N — 1]
ut+k) = 9)
u(t+N.—1), ke[N;,Np,—1]
O

According to theReceding Horizorapproach, the state-
feedbackMPC control law is derived by solving tHeEHOCP

at every time instant, and applying the control signal=
udor, whereuS2¥e e s the solution of th&HOCP. In so
doing, one implicitly defines the state-feedback control law

u(®) = K" (0) (10)

In order to compute the cost functi@8) the future output
valuesy'*¥»—1N,—1 must be predicted according to an in-
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The vectorp(t + 1|r) may be built fromg(z|¢) using aShift
Register(SR for each kind of regressors. For eaBRthe
update is made losing the oldest value and putting the new
element. Obviously th&€Rnumber is due to the kind of the
chosen model. The process is repeatgdtimes until the
predictiony(t 4+ N,|¢) is reached.

It is important to notice that the whole procedure must
be executed at any timeand for every input sequences
(9) used to solve th&HOCP. In fact at system time + 1
eachSRmust be re-initialized with the proper component
of regression vectop(t + 1|t + 1).

The prediction algorithm can be summarized in the fol-
lowing algorithm:

(1) Initialize theSRto the proper component of regression
vectorp(t|t), seti = 1.

(2) Computey(r + i|r) according ta(5).

(3) Seti =i+ 1 and update th8R
(a) for eachSR remove the oldest regressor values;
(b) for eachSR insert the new regressor values.

(4) If i < N, then go to point 2.

At point 3(b) the new regressor values are asked in order to
compute the next prediction. The problem is that the past real
output values are available only up to current tim&hen,
if a model which has the past outputs among its regressors
is used, the new regressors are not available in order to
implement point 3(b). This happens, for example, when a
generalNARX NARMAX NARXARand NBJ models are

ternal model of the system. In this paper we assume thatconsidered (seBection 2. In practice the only thing that one

the state-space modéb) and (7) is unknown and that a
black-box input—output model in the for®) described in
Section 2has been identified. Then the cost functi@®)
must be re-written as

Jp(®), u(t — 1), u™Ne=Ne NN
t+Np—1
= Z {(G(kl1) — yref(k)) Q(3(klt) — yret(k)) + (u(k)
k=t

—u(k — 1)) R(u(k) — u(k — 1))} (11)

where y(k|f) indicates the prediction output values at time
k based on the input valuesi), i < k, on the measured
output values up to time(on other word +i, i < 0) and on
a model in the forn{5). Note that in this case the role of the
initial statex is up to the regression vector at timep().
Usually, (Nelles, 2001 single model is used to evaluate
the whole future output’s sequeng’d N»—1.N,~1 associated
with the input sequend®). Employing only one model, the

can do in order to avoid this problem without modifying the
model structure is to use the prediction at the previous steps
instead of the unknown output real values. It is clear that
following this procedure the model is identified considering
a particular set of regressors and used for prediction with a
different set of regressors (i.e. predictions are used instead
of real outputs).

Itis well know that a model identified in order to minimize
the one-step-ahead prediction error is not in general a good
model for simulation. For linear systems, for example, it is
possible that the model of a stable system that minimize
the one-step-ahead prediction error is even unsi{higées,
2001)

Another possibility is the use &8FOEor NFIRmodels that
can be correctly used because they do not count among its
regressors past outputs as remarke8éntion 2 Otherwise,
using aNOEor FIR models the information of the real output
value up to time is not used.

In the next section we propose a Multi-Mod®¥) struc-

requested sequence is obtained iterating the internal modeture that fully used the available information with a correct

N, times with the available data. To generate the first pre-

diction y(z + 1|¢) according to(5) the internal model must
be feed with the past regressors valg€sr). The notation
-|t, as previously used, indicate that the veatan may be
built bounding the old system output only up to time

Once y(r + 1|7) has been computed to obtain the next
predictiony(t+2|7) a new vectop(s+1|r) must be provided.

chosen of the regressors.

