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Abstract

We develop a state-of-the-art nonlinear model predictive controller (NMPC) for periodic unstable systems, and apply the method to a dual
line kite that shall fly loops. The kite is described by a nonlinear unstable ODE system (which we freely distribute), and the aim is to let the
kite fly a periodic figure. Our NMPC approach is based on the “infinite horizon closed loop costing” scheme to ensure nominal stability. To be
able to apply this scheme, we first determine a periodic LQR controller to stabilize the kite locally in the periodic orbit. Then, we formulate
a two-stage NMPC optimal control problem penalizing deviations of the system state from the periodic orbit, which also contains a state
constraint that avoids that the kite collides with the ground. To solve the optimal control problems reliably and in real-time, we apply the
newly developed “real-time iteration scheme” for fast online optimization in NMPC. The optimization based NMPC leads to significantly
improved performance compared to the LQR controller, in particular as it respects state constraints. The NMPC closed loop also performs
well in the presence of large random disturbances and shows considerable robustness against changes in the wind direction.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Nonlinear model predictive control (NMPC) is a feedback
control technique that is based on the real-time optimization
of a nonlinear dynamic process model on a moving horizon
that has attracted increasing attention over the past decade
(Qin & Badgwell, 2001). Important challenges that need to
be addressed for any NMPC application are stability of the
closed loop system and the numerical solution of the opti-
mal control problems in real-time. In this paper we show
how state-of-the-art NMPC techniques addressing these
challenges can be applied to control a strongly unstable
periodic system, namely a dual line kite that shall fly loops.
The aim of our automatic control is to make the kite fly a
figure that may be called a “lying eight”. The correspond-
ing orbit is not open loop stable, so that feedback has to be
applied. We assume the state is fully accessible for control.

Since the natural setting of the problem is in continu-
ous time, the NMPC implementation proposed here is de-
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veloped for continuous-time systems. However, it basically
differs from the continuous-time NMPC algorithms for non-
linear systems previously published in the literature, see
e.g.,Mayne and Michalska (1990)andChen and Allgöwer
(1998). Continuous-time methods usually assume that the
NMPC law is continuously computed by solving at any time
instant a difficult optimization problem. This is impossible
in practice, as any implementation is performed in digital
form and requires a non-negligible computational time. The
NMPC setup proposed here is based on the method proposed
in Magni, Scattolini, and Astrom (2002), where a continuous
time locally stabilizing control law is first designed. Then, a
piecewise constant term computed via NMPC is added to the
control signal provided by the stabilizing control law, in or-
der to achieve some specific goals, such as the minimization
of a prescribed cost or the enlargment of the output admis-
sible set. In so doing, it is assumed that the signal computed
by NMPC is piecewise constant and with a limited number
of free moves in the future. Nominal stability of the over-
all system is preserved using the “infinite horizon closed
loop costing” scheme proposed inDe Nicolao, Magni, and
Scattolini (1998). In the usual setting of this scheme, the op-
timization problems are solved up to a prespecified accuracy
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during each sampling time so that a feedback delay of one
sampling time is introduced in the closed loop.

In this paper, however, we avoid this feedback delay by
using the recently developed “real-time iteration” scheme
(Diehl, Bock, Schlöder, Findeisen, Nagy, & Allgöwer,
2002b)for online optimization. The algorithm is based on
the direct multiple shooting approach to optimal control
problems (Bock & Plitt, 1984; Leineweber, 1999), but is
characterized by the following features: first, the scheme
efficiently initializes each new problem and performs only
one optimization iteration per optimization problem. Thus,
it reduces sampling times to a minimum. Second, the com-
putations of each “real-time iteration” are divided into a very
short “feedback phase”, and a much longer “preparation
phase”, which uses the sampling time toprepare the next
feedback. Thus, each NMPC feedback is directly applied
to the system, with a negligible delay that is considerably
shorter than the sampling time.

1.1. Overview

The paper is organized as follows. InSection 2we de-
rive the model equations for the kite model. The periodic
reference orbit is analysed inSection 3and we show how
to design a stabilizing periodic linear controller based on
LQR techniques. InSection 4we finally describe the NMPC
setup, and inSection 5we briefly present the real-time opti-
mization algorithm. Simulated closed loop experiments are
presented and briefly discussed inSection 6.

