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A multi-model structure for model predictive control
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Abstract

Model predictive control (MPC) is a wide popular control technique that can be applied starting from several model structures. In this paper
black-box models are considered. In particular it is analysed the sets of regressors that it is better to use in order to obtain the best model for
multi-step prediction. It is observed that for each prediction a different set of real data output and predicted output are available. Based on
this observation a multi-model structure is proposed in order to improve the predictions needed in the computation of theMPC control law.
A comparison with a classical one-model structure is discussed. A simulation experiment is presented.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) has gained wide popular-
ity in industrial process control due to the possibility of re-
formulating the control problem as an optimization problem
in which many physical constraints and nonlinearities can
be allowed for(Clarke, 1994; Camacho & Bordons, 1995;
Kouvaritakis & Cannon, 2001). Another reason for the suc-
cess is its ability to obtain good performances starting from
rather intuitive design principles and simple models, such
as truncated impulse responses or step responses, see e.g.
Richalet, Rault, Testud, and Papon (1978)and Cutler and
Ramaker (1980)algorithms. In order to reduce the modeling
and identification phase black-box model are often used in
MPCpackages. Black-box identification techniques, see e.g.
Ljung (1987), Sjoberg et al. (1995)andNelles (2001), can in
fact used to quickly derive models from experimental data by
means of an estimation parameters procedure. The general
problem is to find a relationship between past observation
and future outputs. The choice of this map can be decom-
posed into two partial problems: how to choose the regres-
sor vector from past inputs and outputs and how to choose
the mapping from the regressor space to the output space.
The regressors are generally given by past observations of
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the input signal, past observations of the output, simulated
outputs from past input only, prediction errors, simulation
errors. Each set of regressors defines a particular class of
models that can be suitable for different issues. One of the
most common application of a model is the forecast of pro-
cess behavior. Two cases have to be distinguished: simu-
lation and prediction. If the response of the model to an
input sequence has to be calculated while the process out-
puts are unknown, this is called simulation. If, however, the
process outputs are known up to the current time instant
and it is asked for the model output at the next step, this
is called one-step-ahead prediction. It is well known that a
good model for prediction can be not suitable for simulation
and vice versa. The aim of this paper is to characterize the
most suitable class of models for model predictive control.
In particular because, in order to compute the cost function
to be minimized, the output must be predictedl step in the
future with l = 1, . . . , Np whereNp is the prediction hori-
zon, the use of different models to make each prediction is
proposed. Each model is obtained with a proper set of re-
gressors that contain the different composition of the past
observations of the output and of the simulated outputs. The
organization of the paper is as follows. InSection 2we in-
troduce the main model structure used in system identifi-
cation. InSection 3the MPC control strategy is proposed
and the use of an internal model is discussed.Section 4
describes the new multi-model structure. The identification
and prediction algorithms for this structure are discussed. In
Section 5a simulation example is given.
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2. Nonlinear black-box structures

In this section a general black-box identification problem
is introduced for nonlinear systems. Given two vectors

ut,nu = [u(t) u(t − 1) · · · u(t + 1 − nu)] (1)

yt,ny = [y(t) y(t − 1) · · · y(t + 1 − ny)] (2)

where t is the discrete time index,u ∈ Rm is the input,
y ∈ Rm is the output whilenu andny are two real positive
constants, we are looking for a relationship between present
and past observations [ut,nu , yt,ny ] and future outputy(t+1)

y(t + 1) = g(ut,nu, yt,ny )+ v(t + 1)

The termv(t + 1) accounts for the fact that the next output
y(t + 1) will not an exact function of past data. However,
a goal must be thatv(t + 1) is small, so that we may think
of g(ut,nu, yt,ny ) as a good prediction ofy(t + 1) given past
data. In order to find the functiong let us parametrize a
family of function within we have to search for it:

g(ut,nu, yt,ny , θ) (3)

The target is to find a suitable parametrization in order to
obtain a good model. Because a parametrization of the func-
tion g with a finite-dimension vectorθ is an approximation,
in order to decide the structure it is crucial to know what the
model will be used for. Once we have decided the structure
and we have collectedN data the parameterθ can be ob-
tained by means of the fit between the model and the data
record:

N∑
t=max(nu,ny)

