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Abstract

We develop a state-of-the-art nonlinear model predictive controller (NMPC) for periodic unstable systems, and apply the method to a dual
line kite that shall fly loops. The kite is described by a nonlinear unstable ODE system (which we freely distribute), and the aim is to let the
kite fly a periodic figure. Our NMPC approach is based on the “infinite horizon closed loop costing” scheme to ensure nominal stability. To be
able to apply this scheme, we first determine a periodic LQR controller to stabilize the kite locally in the periodic orbit. Then, we formulate
a two-stage NMPC optimal control problem penalizing deviations of the system state from the periodic orbit, which also contains a state
constraint that avoids that the kite collides with the ground. To solve the optimal control problems reliably and in real-time, we apply the
newly developed “real-time iteration scheme” for fast online optimization in NMPC. The optimization based NMPC leads to significantly
improved performance compared to the LQR controller, in particular as it respects state constraints. The NMPC closed loop also performs
well in the presence of large random disturbances and shows considerable robustness against changes in the wind direction.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction veloped for continuous-time systems. However, it basically
differs from the continuous-time NMPC algorithms for non-

Nonlinear model predictive control (NMPC) is a feedback linear systems previously published in the literature, see
control technique that is based on the real-time optimization e.g.,Mayne and Michalska (199@nd Chen and Allgéwer
of a nonlinear dynamic process model on a moving horizon (1998) Continuous-time methods usually assume that the
that has attracted increasing attention over the past decad&MPC law is continuously computed by solving at any time
(Qin & Badgwell, 200). Important challenges that need to instant a difficult optimization problem. This is impossible
be addressed for any NMPC application are stability of the in practice, as any implementation is performed in digital
closed loop system and the numerical solution of the opti- form and requires a non-negligible computational time. The
mal control problems in real-time. In this paper we show NMPC setup proposed here is based on the method proposed
how state-of-the-art NMPC techniques addressing thesein Magni, Scattolini, and Astrom (2002)here a continuous
challenges can be applied to control a strongly unstabletime locally stabilizing control law is first designed. Then, a
periodic system, namely a dual line kite that shall fly loops. piecewise constant term computed via NMPC is added to the
The aim of our automatic control is to make the kite fly a control signal provided by the stabilizing control law, in or-
figure that may be called a “lying eight”. The correspond- der to achieve some specific goals, such as the minimization
ing orbit is not open loop stable, so that feedback has to beof a prescribed cost or the enlargment of the output admis-
applied. We assume the state is fully accessible for control. sible set. In so doing, it is assumed that the signal computed

Since the natural setting of the problem is in continu- by NMPC is piecewise constant and with a limited number
ous time, the NMPC implementation proposed here is de- of free moves in the future. Nominal stability of the over-

all system is preserved using the “infinite horizon closed
"+ Correspondi loop costing” scheme proposed De Nicolao, Magni, and
orresponding author. . ) .

E-mail address: m.diehl@iwr.uni-heidellberg.de (M. Diehl). Scattolini (1998)In the usual setting of this scheme, the op-

URL: http:/Avww.iwr.uni-heidelberg.de/Moritz.Diehl/. timization problems are solved up to a prespecified accuracy
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during each sampling time so that a feedback delay of one2.1. Kite dynamicsin polar coordinates
sampling time is introduced in the closed loop.

In this paper, however, we avoid this feedback delay by = The movement of the kite at the sky can be mod-
using the recently developed “real-time iteration” scheme elled by Newton’s law of motion and a suitable model
(Diehl, Bock, Schldéder, Findeisen, Nagy, & Allgbéwer, for the aerodynamic force. Let us introduce polar co-
2002b)for online optimization. The algorithm is based on ordinatesé, ¢, r so that the positiorp of the kite rel-
the direct multiple shooting approach to optimal control ative to the kite pilot (in the origin) is given byp =
problems Bock & Plitt, 1984 Leineweber, 1999 but is (r sin(®) cog¢), r sin(d) sin(¢), rcogd))T with the last
characterized by the following features: first, the scheme component being the height of the kite over the ground, and
efficiently initializes each new problem and performs only 6 being the angle that the kite lines form with the vertical.
one optimization iteration per optimization problem. Thus, We introduce a local right handed coordinate system with
it reduces sampling times to a minimum. Second, the com- the basis vectorsy, ¢4, e,, €ach pointing in the direction
putations of each “real-time iteration” are divided into a very where the corresponding polar coordinate increases:
short “feedback phase”, and a much longer “preparation
phase”, which uses the sampling timepepare the next eg = _p/00
feedback. Thus, each NMPC feedback is directly applied ll9p/ 36|l
to the system, with a negligible delay that is considerably = =[(cog6) coq¢), cogH) sin(¢), — sin(@))]T, etc

shorter than the sampling time. . )
Defining the corresponding components of the total fdrce