2. Kite model

The kite is held by two lines which allow to control the
lateral angle of the kite, seeFig. 1. By pulling one line the
kite will turn in the direction of the line being pulled. In this
paper we employ a kite model that was originally developed
in Diehl (2002)andDiehl, Bock, and Schlöder (2002a).

Fig. 1. A picture of the dual line kite with tail.

2.1. Kite dynamics in polar coordinates

The movement of the kite at the sky can be mod-
elled by Newton’s law of motion and a suitable model
for the aerodynamic force. Let us introduce polar co-
ordinatesθ, φ, r so that the positionp of the kite rel-
ative to the kite pilot (in the origin) is given by:p =
(r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ))T with the last
component being the height of the kite over the ground, and
θ being the angle that the kite lines form with the vertical.
We introduce a local right handed coordinate system with
the basis vectorseθ, eφ, er, each pointing in the direction
where the corresponding polar coordinate increases:

eθ = ∂p/∂θ

‖∂p/∂θ‖
= [(cos(θ) cos(φ), cos(θ) sin(φ),− sin(θ))]T, etc.

Defining the corresponding components of the total forceF

acting on the kite, we can write Newton’s law of motion for
constantr in the form

θ̈ = Fθ

rm
+ sin(θ)cos(θ)φ̇2, (1)

φ̈ = Fφ

rm sin(θ)
− 2 cot(θ)φ̇θ̇, (2)

wherem denotes the mass of the kite. The force consists of
two contributions, gravitational and aerodynamic force, so
that we obtainFθ = sin(θ)mg +Faer

θ andFφ = Faer
φ , where

g = 9.81 m s−2 is the earth’s gravitational acceleration. It
remains to determine the aerodynamic forcesFaer

φ andFaer
θ .

2.2. Kite orientation

To model the aerodynamic force we first determine the
kite’s orientation. We assume that the kite’s trailing edge
is strongly pulled by the tail into the direction of the ef-
fective wind at the kite. Under this assumption the kite’s
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Fig. 2. The kite as seen from the pilot, and unit vectorser , el, and et .
Vector er need not be perpendicular toel, et .

longitudinal axis is always in line with the effective wind
vectorwe := w− ṗ, wherew = (vw,0,0)T is the wind as
seen from the earth system, andṗ is the kite velocity. If we
introduce a unit vectorel pointing from the front towards
the trailing edge of the kite (cf.Fig. 2), we therefore assume
that el = we/‖we‖. The transversal axis of the kite can be
described by a perpendicular unit vectoret that is pointing
from the right to the left wing tip (as seen from the kite
pilot, in upright kite orientation). The orientation ofet can
be controlled, but it has to be orthogonal toel (cf. Fig. 2),

et · el = 0. (3)

However, the projection ofet onto the lines’ axis (which
is given by the vectorer) is determined from the length
difference�l of the two lines, seeFig. 3. If the distance
between the two lines’ fixing points on the kite isd, then the
vector from the right to the left fixing point isd · et , and the
projection of this vector onto the lines’ axis should equal�l

(being positive if the left wing tip is farther away from the
pilot), i.e.,�l = d et · er. Let us define thelateral angle ψ
to beψ = arcsin(�l/d). For simplicity, we assume that we
control this angleψ directly. It determines the orientation of
et which has to satisfy:

et · er = �l

d
= sin(ψ). (4)

A third requirement thatet must satisfy and which deter-
mines its sign is

(el × et) · er > 0. (5)

This ensures that the kite is always in the same orientation
with respect to the lines. We will now give an explicit form
for the unit vectoret that satisfies(3)–(5). Using the pro-
jection w̄e of the effective wind vectorwe onto the tangent
plane spanned byeθ andeφ, w̄e := we− er(er ·we), we can
define the orthogonal unit vectorse1 := w̄e/‖w̄e‖ ande2 :=

Fig. 3. Kite and lines seen from the top, and visualization of the lateral
angleψ.