‖y(t)− g(ut−1,nu , yt−1,ny , θ)‖

The model structure family(3) is quite general, and it turns
out to be useful to writeg as a concatenation of two map-
pings: one that takes the increasing number of past obser-
vations and maps them into a finite-dimensional vectorϕ(t)

of fixed dimension and one that takes vector to the space of
outputs:

g(ut,nu, yt,ny , θ) = g(ϕ(t), θ) (4)

According to a rather classical terminology, we shall call the
vectorϕ(t) the regression vector, and its components will be
referred to as regressors. The choice of the nonlinear map-
ping(3) has thus been decomposed into two partial problems
for dynamic systems: how to choose the regression vector
ϕ(t) from past inputs and outputs and how to choose the non-
linear mappingg(ϕ) from the regressor space to the output
space. We thus work with prediction models of the kind

ŷ(t + 1, θ) = g(ϕ(t), θ) (5)

The regressors, in the general case, are given by

(i) u(t − k), past inputs;
(ii) y(t − k), past outputs;

(iii) ŷu(t − k), simulated outputs from pastu only;
(iv) ε(t − k) := y(t − k)− ŷ(t − k), prediction errors;
(v) εu(t − k) := y(t − k)− ŷu(t − k), simulation errors.

The simulated output̂yu(t − k, θ) is the output from the
model(4) if all measured outputsy(t − k) in the regressors
are replaced by the last computedŷu(t−k, θ). The regressors
(iii)–(v) depend on the black-box model(3), so we should
write ϕ(t, θ) instead ofϕ(t) in (4).

Based on different combinations of the regressors we
could thus distinguish between the following model classes:

• NFIR(Nonlinear Finite Impulse Response) models, which
use onlyu(t − k) as regressors;

• NARX(Nonlinear AutoRegressive with eXogenous input)
models, which useu(t − k) andy(t − k) as regressors;

• NARXAR (Nonlinear AutoRegressive with eXogenous
AutoRegressive input) models, which useu(t−k), y(t−k)
and ŷu(t − k, θ) as regressors;

• NOE(Nonlinear Output Error) models, which useu(t−k)
and ŷu(t − k, θ) as regressors;

• NARMAX (Nonlinear AutoRegressive Moving Average
with eXogenous input) models, which useu(t−k), y(t−k)
andε(t − k, θ) as regressors;

• NBJ(Nonlinear Box-Jenkins) models, which useu(t−k),
ŷ(t − k, θ), ε(t − k, θ) and εu(t − k, θ) as regressors; in
this case the simulated outputŷu is obtained as the output
from (3), by using the same structure, replacingε andεu
by zeros in the regression vectorsϕ(t, θ).

The aim of this paper is to find the better model structure
in order to make prediction for nonlinear model predictive
control. In the next section the control problem and its main
peculiarity are discussed.

3. Nonlinear model predictive control

The system under control is assumed to be described by
an unknown state equation of the form

x(t + 1) = f(x(t), u(t), e(t)), x(t0) = x̄ (6)

y(k) = h(x(t)) (7)

where t0 is the initial state,x ∈ Rn represents the system
state,u ∈ Rm is the input vector,y ∈ Rm is the output and
e(t) ∈ Rp is the noise.

The problem here considered is to design a control algo-
rithm such that the output must track the reference signal
yref(·).

If the model of the system(6) and(7) is known,e(t) =
0 and any equilibrium associated with a constant input
is asymptotically stable, theMPC control law (Mayne,
Rawlings, Rao, & Scokaert, 2000) can be solved by the
following

Finite Horizon Optimal Control Problem(FHOCP): given
the state system̄x, the last control valueu(t−1), the positive
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integersNc (control horizon) andNp (prediction horizon),
Nc ≤ Np, the positive definite matricesQ, R, minimize,
with respect tout+Nc−1,Nc , the performance index

J(x, u(t − 1), ut+Nc−1,Nc , Nc,Np)

=
t+Np−1∑
k=t

{(y(k)− yref(k))
′Q(y(k)− yref(k))+ (u(k)

− u(k − 1))′R(u(k)− u(k − 1))} (8)

subject to

(i) the model system dynamics(6) and(7);
(ii) the control signal

u(t + k) =
{
ut+Nc−1,Nc , k ∈ [0, Nc − 1]

u(t +Nc − 1), k ∈ [Nc,Np − 1]
(9)

