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Abstract

This paper surveys some of the main design strategies of nonlinear model predictive ddf&)l The system under control, the
performance index to be minimized and the state and control constraints to be fulfilled are defined in the continuous time. The considered
algorithms are analyzed and compared in terms of stability, performance and implementation issues. In particular, it is shown that the solution
of the optimization problem underlying théPC formulation calls for (a) a suitable parametrization of the control variable, (b) the use of a
suitable discretization of time, that is of a “sampled” control law and, (c) the numerical integration of the system over the considered prediction
horizon. Inturn, these implementation aspects are such that many theoretical results concerning stability have to be critically evaluated. In orde
to cope with these problems, two different methods guaranteeing stability are presented. One of them is used to global stabilize a pendulum.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and Scattolini (2001)A continuous time representation is
much more natural, since the plant model is usually derived
The extraordinary industrial success of Model predictive by resorting to first principles equations, but it results in a
control (MPC) techniques based on linear plant models, see more difficult development of th&1PC control law, which
e.g. the survey paper fin and Badgwell (1996)motivates in principle calls for the solution of a functional optimiza-
the development dfIPC algorithms for nonlinear systems. tion problem. As a matter of fact, the performance index to
Nowadays there are many theoretical results, idegne, be minimized is defined in a continuous time setting and
Rawlings, Rao, and Scokaert (20G)d Magni (2003) as the overall optimization procedure is assumed to be contin-
well as industrial applications, s€gn and Badgwell (2000) uously repeated after any vanishingly small sampling time,
which witness thaMPC for nonlinear systems is going to  which often turns out to be a computationally intractable
have a diffusion and popularity similar to the one achieved task. On the contraryyiPC algorithms based on a discrete
by MPC algorithms for linear systems. time system representation are computationally simpler, but
MPC methods for nonlinear systems are developed by as-require the discretization of the model equations, so that
suming that the plant under control is either described by a they rely from the very beginning on an approximate sys-
continuous-time model, sddayne and Michalska (1990) tem representation. Moreover, the performance index to be
Michalska and Mayne (1993Chen and Allgower (1998) minimized as well as the state constraints only consider the
Magni and Sepulchre (1997)adbabaie and Hauser (2001) system behavior in the sampling instants, so ignoring the
andJadbabaie, Primbs, and Hauser (20@t)by a discrete  intersample behavior, which in some cases could be signif-
time one, se&eerthi and Gilbert (1988Pe Nicolao, Magni, icant in the evaluation of the control performance.
and Scattolini (1998)and Magni, De Nicolao, Magnani, In this paper, the hybrid nature of sampled data control
systems is fully considered. The plant under control, the
- state and control constraints and the performance index to
- Corresponding author. Tel:39-0382-505437; faxt39-0382-505373 o \inimized are described in continuous time, while the
E-mail addressestalo.magni@unipv.it (L. Magni), . . ! .
riccardo.scattolini@elet.polimi.it (R. Scattolini). manipulated signals are allowed to change at fixed and uni-
URL: http:/sisdin.unipv.it/lab/. formly distributed sampling times. It is shown that a proper

1367-5788/$ — see front matter © 2004 Elsevier Ltd. All rights reserved.
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choice of the terminal penalty and terminal inequality con- which asymptotically stabilizes the origin of the associated
straint is necessary in order to guarantee closed stability.closed-loop system.

Among the other possibilities, the stabilizing methods pro-
posed inKeerthi and Gilbert (1988Mayne and Michalska
(1990) Michalska and Mayne (1993Chen and Allgower
(1998) De Nicolao et al. (1998ndMagni et al. (2001 pare

presented and compared in term of performance, enlarge-x.(f) =
ment properties and computational issues. In the second part

of the paper, the effects of two approximation which must

The description of the hold mechanism implicit in (3)
calls for a state augmentation. Letting:= [x" x}]’ € R?",
the closed-loop systems (1)—(3) is

[ Fee@), (2, x1(2)))

01 (4)

] . te [t tirn)

be introduced in the numerical solution of the optimization xc(f%) = [X(tk_)}

problem are considered: namely the parametrization of the (@)

input profile and the numerical integration of the system over and its solution from the initial time and initial statex, (7)
the prediction horizon. Irrespective of the adopted algorithm, js denoted by
the parametrization of the input profile is required to limit the

number of the optimization variables. In turn it forces the use 0ot T, xo () = [
of a congruent auxiliary control law, that is of a control law O (t, 1, xc (D))
producing a signal compatible with the adopted parametriza- . v .
tion. As for the numerical integration over the future predic- ¢ € K, ¢t € R

tion horizon, it must be performed at any sampling time for With reference to the closed-loop system (4), define the fol-
the on line solution of the optimization problem. However, |owing sets.

in so doing the state constraints, originally posed in the con-

tinuous time, can only be checked at the integration time in- Definition 1. A sampled output admissible set asso-