Table 1
The kite parameters

Name Symbol Value

Line length r 50 m
Kite mass m 1 kg
Wind velocity vw 6 m/s
Density of air ρ 1.2 kg/m3

Characteristic area A 0.5 m2

Lift coefficient CL 1.5
Drag coefficient CD 0.29

er×e1, so that(e1, e2, er) forms an orthogonal right-handed
coordinate basis. In this basis the effective windwe has no
component in thee2 direction:we = ‖w̄e‖e1 + (we · er)er.
The definition

et := e1(−cosψ sin η)+ e2(cosψ cosη)+ er sin ψ

with η := arcsin((we · er/‖w̄e‖) tan(ψ)) indeed satisfies
(3)–(5), as can be verified by direct substitution. Therefore,
we are now able to determine the orientation of the kite
depending on the controlψ and the effective windwe only.

2.3. Aerodynamic lift and drag

The two vectorsel × et andel are the directions of aero-
dynamic lift and drag, respectively. To compute the magni-
tudesFL andFD of lift and drag we assume that the lift and
drag coefficientsCL andCD are constant, so that we have

FL = 1
2ρ‖we‖2ACL and FD = 1

2ρ‖we‖2ACD,

with ρ being the density of air, andA being the characteristic
area of the kite. Given the directions and magnitudes of lift
and drag, we can computeFaeras their sum, yieldingFaer =
FL(el × et)+ FDel or, in the local coordinate system

Faer
θ = FL((el × et) · eθ)+ FD(el · eθ),
Faer
φ = FL((el × et) · eφ)+ FD(el · eφ).

The system parameters that have been chosen for the simu-
lation model are listed inTable 1. Defining the system state
x := (θ, φ, θ̇, φ̇)T and the controlu := ψ we can sum-
marize the four system equations, i.e.,(1) and (2)and the
trivial equations∂θ/∂t = θ̇, ∂φ/∂t = φ̇, in the short form
ẋ = f(x, u). We mention here that the kite model is freely
available on the Internet in form of a MATLAB s-function
(Diehl, 2003).

3. Reference orbit and periodic LQR

Using the above system model, a periodic orbit was de-
termined that can be characterized as a “lying eight” and
which can be seen inFig. 4, as a(φ, θ)-plot. The wind is
assumed to blow in the direction of thep1-axis (θ = 90◦
and φ = 0◦). The periodic solution was computed using
an off-line variant of the direct multiple shooting method,
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Fig. 4. Periodic reference orbit plotted in the(φ, θ)-plane, as seen by the
kite pilot. The dots separate intervals of 1 s.

MUSCOD-II (Leineweber, 1999), imposing periodicity con-
ditions with periodT := 8 s and suitable state bounds and
a suitable objective function in order to yield a solution that
we considered to be a nice reference orbit. We denote the
periodic reference solution byxr(t) andur(t). This solution
is defined for allt ∈ (−∞,∞) and satisfies the periodicity
conditionxr(t + T) = xr(t) andur(t + T) = ur(t).

3.1. Open loop stability analysis

Numerical simulations of the kite using the open loop in-
putsur(t) show that the kite crashes onto the ground very
quickly after small disturbances, cf.Fig. 5. To analyse the
asymptotic stability properties of the open loop system along
the periodic reference orbit theoretically, let us consider the
linearization of the system along the orbit. An infinitesimal
deviation δx(t) := x(t) − xr(t) and δu(t) := u(t) − ur(t)

would satisfy the periodically time-varying linear differen-
tial equation:

δẋ(t) = A(t)δx(t)+ B(t)δu(t), (6)
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Fig. 5. The linear periodic controller is able to stabilize the system locally
from slightly disturbed system states (solid line), in contrast to the open
loop system (dotted), but let the kite crash onto the ground for a larger
deviation (dash dotted).

with

A(t) := ∂f

∂x
(xr(t), ur(t)) and B(t) := ∂f

∂u
(·).

Based on the linear time variant periodic systemẋ(t) =
A(t)x(t) we can compute its fundamental solution and the
sensitivity of the final state of each period with respect to
its initial value, which is called the “monodromy matrix”. A
numerical computation of the monodromy matrix for the kite
orbit and eigenvalue decomposition yields two eigenvalues
(“Floquet multipliers”) that are greater than one, confirming
the observation that the system is unstable.