4, Multi-model structure

To avoid the difficulty explained in the precedent section,

we propose the use of different models for each requested
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prediction. The basic observation that motivates the pro-

posed structure is that the set of the regressors that is pos-

sible to use in order to make the prediction is different for
eachk. In fact increasing the number of past known out-
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(a) for eachSR, 11, remove the oldest regressor value;
(b) for eachSR, 11, insert the new regressor value.
(9) if i < N, then go to point 6.

puts decreases, while one can use only the output simulatedt.2. Multi-model identification algorithm

with the identified model. This means that for=r + 1,
the regressors we can use a@), i < k andy(i), i < k

so that we are consideringNARXmodel. On the contrary
for k > t 4+ 1 the regressors we can use ai@), i < k,
y(@), i < tandy,(ilf), t < i < k so that we are consider-
ing aNARXARmodel with a particular set of regressors. In
view of this consideration, in th&IM schemeN, models

In order to reduce the computational burden while main-
tain the main properties of the multi-model structure (i.e.
the use of a different mix of output data and simulated
data among the regressors) we assume that all the functions
g;j(-,) are equal tog(-, -). On the other hand, each model
will be characterized by a possible different set of parame-

are identified and each model is characterized by a differentter 6(j) for each;. In this way, the problem to find a proper

regressor vectap; composed by a different composition of
real outputs and simulated outputs.

If only a finite number of regressors is considered, when
is strictly greater than+n,, wheren, is the maximum delay
in the output regresso(g), only input and simulated output
can be considered in the regressors so thBiOE model
must be considered. In this casenif < Np only n, + 1
models can be used to compute the performance ifiiBx

Remarkably each model must be initialized with its own
regression vectap;(t|t — j+ 1), and then run up foy steps
in order to obtain the predicted value at time- j. This

means that the first model in one simulation step reaches

the requested predicted outptr + 1jr) while y(¢r + 2|7)

is obtained in two simulation steps of the second model,
and so on. Moreover you can note that, in order to obtain
a correct use of the model, the vecta(|r — j + 1) must

be formed by the old simulation even if some real output is
known.

Each model is then defined by the regression vector

@j(tlt — j + 1), the functiong;(-, -) (5) and the parameter
vector6(j). The predicted output will be calledl; and its
Shift RegisteISR.

4.1. Multi-model prediction algorithms

Once understood thelM scheme aim, the prediction al-
gorithm is naturally obtained extending the one reported in
Section 3.1. In fact in théAM schemen, + 1 models are
present, and the prediction algorithm is the parallei,of 1
prediction algorithm with progressive arrest time.

(1) Seti = 1 and for each model with 1 < j < n, + 1,
initialize the SR; to the proper component of regression
vectore;(t|t — j+ 1.

(2) Forj =i calculatey;(r + i|t — j + i) according to(5).

(3) Sety(r+ilr) = y;i(t +ilp).

(4) Seti =i+ 1 and update th&R;, with j > i:

(a) for eachSR;, remove the oldest regressor value;
(b) for eachSR;, insert the new regressor value.

(5) If i < n, then go to pint 2.

(6) Calculatey, 4+1(t + i) according to(5).

(7) Setd(t +il) = Fu 41t +0).

(8) Seti =i+ 1 and update th&R, 1:

structure is solved only one time.

Then, given the nonlinear mapping-, -) and the inte-
ger constants, endn,, the MM identification algorithm is
based on the following steps:

(1) Given the regression vecteg(¢|), function of y(z + i),
—ny <i <0,u(t+1i), —n, <i <0, find the optimal
value of (1) for the NARX model with a prediction
criterion.

For each 1< j < ny, find the optimal value ofi(j)
using the regression vectar; (¢t — j + 1) given by
@j-1(t]t — j + 2)with y(t — j) substituted by, (t —
jlt — j + 1) for the NARXARmodel with a prediction
criterion.

Find the optimal value c@f(ny + 1) using the regression
vectorg, 1(1) given bye (¢|f) with y(r — i) substitute
by &%H'(t —1i) Vi for theNOE model with a prediction
criterion.

)

®3)

Note that in step (3,,+1(r) does not contain past output
but only simulated output from past input.

The real importance of these two algorithms is that the
different models are identified and used with the same sets of
regressors differently from the standard approach described
in Section 31t is obvious that in this way the obtained cost
function(11) will be more carefully computed because each
prediction is based on the “best” model within the considered
class of function determined ky(-, -).