�

According to theReceding Horizonapproach, the state-
feedbackMPCcontrol law is derived by solving theFHOCP
at every time instantt, and applying the control signalu =
u
t,t
OPT, whereut+Nc−1,Nc

OPT is the solution of theFHOCP. In so
doing, one implicitly defines the state-feedback control law

u(t) = κRH(x(t)) (10)

In order to compute the cost function(8) the future output
valuesyt+Np−1,Np−1 must be predicted according to an in-
ternal model of the system. In this paper we assume that
the state-space model(6) and (7) is unknown and that a
black-box input–output model in the form(5) described in
Section 2has been identified. Then the cost function(8)
must be re-written as

J(ϕ(t), u(t − 1), ut+Nc−1,Nc , Nc,Np)

=
t+Np−1∑
k=t

{(ŷ(k|t)− yref(k))
′Q(ŷ(k|t)− yref(k))+ (u(k)

− u(k − 1))′R(u(k)− u(k − 1))} (11)

whereŷ(k|t) indicates the prediction output values at time
k based on the input valuesu(i), i ≤ k, on the measured
output values up to timet (on other wordt+ i, i ≤ 0) and on
a model in the form(5). Note that in this case the role of the
initial statex̄ is up to the regression vector at timet, ϕ(t).

Usually,(Nelles, 2001)a single model is used to evaluate
the whole future output’s sequenceŷt+Np−1,Np−1 associated
with the input sequence(9). Employing only one model, the
requested sequence is obtained iterating the internal model
Np times with the available data. To generate the first pre-
diction ŷ(t + 1|t) according to(5) the internal model must
be feed with the past regressors valuesϕ(t|t). The notation
·|t, as previously used, indicate that the vectorϕ(t) may be
built bounding the old system output only up to timet.

Once ŷ(t + 1|t) has been computed to obtain the next
predictionŷ(t+2|t) a new vectorϕ(t+1|t)must be provided.

The vectorϕ(t + 1|t) may be built fromϕ(t|t) using aShift
Register(SR) for each kind of regressors. For eachSRthe
update is made losing the oldest value and putting the new
element. Obviously theSRnumber is due to the kind of the
chosen model. The process is repeatedNp times until the
predictionŷ(t +Np|t) is reached.

It is important to notice that the whole procedure must
be executed at any timet and for every input sequences
(9) used to solve theFHOCP. In fact at system timet + 1
eachSRmust be re-initialized with the proper component
of regression vectorϕ(t + 1|t + 1).

The prediction algorithm can be summarized in the fol-
lowing algorithm:

(1) Initialize theSRto the proper component of regression
vectorϕ(t|t), seti = 1.

(2) Computeŷ(t + i|t) according to(5).
(3) Seti = i+ 1 and update theSR:

(a) for eachSR, remove the oldest regressor values;
(b) for eachSR, insert the new regressor values.

(4) If i ≤ Np then go to point 2.

At point 3(b) the new regressor values are asked in order to
compute the next prediction. The problem is that the past real
output values are available only up to current timet. Then,
if a model which has the past outputs among its regressors
is used, the new regressors are not available in order to
implement point 3(b). This happens, for example, when a
generalNARX, NARMAX, NARXARand NBJ models are
considered (seeSection 2). In practice the only thing that one
can do in order to avoid this problem without modifying the
model structure is to use the prediction at the previous steps
instead of the unknown output real values. It is clear that
following this procedure the model is identified considering
a particular set of regressors and used for prediction with a
different set of regressors (i.e. predictions are used instead
of real outputs).

It is well know that a model identified in order to minimize
the one-step-ahead prediction error is not in general a good
model for simulation. For linear systems, for example, it is
possible that the model of a stable system that minimize
the one-step-ahead prediction error is even unstable(Nelles,
2001).

Another possibility is the use ofNOEor NFIRmodels that
can be correctly used because they do not count among its
regressors past outputs as remarked inSection 2. Otherwise,
using aNOEorFIRmodels the information of the real output
value up to timet is not used.

In the next section we propose a Multi-Model (MM) struc-
ture that fully used the available information with a correct
chosen of the regressors.