3.2. Design of a periodic LQR controller

In order to design a locally stabilizing controller (which
is needed if we want to apply the infinite horizon closed
loop costing NMPC scheme), we use the classical LQR de-
sign technique, applied to the periodic linear system(6). We
introduce diagonal weighting matrices:

Q := diag(0.4, 1, s2, s2) and R := 33. (7)

To determine the optimal periodic LQR controller that mini-
mizes the objective

∫
1/2(x−xr(t))TQ(x−xr(t))+1/2(u−

ur(t))
TR(u − ur(t))dt, we find the symmetric periodic

matrix solutionP(t) for the differential Riccati equation

−Ṗ = Q+ A(t)TP(t)+ P(t)A(t)− P(t)B(t)R−1B(t)TP(t),

by integrating the equation backwards for a sufficiently
long time, starting with the unit matrix as final value. Once
the periodicP(t) is determined, the optimal LQR con-
troller for (6) and(7) is given byδu(t) = −K(t)δx(t) with
K(t) := R−1B(t)TP(t). We finally define the linear periodic
feedback for the original system as

uLQR(x, t) := ur(t)−K(t)(x− xr(t)). (8)

The linearly stabilized systeṁx(t) = f(x(t), uLQR(x(t), t))

is locally stable, as illustrated inFig. 5. The periodic LQR
is available together with the kite model on the kite problem
homepage(Diehl, 2003).

4. NMPC controller setup

The aim of the NMPC controller is to stabilize the sys-
tem in a larger region of attraction and to respect certain
bounds that the linear controller may violate, and, further-
more, to lead to an improved performance with respect to
a user defined criterion. In our case, the bounds arise be-
cause we want the closed loop kite to respect a security
distance to the ground (θ = 90◦). We achieve this by re-
quiring thath(x, u, t) := 76.5◦ − θ ≥ 0. The performance
of the controller is measured by the integral of a function
L(x(t), u(t), t), which is in our case the squared deviation
of the statex at timet from the reference orbit,

L(x, u, t) := 1
2(x− xr(t))

TQ(x− xr(t)).
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We introduce a sampling intervalδ and give NMPC feed-
back to the system only at the timestk := kδ. At each sam-
pling time tk the NMPC shall deliver new controlsu(t), t ∈
[tk, tk+1] that depend on the current system valuex(tk),
where the optimization is based on a prediction of the fu-
ture system behaviour. Many NMPC schemes exist that
guarantee nominal stability, see e.g.,Allgöwer, Badgwell,
Qin, Rawlings, and Wright (1999), De Nicolao, Magni, and
Scattolini (2000)andMayne (2000); they mainly differ in
the way the optimal control problems are formulated. Here,
we work in the framework of the infinite horizon closed loop
costing scheme(De Nicolao et al., 1998).

4.1. Infinite horizon closed loop costing

In the infinite horizon closed loop costing scheme we
express the controlu(t) that is actually applied to the plant
at timet ∈ [tk, tk+1] by the sum

u(t) = uLQR(x(t), t)+ vk, ∀t ∈ [tk, tk+1], (9)

where the constant vectorvk is determined by the NMPC op-
timizer and implicitly depends onx(tk), i.e., we will some-
times writevk(x(tk)) to keep this dependence in mind. Note
thatvk ≡ 0 yields the linearly controlled closed loop. In the
sequel we will use a bar to distinguish the predicted system
statex̄(t) and controls̄u(t) from the state and control vector
of the real system.

Given the statex(tk) of the “real” kite at timetk, we for-
mulate the following optimal control problem, with control
horizonTc = Mδ and prediction horizonTp > Tc (where
Tp shall ideally be infinity):

min
v̄i,ū(·),x̄(·)

∫ tk+Tp

tk

L(x̄(t), ū(t), t)dt, (10)

subject to

˙̄x(t) = f(x̄(t), ū(t)), ∀t ∈ [tk, tk + Tp],

x̄(tk) = x(tk),

ū(t) = uLQR(x̄(t), t)+ v̄i, ∀t ∈ [ti, ti+1],
(i = k, . . . , k +M − 1),

ū(t) = uLQR(x̄(t), t), ∀t ∈ [tk + Tc, tk + Tp],
0 ≤ h(x̄(t), ū(t), t), ∀t ∈ [tk, tk + Tp].