1.1. Overview acting on the kite, we can write Newton'’s law of motion for
constant- in the form

The paper is organized as follows. 8ection 2we de- b= Fy Sin(9)cog0)d2 1
rive the model equations for the kite model. The periodic rm - sin@)cosH)¢*. @
reference orbit is analysed Bection 3and we show how F, .
to design a stabilizing periodic linear controller based on ¢ = rmsing) 2 cott) ¢, (2

LQR techniques. Iisection 4ve finally describe the NMPC
setup, and irSection Swe briefly present the real-time opti- wherem denotes the mass of the kite. The force consists of
mization algorithm. Simulated closed loop experiments are two contributions, gravitational and aerodynamic force, so
presented and briefly discusseddection 6 that we obtainFy = sin(®)mg+ Fg and Fy = F3*, where

g = 9.81ms?is the earth’s gravitational acceleration. It
remains to determine the aerodynamic foreg§’ and £
2. Kite model
2.2. Kite orientation
The kite is held by two lines which allow to control the
lateral angle of the kite, sd€ig. 1. By pulling one line the To model the aerodynamic force we first determine the
kite will turn in the direction of the line being pulled. In this  kite's orientation. We assume that the kite's trailing edge
paper we employ a kite model that was originally developed is strongly pulled by the tail into the direction of the ef-
in Diehl (2002)andDiehl, Bock, and Schléder (2002a) fective wind at the kite. Under this assumption the kite's

Fig. 1. A picture of the dual line kite with tail.
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Table 1
et The kite parameters
A Name Symbol Value
Line length r 50m
€ Kite mass m 1kg
Wind velocity Vy 6m/s
Density of air ) 1.2 kg/n®
Fig. 2. The kite as seen from the pilot, and unit vectarse;, ande;. Characteristic area A 0.5n?
Vector e, need not be perpendicular tg, e;. Lift coefficient CL 15
Drag coefficient Cp 0.29

longitudinal axis is always in line with the effective wind

vectorw, := w — p, wherew = (v, 0, 0)7 is the wind as er X e1, SO that(e1, e2, ¢,) forms an orthogonal right-handed
seen from the earth system, apds the kite velocity. If we coordinate basis. In this basis the effective windhas no
introduce a unit vectoe; pointing from the front towards  component in the, direction: w, = ||w,|le1 + (we - e,)e;.
the trailing edge of the kite (cFig. 2), we therefore assume  The definition

thate; = w,./||w,||. The transversal axis of the kite can be
described by a perpendicular unit vectgrthat is pointing
from the right to the left wing tip (as seen from the kite with » := arcsin(w, - e./|w.|)tan(y)) indeed satisfies
pilot, in upright kite orientation). The orientation ef can (3)—(5), as can be verified by direct substitution. Therefore,
be controlled, but it has to be orthogonaleia(cf. Fig. 2), we are now able to determine the orientation of the kite
3) depending on the contrgt and the effective windv, only.

e; = e1(—COSy Sin 1) + e2(COSy cosn) + e, sin

e e =0.

However, the projection of; onto the lines’ axis (which ~ 2.3. Aerodynamic lift and drag

is given by the vectoe,) is determined from the length

difference Al of the two lines, seéig. 3. If the distance The two vectors; x e; ande; are the directions of aero-
between the two lines’ fixing points on the kitedsthen the dynamic lift and drag, respectively. To compute the magni-
vector from the right to the left fixing point i$- ¢,, and the ~ tudesF_ and Fp of lift and drag we assume that the lift and
projection of this vector onto the lines’ axis should equal drag coefficients”. andCp are constant, so that we have
(being positive if the left wing tip is farther away from the
pilot), i.e., Al = de; - e,. Let us define théateral angle v

to bey = arcsinAl/d). For simplicity, we assume that we  with p being the density of air, and being the characteristic
control this angle) directly. It determines the orientation of  area of the kite. Given the directions and magnitudes of lift
e; which has to satisfy: and drag, we can compul&® as their sum, yielding2®" =