05 (1,7, x:(D) ]

stants. Although the integration step can be definitely smaller ciated to (4) is a setl'‘(k) € R" such that for all
than the sampling time, this means that a priori there isnotx € I'f(k), ¢f(tkt1, &, [xX' x]) € TI'f), i@, &, [«
any guarantee that these state constraints are fulfilled every«']") e X, «(t, get(t.t,x.)) € U, t € [t, trp1) iMoo

where. When these approximations are considered/ii@

X, 7, x.(®)II = 0. In other words,I'¢(x) is a state

algorithms previously considered do not guarantee stability invariant set, associated to the closed-loop system (4),

and constraints satisfaction, therefore two different nontriv-

defined at the sampling instanig and such that (i) the

ial schemes are suggested in order to recover closed-loopstate and control constraints (2) are satisfied in all the fu-

stability (Magni & Scattolini, 2002 Magni, Scattolini, &
Astrém, 2002. One of them is used in the final section of the
paper to globally stabilize a pendulum as well as to improve
the performance and the stability region of the nonlinear
energy control proposed ifistrom and Furuta (2000)

2. Problem statement and preliminary results

Consider a planP described by the nonlinear continuous-
time dynamic system

x(1) = fx(@), u(), 1)

wherex € R" is the statex € R™ is the input, f(0, 0) =

0 and f(-,-) is a C?! function of its arguments. The state
and control variables are restricted to fulfill the following
constraints:

x(1) € X,

t >0, x(0) = xo

u@®elU, >0

)

whereX andU are compact subsets &f' and R™, respec-
tively, both containing the origin as an interior point. The
solution of (1) from the initial time and initial statex(7)
for a control signak(-) is denoted byp(z, 7, x(7), u(-)).
Define byT; a suitable sampling period and lgt= KTj,

ture continuous-time instants, (ii) the regulation problem
is asymptotically solved. The (unique) maximal sampled
output admissible seX¢(x) is defined as the union of all
sampled output admissible sets.

Definition 2. An output admissible set associated to (4)
is a setI"“(t,k) € R? such that for allx, € I'°(z, k),

o (tk, t,x;) € XS(k), wherer; is the closest sampling
time in the futureg?’ (v, 1, x.) € X, «(t, 9:*(z, 1, xc)) € U,

T € [t, ). In other words,I"“(t, k) is a set, defined at
any continuous-time instant of states of the closed-loop
system (4) such that (i) the state of (1) at the closest sam-
pling time in the future belongs t&¢(x) and (i) the state
and control constraints (2) are satisfied in all the future
continuous-time instants. The (unique) maximal output ad-
missible setX€(z, k) is defined as the union of all output
admissible sets.

The regulation problem can now be formally stated as the
problem of finding a sampled control law (3) such that its

maximal output admissible set is nonempty. Such a con-
trol law will be called feasible hereafter. Besides, one can
also wish to find the control law (3) with the largest max-

imal output admissible seX¢ and which minimizes the

k is nonnegative integer, be the sampling instants; the goal|nfinite-HorizonIH cost function:

is to determine a “sampled” feedback control law:

u(t) = «(t, x(ty)), «(,0 =0, 1€ /[t,trt1)

3)

T (1), u () = / {Hx@II% + lu@ 1} dr (5)
179
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subject to (1) and (2). In (59 and R are positive definite
weighting matrices. Lek'™ be the set of statessuch that
the IH problem is solvablex'(-) is the optimal solution
and <M (1, x(n)) = u™ (1), t € [t y1)is the optimallH
control law, soX'™ is the maximal output admissible set for
(4) with «(-, -) = «'™(-, -). In general, théH nonlinear op-

signalu(s) = ugw,kﬂ, t € [tk, tis1) Whereug“lk+l is the first
part of the optimal signaig“tHNp. In so doing, one implic-
itly defines the sampled state-feedback control law
u(t) = N, x (1)),

(7)

In order to establish the properties of the control law (7),

t € [t tr1)

timal control problem is computationally intractable since fj st |et

minimization must be performed with respect to functions.
Nevertheless, it constitutes a touchstone for suboptimal ap- ry

proaches yielding to nonlinear control law§, x(z;)) with
the following properties:

(i) performance/complexity trade-off: by suitably tuning

RH/; 7 7
RT3 0) = [‘”" " t’x“(”)}

oRA(t, 7, xc (D)

§0§H c R}’l’ QDSIH c Rn

the design parameters of the control synthesis algorithm, pe the solution of (4) with(-, -) = «RH(, -). Then, define
it should be possible to obtain a fair compromise be- the following sets.

tween an arbitrarily good approximation of the optimal
(but computationally intractabldH controller«'™ and
a computationally cheap feasible control law;

Definition 3. Let X2(N,) € R" be the set of states, of
system (1) at the sampling timessuch that there exists a

(ii) enlargement property: the maximal output admissible feasible control sequenas, , , for EFHOCP.

set associated with(-, -) should be larger than the max-

imal output admissible set of a possible already known piition 4. Let X0t N

feasible control law.

2n
») € R be the set of states.
such that for alk.(r) € X°(t, N), oRH(#, 1, x0) € XAN,),

X

An effective strategy to design suboptimal controllers Wherez is the closest sampling time in the futurei™(z,

based on thtMPC strategy will be presented in the follow-
ing Section 3

3. Model predictive control

In order to introduce th&PC algorithm, a finite-horizon
optimization problem is first defined. La, ,,: [11, 2] —
R™ be a finite time control signal.