(11)

In the case thatTp = ∞ and if the optimal control problem
has a solution forx(t0), stability of the closed loop trajectory
can be proved in a rigorous way(De Nicolao et al., 1998;
Magni et al., 2002).

4.2. Practical NMPC setup

We choose a sampling intervalδ = 1 s andM = 8 sam-
pling intervals as control horizon,Tc = 8 s, cf.Fig. 8. As the
simulation of the periodic system over an infinite horizon
is impossible, we employ here a finiteTp = 24 s, that we

believe to be sufficiently long to deliver a fair approxima-
tion to the infinite horizon cost. For a theoretical discussion
on how to truncate the series expressing the infinite horizon
cost associated with the auxiliary linear control law with-
out losing stability seeMagni, De Nicolao, Magnani, and
Scattolini (2001). Furthermore, to avoid a semi-infinite opti-
mization problem, the problem is changed by imposing the
inequality path constraints(11) only at prespecified points
in time, here chosen to be the sampling timesti on the con-
trol horizon, as well as start, center and end point of the
prediction horizon.

5. Real-time optimization algorithm

The numerical solution of the sequence of optimization
problems is achieved by the recently developedreal-time it-
eration scheme which we will briefly describe in this section.
For details, we refer toDiehl (2002), Diehl et al. (2002b)
andDiehl et al. (2002c).

The scheme is based on thedirect multiple shooting
method (Bock & Plitt, 1984) that reformulates the op-
timization problem into a finite dimensional nonlinear
programming problem (NLP) with a special structure,
and solves this NLP with an iterative optimization algo-
rithm. In particular, the direct multiple shooting technique
keeps both, controls and states, as constrained optimiza-
tion variables, and doesnot eliminate the state trajectory
(which many other NMPC optimization schemes do, e.g.,
in Li & Biegler, 1989; Oliveira & Biegler, 1995). This
temporarily allows infeasible state trajectories, cf.Fig. 8,
which reduces nonlinearity of the NLP problem and re-
sults in excellent convergence behaviour of the optimiza-
tion procedure, in particular for tracking problems as
in NMPC.

5.1. Software environment

In its actual implementation, the real-time iteration
scheme is realized as part of the optimal control pack-
age MUSCOD-II (Diehl, Leineweber, & Schäfer, 2001;
Leineweber, 1999) which offers several advantages in the
context of real-time optimization for NMPC:

• The model equations can either be provided as generic
C or Fortran-Code, as a MATLAB s-function or in the
gPROMS(PSE, 2000)modelling language (Leineweber,
Schäfer, Bock, & Schlöder, 2003).

• Efficient state-of-the-art DAE solvers—e.g., DDASAC
(Caracotsios & Stewart, 1985), DAESOL(Bauer, 1999)—
are employed to calculate the system trajectories and
derivatives quickly and accurately.

• The direct multiple shooting method allows to efficiently
treat highly nonlinear and unstable systems (Baake,
Baake, Bock, & Briggs, 1992; Diehl et al., 2002a;
Kallrath, Bock, & Schlöder, 1993).
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Fig. 6. Use of computation time in the real-time iteration scheme; real system state and controls, with sampling timeδ and feedback delayδ′ � δ.

• The approach allows a robust treatment of control and
path constraints as well as terminal constraints.

• The method can efficiently be parallelized with consider-
able speedups(Leineweber et al., 2003), if necessary.

5.2. Real-time iteration scheme and initial
value embedding

The real-time iteration scheme exploits the fact that in
NMPC optimization a sequence of neighboring optimization
problems has to be solved. Here, solution information of the
previous problem can be exploited for initialization of the
following problem by a so calledinitial value embedding
strategy. This initialization procedure is so efficient that it
allows to perform only one single optimization iteration per
optimization problem, without sacrificing much solution ac-
curacy. The sampling timeδ can therefore be chosen very

Fig. 7. The simulated “real” kite just after a random jump of 45◦ in φ.

small, just as long as needed to perform one optimization
iteration. For solution of the kite optimization problem(10),
one iteration took never more than 0.5 s, thus safely allow-
ing δ = 1 s.