Fi (e; x ¢;) + Fpe; or, in the local coordinate system

F = %P||we||2AC|_ and Fp = %P”weHZACD,

Al .
e e, = — =Sin(Y). 4)
d F2® = FL((e1 x ¢)) - e5) + Fo(e; - ep),

A.th|rd. req'wre'ment thae, must satisfy and which deter- Fgerz FL((e; X &) - eg) + Fole; - eg).
mines its sign is

The system parameters that have been chosen for the simu-
(e; x e;) - e, > 0. (5)

lation model are listed iffable 1 Defining the system state
. L . T 5 T o

This ensures that the kite is always in the same orientation* ‘= (0. ¢, 6, ¢)" and the controlx := 4 we can sum-

with respect to the lines. We will now give an explicit form Marize the four system equations, i.€) and (2)and the

for the unit vectore, that satisfieg3)—(5). Using the pro-  {rivial equationsdt/or = 6, d¢/or = ¢, in the short form

jection w, of the effective wind vectow, onto the tangent ~ * = f(x, u). We mention here that the kite model is freely
plane spanned by, andey, i, = w, — e, (e, - w,), We can available on the Internet in form of a MATLAB s-function

define the orthogonal unit vecto#s := w,. /||w.|| andez := (Diehl, 2003)

d - e; (transversal kite axis) 3. Reference orbit and periodic LQR

Using the above system model, a periodic orbit was de-
termined that can be characterized as a “lying eight” and
which can be seen iRig. 4, as a(¢, 6)-plot. The wind is
assumed to blow in the direction of thg-axis ¢ = 90°

Fig. 3. Kite and lines seen from the top, and visualization of the lateral @nd ¢ = 0°). The periodic solution was computed using
angley. an off-line variant of the direct multiple shooting method,



40 M. Diehl et al./Annual Reviewsin Control 28 (2004) 37-45

30 : : : : : with

a a
a0 ] A(n) = ai;(xr(t), ur()) and B() = £(~)-

Based on the linear time variant periodic systetn =

A1) x(t) we can compute its fundamental solution and the
sensitivity of the final state of each period with respect to
its initial value, which is called the “monodromy matrix”. A
numerical computation of the monodromy matrix for the kite
orbit and eigenvalue decomposition yields two eigenvalues
(“Floquet multipliers”) that are greater than one, confirming
the observation that the system is unstable.

980 40 20 -20 -40 -60

0
@ldeg] 3.2. Design of a periodic LQR controller

Fig. 4. Periodic reference orbit plotted in tlig, 6)-plane, as seen by the

kite pilot. The dots separate intervals of 1s. In order to design a locally stabilizing controller (which

is needed if we want to apply the infinite horizon closed

MUSCOD-II (Leineweber, 1999)mposing periodicity con-  100P costing NMPC scheme), we use the classical LQR de-
ditions with periodT := 8s and suitable state bounds and Si9n téchnique, applied to the periodic linear sys(én\We

a suitable objective function in order to yield a solution that Ntroduce diagonal weighting matrices:

we considered to be a nice reference orbit. We denote theQ := diag0.4, 1, s, s°) and R :=33. (7)
periodic reference solution by (r) andu,(¢). This solution
is defined for allr € (—o0, co) and satisfies the periodicity
conditionx,(t + 1) = x,(t) andu,(t + T) = u,(?).

To determine the optimal periodic LQR controller that mini-
mizes the objective’ 1/2(x —x, ()T Q (x —x, (1) +1/2(u —
ur(M)TR(u — u () dr, we find the symmetric periodic

3.1. Open loop stability analysis matrix solutionP(¢) for the differential Riccati equation

—P = Q+ AW PG) + PO)A() — PO)BOR B P(),

Numerical simulations of the kite using the open loop in-
putsu,(f) show that the kite crashes onto the ground very
quickly after small disturbances, dfig. 5 To analyse the
asymptotic stability properties of the open loop system along
the periodic reference orbit theoretically, let us consider the
linearization of the system along the orbit. An infinitesimal
deviationéx(f) := x() — x,-(t) and du(®) = u(®) — u, ()
would satisfy the periodically time-varying linear differen- uLQr(x, 1) = u,(1) — K(1)(x — x,(1)). (8)
tial equation:

by integrating the equation backwards for a sufficiently
long time, starting with the unit matrix as final value. Once
the periodic P(r) is determined, the optimal LQR con-
troller for (6) and(7) is given byéu(r) = —K(#)éx(¢) with
K@) := R~1B®)T P(r). We finally define the linear periodic
feedback for the original system as