5. Simulation example

In this section a simulation example based on the
single-input, single-output linear time invariant system

A(d)y(®) = C(de() + iﬁgu(t) (12)
where d is the backward shift operatafljung, 1987)
A(d) = 03d%> —11d + 1, B(z) = —d? +d, C(d) =

—1.5d + 1, F(d) = 0.084%2 — 0.4d + 1 is given.

It is shown that the proposedM structure guarantees
significant advantages even for a very simple model. In par-
ticular theMM structure makes the prediction at each step
with the best model so that is gained more accuracy than
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Fig. 1. Identification (solid line) and validation (dashed line) input signals.

with a single model structure suchld&RXor NOEthat are
usually used in literature.

5.1. MM structure identification

First of all the identification datdl), (2) was obtain
feeding the syster(il2) with a Multi-level Pseudo-Random
Signal(MPRS for the inputu(¢) (Braun, Rivera, Stenman,
Foslien, & Hrenya, 1999and aRandom Gaussian Signal
(RGS for the errore(r) (Ljung, 1987) The signals are
reported inFig. 1 with solid line.

Then the mapping;(-, -) has been chosen as a linear map
and the constants, andn, has been respectively fixed equal
to 2 and 4. Then the identification algorithm $&ction 4.2
was applied and the next five models are obtained:

y1(t + 1|r) = +0.6766:(r) — 0.673%(r — 1) — 0.8269(¢)

—0.1674y(t — 1) + 0.296y(t — 2)
—0.08282(r — 3)

$o(t + 2|1) = +1.957u(t + 1) — 1.95Lu(r)
+0.21932(r + 1) — 1.134y(z)
+0.62y(t — 1) — 0.0946%(r — 2)

y3(t + 3|H) = +1.523 (¢ + 2) — 1.522u(t + 1)
—0.0470%5(t + 2) — 0.4564)3(r + 1)
—0.5582y(r) + 0.2463y(r — 1)

$a(t + 4]) = +0.7386u(r + 3) — 0.7347u( + 2)
— 1.1224(t + 3) + 0.119F4(t + 2)
+0.171%4(t + 1) — 0.03102(1)

95(t 4 5) = 0.71684(1 + 4) — 0.7141u(r + 3)

—1.298)5(1 + 4) + 0.271%s5(¢ + 3)
+0.2308)5(¢ + 2) — 0.068s5(¢ + 1)

5.2. MM prediction analysis

Once identified theMM structure, we test them on the
validation data set reported Fig. 1 with dashed line. As
quality index we consider theum of Prediction Erro(SPE
that, given the prediction sté@and the mode}, is defined as

N
SPEI, j) = Y I3t +il)) — y(t + D)
t=ny
wheren,, = max(n,, ny). In order to appraise the different
model’s quality the values @PHj, j) are reported iffrig. 2.

To globally evaluate the model effectiveness in computing
the MPC cost function(11), where we fixedv, = 10, the
SPEmust be extended along the prediction horizon. Then
for a single model based structure the total cost is given by

Np

SPE = ) (SPHi, j)

i=1
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Fig. 2. SPHi, j) for singol models andM scheme.
Table 1 Acknowledgements
Confront single-modeMM structure
SPG/SPL SPG/SPG  SPG/SPE_ SPE/SPG  SPGm/SPR The author acknowledge the partial financial support by
M MURSTProject “New techniques for the identification and
262.5% 116.3% 84.5% 78.6% 69.7%

while for theMM structure is given by
Ny

SPEwm = » _(SPHj. /)
j=1

In Table 1the SPEvariation of the different model related
to the SPE of the ARX model are reported. It is apparent
that theMM structure obtains better performance that single
models, in view of the possibility to use different model at
each step.

6. Conclusion

In this paper a new structure for system identification
of models for MPC is presented. This structure, called
MM structure, is based on the identification of differ-
ent models in order to optimize the prediction on each
step involved in the computation of the cost function.
An example is presented to show the potentiality of this
approach.

adaptive control of industrial systems”.
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