4. Multi-model structure

To avoid the difficulty explained in the precedent section,
we propose the use of different models for each requested
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prediction. The basic observation that motivates the pro-
posed structure is that the set of the regressors that is pos-
sible to use in order to make the prediction is different for
eachk. In fact increasingk the number of past known out-
puts decreases, while one can use only the output simulated
with the identified model. This means that fork = t + 1,
the regressors we can use areu(i), i < k and y(i), i < k

so that we are considering aNARXmodel. On the contrary
for k > t + 1 the regressors we can use areu(i), i < k,
y(i), i ≤ t and ŷu(i|t), t < i < k so that we are consider-
ing aNARXARmodel with a particular set of regressors. In
view of this consideration, in theMM schemeNp models
are identified and each model is characterized by a different
regressor vectorϕj composed by a different composition of
real outputs and simulated outputs.

If only a finite number of regressors is considered, whenk

is strictly greater thant+ny, whereny is the maximum delay
in the output regressors(2), only input and simulated output
can be considered in the regressors so that aNOE model
must be considered. In this case, ifny < NP only ny + 1
models can be used to compute the performance index(11).

Remarkably each model must be initialized with its own
regression vectorϕj(t|t− j+1), and then run up forj steps
in order to obtain the predicted value at timet + j. This
means that the first model in one simulation step reaches
the requested predicted outputŷ(t + 1|t) while ŷ(t + 2|t)
is obtained in two simulation steps of the second model,
and so on. Moreover you can note that, in order to obtain
a correct use of the model, the vectorϕj(t|t − j + 1) must
be formed by the old simulation even if some real output is
known.

Each model is then defined by the regression vector
ϕj(t|t − j + 1), the functiongj(·, ·) (5) and the parameter
vector θ(j). The predicted output will be called̂yj and its
Shift RegisterSRj.

4.1. Multi-model prediction algorithms

Once understood theMM scheme aim, the prediction al-
gorithm is naturally obtained extending the one reported in
Section 3.1. In fact in theMM schemeny + 1 models are
present, and the prediction algorithm is the parallel ofny+1
prediction algorithm with progressive arrest time.

(1) Seti = 1 and for each modelj with 1 ≤ j ≤ ny + 1,
initialize theSRj to the proper component of regression
vectorϕj(t|t − j + 1).

(2) For j ≥ i calculateŷj(t + i|t − j + i) according to(5).
(3) Setŷ(t + i|t) = ŷi(t + i|t).
(4) Seti = i+ 1 and update theSRj, with j ≥ i:

(a) for eachSRj, remove the oldest regressor value;
(b) for eachSRj, insert the new regressor value.

(5) If i ≤ ny then go to pint 2.
(6) Calculateŷny+1(t + i) according to(5).
(7) Setŷ(t + i|t) = ŷny+1(t + i).
(8) Seti = i+ 1 and update theSRny+1:

(a) for eachSRny+1, remove the oldest regressor value;
(b) for eachSRny+1, insert the new regressor value.

(9) if i ≤ Np then go to point 6.

4.2. Multi-model identification algorithm

In order to reduce the computational burden while main-
tain the main properties of the multi-model structure (i.e.
the use of a different mix of output data and simulated
data among the regressors) we assume that all the functions
gj(·, ·) are equal tog(·, ·). On the other hand, each model
will be characterized by a possible different set of parame-
ter θ̂(j) for eachj. In this way, the problem to find a proper
structure is solved only one time.

Then, given the nonlinear mappingg(·, ·) and the inte-
ger constantsnu endny, theMM identification algorithm is
based on the following steps:

(1) Given the regression vectorϕ1(t|t), function ofy(t+ i),
−ny ≤ i < 0, u(t + i), − nu ≤ i < 0, find the optimal
value of θ̂(1) for the NARX model with a prediction
criterion.

(2) For each 1< j ≤ ny, find the optimal value of̂θ(j)
using the regression vectorϕj(t|t − j + 1) given by
ϕj−1(t|t − j + 2)with y(t − j) substituted bŷyuj (t −
j|t − j + 1) for the NARXARmodel with a prediction
criterion.

(3) Find the optimal value of̂θ(ny+1) using the regression
vectorϕny+1(t) given byϕ1(t|t) with y(t − i) substitute
by ŷuny+1(t− i) ∀i for theNOEmodel with a prediction
criterion.

Note that in step (3)ϕny+1(t) does not contain past output
but only simulated output from past input.