The linearly stabilized systeti(r) = f(x(t), uLor(x(?), 1))
8x(f) = A(DSx(1) + B(H)du(r), (6) is locally stable, as illustrated iRig. 5. The periodic LQR

is available together with the kite model on the kite problem
homepagé€Diehl, 2003)

20

30r
4. NMPC controller setup
40r
50! ] The aim of the NMPC controller is to stabilize the sys-
tem in a larger region of attraction and to respect certain
60r 1 bounds that the linear controller may violate, and, further-
more, to lead to an improved performance with respect to
a user defined criterion. In our case, the bounds arise be-
80} . S ] cause we want the closed loop kite to respect a security

) - distance to the ground (= 90°). We achieve this by re-
20 40 60 80 quiring thath (x, u, 1) := 76.5° — # > 0. The performance

of the controller is measured by the integral of a function
Fig. 5. The linear periodic controller is able to stabilize the system locally L (x(), u(?), 1), which is in our case the squared deviation

from slightly disturbed system states (solid line), in contrast to the open of the statex at timer from the reference orbit,
loop system (dotted), but let the kite crash onto the ground for a larger

deviation (dash dotted). L(x,u,t) .= %(x — x,(t))TQ(x — x,(0)).

0 [deg]

701

B 0 40 20 o
¢[deq]
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We introduce a sampling intervdland give NMPC feed-
back to the system only at the timgs.= k3. At each sam-
pling time, the NMPC shall deliver new controlgr), ¢ €
[, tr+1] that depend on the current system valugy),

where the optimization is based on a prediction of the fu-

41

believe to be sufficiently long to deliver a fair approxima-
tion to the infinite horizon cost. For a theoretical discussion
on how to truncate the series expressing the infinite horizon
cost associated with the auxiliary linear control law with-
out losing stability sedvlagni, De Nicolao, Magnani, and

ture system behaviour. Many NMPC schemes exist that Scattolini (2001) Furthermore, to avoid a semi-infinite opti-

guarantee nominal stability, see e.gligéwer, Badgwell,
Qin, Rawlings, and Wright (1999De Nicolao, Magni, and
Scattolini (2000)and Mayne (2000) they mainly differ in

the way the optimal control problems are formulated. Here,

we work in the framework of the infinite horizon closed loop
costing scheméDe Nicolao et al., 1998)

4.1. Infinite horizon closed loop costing

In the infinite horizon closed loop costing scheme we
express the contral(r) that is actually applied to the plant
at timer € [, tx+1] by the sum

(9)

where the constant vectoy is determined by the NMPC op-
timizer and implicitly depends on(z), i.e., we will some-
times writevy (x(¢;)) to keep this dependence in mind. Note
thatv, = 0 yields the linearly controlled closed loop. In the

u(t) = uQr(x(®), 1) + vk, Vt € [t, iyl

mization problem, the problem is changed by imposing the
inequality path constraint§l1) only at prespecified points
in time, here chosen to be the sampling timesn the con-
trol horizon, as well as start, center and end point of the
prediction horizon.

5. Real-time optimization algorithm

The numerical solution of the sequence of optimization
problems is achieved by the recently developsai-time it-
eration scheme which we will briefly describe in this section.
For details, we refer t@®iehl (2002), Diehl et al. (2002b)
andDiehl et al. (2002c)

The scheme is based on tlirect multiple shooting
method Bock & PIlitt, 1984 that reformulates the op-
timization problem into a finite dimensional nonlinear
programming problem (NLP) with a special structure,

sequel we will use a bar to distinguish the predicted systemand solves this NLP with an iterative optimization algo-

statex(¢r) and controls:(r) from the state and control vector
of the real system.

Given the state(r;) of the “real” kite at timer;, we for-
mulate the following optimal control problem, with control
horizon T, = M$ and prediction horizor,, > T, (where
T, shall ideally be infinity):

t+T)p
_ min / L(x(1), u(1), ) dt, (10)
NTORIONN A
subject to
X(0) = fR(0), u(r), V€[t + Tpl,
xX(t) = x(t),
u(t) = uLQr(x(®), 0 +v;,  Vt € [t;, tiq1],
(i=k ...,k+M-—1),

u(t) = uLQr(x(®), 1, Vt € [t + T, ty + Tp],
0<h(x@®,u(®,n, Vtelt, tx+Tp.