5.3. Feedback delay for real-time iteration scheme

One further advantage of the scheme is that it avoids the
feedback delay of one sampling timeδ present in most other
NMPC optimization schemes. Instead, each sampling time
is divided into a very short “feedback phase”, and a much
longer “preparation phase”, which is used toprepare the
next feedback, as much as possible without knowledge of
the next statex(tk+1). Due to this, the real-time iteration
scheme has only a very short feedback delayδ′ � δ, which
is for the kite optimization problemδ′ ≈ 0.05 s= (1/20)δ.
In the presented simulations, we have completely neglected
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Fig. 8. The prediction horizon in the real-time optimization algorithm just after the random jump ofFig. 7. The state trajectory shows gaps that will be
closed after a few iterations if no further disturbance occurs.

this delay, but in a real world application it would be present,
as visualized inFig. 6, such that the closed loop control
would instead ofEq. (9)be given by

u(t) = uLQR(x(t), t)+ vk(x(tk)), ∀t ∈ [tk + δ′, tk+1 + δ′].
(12)

The interplay between “real” kite and the online optimizer
using the real-time iteration scheme is illustrated inFigs. 7
and 8, after a large disturbance to the kite.

5.4. Nominal stability in the presence of numerical errors

As mentioned inSection 4, a central question in NMPC
is nominal stability of the closed loop, which is theoretically
established for the infinite horizon closed loop costing(De
Nicolao et al., 1998)employed in this paper. However, in
the simulations presented here, the nonlinear optimization
problems are only approximately solved by the real-time
iteration scheme, so that the presence of numerical errors
needs to be addressed.

For the real-time iteration scheme, the state vector of the
closed loop consists of the real system state and the content
of the prediction horizon in the optimizer (cf.Figs. 7 and
8). Due to the close connection of system and optimizer,
stability of the closed loop system can only be addressed by
combining concepts from both, NMPC stability theory and
convergence analysis of Newton-type optimization methods.
This analysis has been carried out for the real-time iteration
scheme in conjunction with another NMPC setup, the zero
terminal constraint (Mayne & Michalska, 1990), in Diehl,
Findeisen, Allgöwer, Bock, and Schlöder (2004), where a
proof of nominal stability of the closed loop is given under
reasonable assumptions. The line of proof could easily be
extended to treat the case of the infinite horizon closed loop
costing scheme.

We mention here that the real-time iteration scheme was
already applied to a looping kite control problem with-
out LQR prestabilization inDiehl (2002)and Diehl et al.
(2002a); there, however, a different optimal control setup

was treated that does not address the question of nominal
stability.

In another series of tests the real-time iteration scheme
was applied to control a pilot scale distillation column de-
scribed by a stiff differential-algebraic equation model with
more than 200 states, making a sampling time ofδ = 20 s
possible, with feedback delayδ′ = 0.5 s(Diehl et al., 2003).

6. Closed loop experiments

In order to test the NMPC closed loop we have performed
several numerical experiments. Here, the “real” kite is simu-
lated by a model that coincides with the optimization model,
but is subject to disturbances of different type.

6.1. Comparison with LQR

First, let us inFig. 9compare the NMPC with the periodic
LQR. It can be seen that the NMPC is able to respect the
state constraintθ ≤ 76.5◦ even for the scenario with the
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Fig. 9. The NMPC controller is able to control the kite even for the
largely disturbed states at the bottom (solid line), in contrast to the LQR
controller (dotted, cf.Fig. 5). For the disturbed state at the top, the
performance for the NMPC (solid line, integrated costs 1.51) is better
that that of the LQR (dotted, costs 1.75), as expected.