The real importance of these two algorithms is that the
different models are identified and used with the same sets of
regressors differently from the standard approach described
in Section 3. It is obvious that in this way the obtained cost
function(11)will be more carefully computed because each
prediction is based on the “best” model within the considered
class of function determined byg(·, ·).

5. Simulation example

In this section a simulation example based on the
single-input, single-output linear time invariant system

A(d)y(t) = C(d)e(t)+ B(d)

F(d)
u(t) (12)

where d is the backward shift operator(Ljung, 1987),
A(d) = 0.3d2 − 1.1d + 1, B(z) = −d2 + d, C(d) =
−1.5d + 1, F(d) = 0.08d2 − 0.4d + 1 is given.

It is shown that the proposedMM structure guarantees
significant advantages even for a very simple model. In par-
ticular theMM structure makes the prediction at each step
with the best model so that is gained more accuracy than
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Fig. 1. Identification (solid line) and validation (dashed line) input signals.

with a single model structure such asNARXor NOEthat are
usually used in literature.

5.1. MM structure identification

First of all the identification data(1), (2) was obtain
feeding the system(12) with a Multi-level Pseudo-Random
Signal(MPRS) for the inputu(t) (Braun, Rivera, Stenman,
Foslien, & Hrenya, 1999) and aRandom Gaussian Signal
(RGS) for the error e(t) (Ljung, 1987). The signals are
reported inFig. 1 with solid line.

Then the mappinggj(·, ·) has been chosen as a linear map
and the constantsnu andny has been respectively fixed equal
to 2 and 4. Then the identification algorithm ofSection 4.2
was applied and the next five models are obtained:

ŷ1(t + 1|t)= +0.6766u(t)− 0.6739u(t − 1)− 0.8269y(t)

− 0.1674y(t − 1)+ 0.296y(t − 2)

− 0.08282y(t − 3)

ŷ2(t + 2|t)= +1.957u(t + 1)− 1.951u(t)

+ 0.2193̂y2(t + 1)− 1.134y(t)

+ 0.62y(t − 1)− 0.09467y(t − 2)

ŷ3(t + 3|t)= +1.523u(t + 2)− 1.522u(t + 1)

− 0.04702̂y3(t + 2)− 0.4564̂y3(t + 1)

− 0.5582y(t)+ 0.2463y(t − 1)

ŷ4(t + 4|t)= +0.7386u(t + 3)− 0.7347u(t + 2)

− 1.122ŷ4(t + 3)+ 0.1193̂y4(t + 2)

+ 0.1717̂y4(t + 1)− 0.03102y(t)

ŷ5(t + 5)= 0.7168u(t + 4)− 0.7141u(t + 3)

− 1.298ŷ5(t + 4)+ 0.2712̂y5(t + 3)

+ 0.2308̂y5(t + 2)− 0.068ŷ5(t + 1)

5.2. MM prediction analysis

Once identified theMM structure, we test them on the
validation data set reported inFig. 1 with dashed line. As
quality index we consider theSum of Prediction Error(SPE)
that, given the prediction stepi and the modelj, is defined as

SPE(i, j) =
N∑

t=nm
‖ŷj(t + i|t)− y(t + i)‖

wherenm = max(nu, ny). In order to appraise the different
model’s quality the values ofSPE(i, j) are reported inFig. 2.

To globally evaluate the model effectiveness in computing
the MPC cost function(11), where we fixedNp = 10, the
SPEmust be extended along the prediction horizon. Then
for a single model based structure the total cost is given by

SPEj =
Np∑
i=1

(SPE(i, j))
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Fig. 2. SPE(i, j) for singol models andMM scheme.

Table 1
Confront single-model/MM structure

SPE2/SPE1 SPE3/SPE1 SPE4/SPE1 SPE5/SPE1 SPEMM/SPE1

262.5% 116.3% 84.5% 78.6% 69.7%

while for theMM structure is given by

SPEMM =
Np∑
j=1

(SPE(j, j))

In Table 1theSPEvariation of the different model related
to the SPEof the ARX model are reported. It is apparent
that theMM structure obtains better performance that single
models, in view of the possibility to use different model at
each step.

6. Conclusion

In this paper a new structure for system identification
of models for MPC is presented. This structure, called
MM structure, is based on the identification of differ-
ent models in order to optimize the prediction on each
step involved in the computation of the cost function.
An example is presented to show the potentiality of this
approach.
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