(11)

In the case thal, = oo and if the optimal control problem
has a solution fox(zp), stability of the closed loop trajectory
can be proved in a rigorous wdipe Nicolao et al., 1998;
Magni et al., 2002)

4.2. Practical NMPC setup

We choose a sampling intervél= 1s andM = 8 sam-
pling intervals as control horizoff, = 8s, cf.Fig. 8 As the
simulation of the periodic system over an infinite horizon
is impossible, we employ here a fini®, = 24 s, that we

rithm. In particular, the direct multiple shooting technique
keeps both, controls and states, as constrained optimiza-
tion variables, and doesot eliminate the state trajectory
(which many other NMPC optimization schemes do, e.g.,
in Li & Biegler, 1989; Oliveira & Biegler, 199% This
temporarily allows infeasible state trajectories, Efg. 8,
which reduces nonlinearity of the NLP problem and re-
sults in excellent convergence behaviour of the optimiza-
tion procedure, in particular for tracking problems as
in NMPC.

5.1. Software environment

In its actual implementation, the real-time iteration
scheme is realized as part of the optimal control pack-
age MUSCOD-II Diehl, Leineweber, & Schéafer, 2001
Leineweber, 1999which offers several advantages in the
context of real-time optimization for NMPC:

e The model equations can either be provided as generic
C or Fortran-Code, as a MATLAB s-function or in the
gPROMS(PSE, 2000modelling languagelineweber,
Schafer, Bock, & Schldder, 20D3

o Efficient state-of-the-art DAE solvers—e.g., DDASAC
(Caracotsios & Stewart, 1988AESOL (Bauer, 1999
are employed to calculate the system trajectories and
derivatives quickly and accurately.

e The direct multiple shooting method allows to efficiently
treat highly nonlinear and unstable systenBagke,
Baake, Bock, & Briggs, 1992Diehl et al.,, 2002a
Kallrath, Bock, & Schléder, 1993
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feedback feedback feedback feedback
H H H [

preparation | preparation | preparation
T (trys)
T(tp+1) -~

T(tet2)
lt) /\ Kt

vk (2(tk)) 1' Vg1 (2 (t41)) : Vg2 (2 (tet2))

] r-——">"~>"~>""~>~>"=>"7=7°7 al

| | ! .

f } } time
thpr =t +6 tryo Tris

ty

Fig. 6. Use of computation time in the real-time iteration scheme; real system state and controls, with samplihgrtitfeedback delay « §.

e The approach allows a robust treatment of control and small, just as long as needed to perform one optimization

path constraints as well as terminal constraints. iteration. For solution of the kite optimization problgiD),

e The method can efficiently be parallelized with consider- one iteration took never more than 0.5 s, thus safely allow-
able speedupé_eineweber et al., 2003}f necessary. ingé=1s.

5.2. Real-time iteration scheme and initial 5.3. Feedback delay for real-time iteration scheme

value embedding

One further advantage of the scheme is that it avoids the
The real-time iteration scheme exploits the fact that in feedback delay of one sampling tifi@resent in most other
NMPC optimization a sequence of neighboring optimization NMPC optimization schemes. Instead, each sampling time
problems has to be solved. Here, solution information of the is divided into a very short “feedback phase”, and a much
previous problem can be exploited for initialization of the longer “preparation phase”, which is used prepare the
following problem by a so calledhitial value embedding next feedback, as much as possible without knowledge of
strategy. This initialization procedure is so efficient that it the next stater(s+1). Due to this, the real-time iteration
allows to perform only one single optimization iteration per scheme has only a very short feedback délag s, which
optimization problem, without sacrificing much solution ac- is for the kite optimization probler® ~ 0.05s= (1/20)3.
curacy. The sampling timé& can therefore be chosen very In the presented simulations, we have completely neglected

Fig. 7. The simulated “real” kite just after a random jump of 45 ¢.
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Fig. 8. The prediction horizon in the real-time optimization algorithm just after the random jurRjgof. The state trajectory shows gaps that will be
closed after a few iterations if no further disturbance occurs.

this delay, but in a real world application it would be present, was treated that does not address the question of nominal
as visualized inFig. 6, such that the closed loop control stability.