44 M. Diehl et al. / Annual Reviews in Control 28 (2004) 37–45

 -80 -60 -40 -20020406080

20

30

40

50

60

70

80

90

θ 
[d

eg
]

φ [deg]

Fig. 10. NMPC closed loop response under moderate random disturbances,
for 150 s.

largely disturbed initial state at the bottom (cf.Fig. 5), in
contrast to the LQR. For another scenario, where the system
kite starts much too high at the sky, both controllers are able
to stabilize the system. However, NMPC leads to a reduced
objective with the cost integral

∫ ∞
0 L(x(t), u(t), t)dt being

1.51 in contrast to 1.75 for the LQR. This difference can be
seen in form of a considerably faster convergence towards
the periodic orbit.

6.2. Random kicks

Let us now investigate the response of the NMPC con-
troller in the presence of random kicks. The kicks occur at
random points in time, but in average once per period. At
each kick the system statex is disturbed by independent ran-
dom disturbances�x of moderate size: in a first scenario,
the disturbances are bounded as|�θ| ≤ 5◦, |�φ| ≤ 5◦,
|�θ̇| ≤ 5◦/s, and|�φ̇| ≤ 5◦/s. The corresponding NMPC
closed loop response can be seen inFig. 10, for a simulation
of 150 s.

In a second test, we augmented the size of the distur-
bances by a factor of 4, to|�θ| ≤ 20◦, etc. The closed loop
response for 150 s can be seen inFig. 11. Some of the occur-
ring optimization problems are infeasible, due to the state
constraint requiringθ ≥ 76.5◦ that is already violated by
the initial statex(tk). However, it can be seen that the online
optimizer is sufficiently robust even in the presence of such
optimization problems that should never occur in practice.

6.3. Robustness test with strong sidewind

In another scenario, the closed loop is tested against model
uncertainty: we consider a continuing disturbance resulting
from a change in the wind direction. The wind component
in p2-direction, that is assumed by the optimizer to be zero,
is for the “real” kite set to a value 3 m/s that is 50% of the
nominal windvw in p1 direction. The NMPC closed loop
results in a considerably disturbed but stable periodic orbit,
as can be seen inFig. 12; the disturbed periodic orbit is

-80-60-40-20020406080

20

30

40

50

60

70

80

90

θ 
[d

eg
]

φ [deg]

Fig. 11. NMPC closed loop response under large random disturbances
for 150 s. Some system states violate the upper bound forθ so that the
optimization problems are infeasible.
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Fig. 12. Effect of model uncertainty in form of a strong side wind with
50% the nominal wind speed. After a very short transient, the NMPC
controlled kite loops in a considerably disturbed periodic orbit, but remains
stable (solid line). The LQR closed loop response results in a crash after
two periods (dotted), and the open loop crashes after 4 s (dash dotted).

reached after a very short transient. This contrasts sharply
with the open loop and the LQR closed loop response which
both result in a crash after a short time.

7. Conclusions

We have presented a method to design a nonlinear model
predictive controller for periodic unstable systems, and have
applied the method to a kite that shall fly loops. The method
is based on the “infinite horizon closed loop costing” which
requires a locally prestabilizing feedback. This prestabiliza-
tion is achieved by a periodic LQR controller based on a
system linearization along the periodic orbit. The NMPC
controller uses an objective which only penalizes state de-
viations and a state constraint is formulated to ensure that
the kite does not crash onto the ground. The resulting op-
timal control problems are solved in real-time, once a sec-
ond, by a state-of-the-art online optimization algorithm, the
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“real-time iteration scheme”. This numerical scheme avoids
the large feedback delay present in most optimization ap-
proaches to NMPC and allows to reduce sampling times to
a minimum. The NMPC closed loop gives an excellent re-
sponse to strong disturbances and the optimizer performs
well even when large random disturbances are applied to
the kite. Furthermore, the NMPC closed loop shows good
robustness against model plant mismatch: in the presence
of additional sidewind of 50% the nominal wind velocity
the periodic orbit changes shape, but remains stable. As the
kite model may serve as a benchmark problem for periodic
NMPC it can be freely downloaded(Diehl, 2003).

We want to mention here that the real-time iteration
NMPC scheme used for the computations in this paper
has also been successfully applied to a real pilot scale dis-
tillation column described by a stiff differential-algebraic
equation model with over 200 states, making a sampling
time of 20 s possible(Diehl et al., 2003).
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