would instead oEq. (9)be given by In another series of tests the real-time iteration scheme
was applied to control a pilot scale distillation column de-
u(t) = uLQr(x(0), 1) + e (x(®)), Vet €[ + 8, i1 + 81 scribed by a stiff differential-algebraic equation model with

(12) more than 200 states, making a sampling timeé ef 20 s
possible, with feedback delay = 0.5 s(Diehl et al., 2003)

The interplay between “real” kite and the online optimizer
using the real-time iteration scheme is illustratedrigs. 7
and 8 after a large disturbance to the kite. 6. Closed loop experiments

5.4. Nominal stability in the presence of numerical errors In order to test the NMPC closed loop we have performed
several numerical experiments. Here, the “real” kite is simu-

As mentioned inSection 4 a central question in NMPC lated by a model that coincides with the optimization model,

is nominal stability of the closed loop, which is theoretically but is subject to disturbances of different type.

established for the infinite horizon closed loop costibg

Nicolao et al., 1998kmployed in this paper. However, in  6.1. Comparison with LQR

the simulations presented here, the nonlinear optimization

problems are only approximately solved by the real-time  First, let us inFig. 9compare the NMPC with the periodic

iteration scheme, so that the presence of numerical errorsLQR. It can be seen that the NMPC is able to respect the

needs to be addressed. state constrainf < 76.5° even for the scenario with the
For the real-time iteration scheme, the state vector of the

closed loop consists of the real system state and the content

of the prediction horizon in the optimizer (dfigs. 7 and

8). Due to the close connection of system and optimizer,

stability of the closed loop system can only be addressed by 20
combining concepts from both, NMPC stability theory and 30}
convergence analysis of Newton-type optimization methods. = a0
This analysis has been carried out for the real-time iteration %507

scheme in conjunction with another NMPC setup, the zero

terminal constraintNlayne & Michalska, 199) in Diehl, 6of

Findeisen, Allgbéwer, Bock, and Schléder (2004here a 70r
proof of nominal stability of the closed loop is given under 80|
reasonable assumptions. The line of proof could easily be 9 ‘ ‘ ‘ ‘ ‘ ‘
%O 60 40 20 -20 -40 -60 -80

extended to treat the case of the infinite horizon closed loop q,[c?eg]

costing scheme.
We mention here that the real-time iteration scheme was Fig. 9. The NMPC controller is able to control the kite even for the
| d lied t | . kit trol bl ith- largely disturbed states at the bottom (solid line), in contrast to the LQR
aiready applie 0 a_ OOP'”Q ite contro pl’.O em wi controller (dotted, cf.Fig. 5). For the disturbed state at the top, the
out LQR prestabilization iDiehl (2002) and Diehl et al. performance for the NMPC (solid line, integrated costs 1.51) is better
(2002a) there, however, a different optimal control setup that that of the LQR (dotted, costs 1.75), as expected.
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20 T T T T T T T 20

Fig. 10. NMPC closed loop response under moderate random disturbances,:ig_ 11. NMPC closed loop response under large random disturbances
for 150s. for 150s. Some system states violate the upper bound & that the
optimization problems are infeasible.

largely disturbed initial state at the bottom (€fig. 5), in
contrast to the LQR. For another scenario, where the system 20
kite starts much too high at the sky, both controllers are able
to stabilize the system. However, NMPC leads to a reduced
objective with the cost integrajfooo L(x(t), u(?), t) dt being 200
1.51 in contrast to 1.75 for the LQR. This difference can be

seen in form of a considerably faster convergence towards

the periodic orbit. ;‘%607
6.2. Random kicks 70y
80r
Let us now investigate the response of the NMPC con- ‘
troller in the presence of random kicks. The kicks occur at Vo0 20 20 o6 20 a0 e B0
random points in time, but in average once per period. At @ [deg]

each kick the system statas disturbed by independent ran- Fi - R

. , . b . ig. 12. Effect of model uncertainty in form of a strong side wind with
dom disturbanceax of moderate size: in a first scenario, 50% the nominal wind speed. After a very short transient, the NMPC
the disturbances are bounded || < 5°, |A¢| < 5°, controlled kite loops in a considerably disturbed periodic orbit, but remains
|Af] < 5°[s, and|A¢| < 5°/s. The corresponding NMPC  stable (solid line). The LQR closed loop response results in a crash after
closed loop response can be seeRim 10 for a simulation two periods (dotted), and the open loop crashes after 4s (dash dotted).
of 150s.

In a second test, we augmented the size of the distur-reached after a very short transient. This contrasts sharply
bances by a factor of 4, ta\6| < 20°, etc. The closed loop  with the open loop and the LQR closed loop response which
response for 150 s can be seelifrig. 11 Some of the occur-  poth result in a crash after a short time.
ring optimization problems are infeasible, due to the state
constraint requiringg > 76.5° that is already violated by
the initial statex(z;). However, it can be seen that the online 7 conclusions
optimizer is sufficiently robust even in the presence of such
optimization problems that should never occur in practice. e have presented a method to design a nonlinear model

predictive controller for periodic unstable systems, and have
6.3. Robustness test with strong sidewind applied the method to a kite that shall fly loops. The method
is based on the “infinite horizon closed loop costing” which

In another scenario, the closed loop is tested against modekequires a locally prestabilizing feedback. This prestabiliza-
uncertainty: we consider a continuing disturbance resulting tion is achieved by a periodic LQR controller based on a
from a change in the wind direction. The wind component system linearization along the periodic orbit. The NMPC
in pp-direction, that is assumed by the optimizer to be zero, controller uses an objective which only penalizes state de-
is for the “real” kite set to a value 3 m/s that is 50% of the viations and a state constraint is formulated to ensure that
nominal windv,, in p1 direction. The NMPC closed loop the kite does not crash onto the ground. The resulting op-
results in a considerably disturbed but stable periodic orbit, timal control problems are solved in real-time, once a sec-
as can be seen iRig. 12 the disturbed periodic orbit is  ond, by a state-of-the-art online optimization algorithm, the
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“real-time iteration scheme”. This numerical scheme avoids De Nicolao, G., Magni, L., & Scattolini, R. (2000). Stability and ro-
the Iarge feedback delay present in most optimization ap- bustness of nonlinear receding horizon control. In F. Allgbwer &

. . A. Zheng (Eds.),Nonlinear predictive control. Progress in systems
proaches to NMPC and allows to reduce sampling times to theory (Vol. 26, pp. 3—-23). Basel: Birkhauser.

a minimum. The NMPC closed loop gives an ?Xce”ent '€~ Diehl, M. (2002). Real-time optimization for large scale nonlinear
sponse to strong disturbances and the optimizer performs processes.Fortschr.-Ber. VDI Reihe 8, MeR-, Steuerungs- und
well even when large random disturbances are applied to  Regelungstechnik (Vol. 920). Disseldorf: VDI Verlag, download also

the kite. Furthermore, the NMPC closed loop shows good _ ﬁlt r"\;tp’(/;"(‘)"c’)";"’-“Sb-“;‘i‘hiid‘;'r?]er?(:?”;‘;h;‘”lelfg/ Sem h
. . . iehl, M. , September)The kite benchmark problem homepage.
robustness against model plant mismatch: in the presence ™ ... v iwr uni-heidelberg.de/Moritz. Diehl/KITE/kite.html.

of additional sidewind of 50% the nominal wind velocity piehi, M., Bock, H., & Schisder, J. (2002a). Newton-type methods for the

the periodic orbit changes shape, but remains stable. As the  approximate solution of nonlinear programming problems in real-time.

kite model may serve as a benchmark problem for periodic  In G. D. Pillo & A. Murli (Eds.), High performance algorithms and

NMPC it can be freely downloade(tﬂ)iehl, 2003) ‘ software for nonlinear optinization_. Kll_Jwer Academic Publishers.

We want to mention here that the real-time iteration D'e';l’ M., Bock, H., Schicder, J., Findeisen, R., Nagy, Z., & Allgower,
. . . . (2002b). Real-time optimization and nonlinear model predictive

NMPC scheme used for the computations in this paper  conirol of processes governed by differential-algebraic equations.

has also been successfully applied to a real pilot scale dis-  Journal of Processing and Control, 12(4), 577-585.

tillation column described by a stiff differential-algebraic Diehl, M., Findeisen, R., Allgéwer, F., Bock, H., & Schldder, J. (2004).

equation model with over 200 states, making a sampling Nominal stability of the real-time iteration scheme for nonlinear

. . . model predictive controllEE Proceedings on Control Theory and

time of 20 s possibléDiehl et al., 2003) Applications i

pplications, in press.
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nonlinear model predictive control of large-scale systems. Part I
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