3.1. Finite horizon optimal control problem (FHO&pP

Given X ¢, a compact subset @t" containing the origin,
a sampling timeT, a prediction horizonv,, two positive
definite matriceg) and R, a penalty functiorV/s(-): R" —
R, at every sampling time instant, minimize, with respect
to uy 1,5, the performance index

JFH (-xtk ) utk,tk+N1) ) Np)
Tk+Np
= [ @ + o ) oo
173

+ Vi(o(titn, s i, X(1k) s Ug+N,))

(6)

t,xc) € X, kRH(z, oRH

(r,t,x0)) € U, t € [t, ).

In order to guarantee the stability of théPC closed-loop
system, the terminal se{ ; and the terminal cost function
V¢ introduced in theeFHOCP! must be properly chosen.

Assumption 1. There exist an auxiliary control law/ (x),
aterminal seX y and a terminal penalty s such that, letting
@r(t,t, x(1)) the solution of the closed-loop system:

x(1) = fx@), kr(x(0))), (8)

from the initial timer and initial statex(z), the following
conditions hold:

e Xy C X, Xy closed, O X,

o kr(x) eU,Vx e Xy,

e X is positively invariant for (8)

e Vi(-): R" — Ris such thawx(z) € Xy

Vi@ (s, te, x(t))) — Vie(x(tr))
Tkl
<= [ host e xoi?
173

+ Ik (@ £ (T, 1, (1)) |12} (9)

The minimization of (6) must be performed under the fol- Note that inAssumption 1at this stage the auxiliary control

lowing constraints:

(i) the state dynamics (1) with(z) = x;,;
(i) the constraints (2); € [, tk+n,);
(iii) the terminal state constraim(tHNp) € Xy.

According to the Receding Horizon approach, the state-

feedbackMPC control law is derived by solvingfHOCP
at every sampling time instant, and applying the control

law « ¢(x) is not required to be a “sampled” control law

because, as it will be clarified below in the description of
some well knowrMPC algorithms, it is never applied to the

systems but it is only used in simulation in order to obtain
the terminal set and the terminal penalty.

Theorem 1. Given an auxiliary control law ¢, a terminal
setX y and a terminal penalty/ satisfyingAssumption 1
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(i) the origin is an asymptotically stable equilibrium point ViR, tr, xe (1), 1)
for the closed-loop system formed by (1) and (7) with

t
maximal output admissible s&®(z, N,); = V(xe(n), ) —/ o0t xe (@)1
(i) XO%N, +1) 2 XAN,), VN, i
i x0 :
(i) XT(Np) 2 Xy, VNp; o - _ + 1R, @R 1, xe () 17} dT (11)
(iv) there exist a finiteV,, such thatX;(~Np) 2 Xy, where
X s is the maximal output admissible set for.(8) o At time 1 = k41, Uy pgy,9VeNn by (10) is a
(sub-optimal) feasible solution for the néHOCP! so
Proof of Theorem 2. In view of Definitions 1-4, ifX%(N ) that

is the maximal sampled output admissible set of (4) with
k() = kRH(., ) thenXO(, N,) is the maximal output ad-  v(RH(1 1, 11, xe (1)), txs1)

missible set of (4) with(-, -) = «RH(., -). Note in fact that, RH ~

from Definition 4it follows thatVx,(¢) ¢ Xo(thgp) the con- < JrH (@ (et s T Xe ()5 iy gy, N p)
straints are not satisfied fore [z, ;) and/orei (1, 1, x.) ¢ _ RH,,— -
X9(N,). But in view of Definition 2 this means that, (1) = V9™ (a0 s Xe (W) iy q)
cannot belong to any output admissible set of (4) with = i /tk“”"“

1,

WRHCY. - ot (@t PG

k+Np

Npyy 12
L . , ) , d
Moreover byAssumption 1it follows that X ; is nonempty, + k(T (T tern,, § )R} dT

then alsax(z, N,) is nonempty. Let now show that2(N ) + V(@ (thd- Nyt Lo ot N - £NP)) — v, (ENP)

is the maximal sampled output admissible set for systems RH, . _

(1) and (7). In fact lettinge(tx) = x,, € XO%(N,) and the = V@™ (g 10t Xe (1)), 114 ) (12)
associated solutlon?k,,HNp of the FHOCP! at time 7, a In conclusion using (11) for € [fi4s, frrit1), i > O, and

feasible solution at time.,1 for the FHOCP! is (12) fort = t3yiy1,i >0, Vt > 1,

RH
IZ V((D (t’ tkv -xC(tk))s t)
Ut 15T+ N p+1

t
R

0 + [ {lle

. U1, t € [ttt ) (10) W

Kp(@f(t tipn,  EVP) 1 € [tran, . tien,+1) + IkRP(, oBP(T, 1, xe () 13} dT < Vixe (). )

M, 1, xe ()%

and, sinceD andR are positive definite matrices,if (t;) €

N o I
with £% 1= @(tktn, s ks Xy ufkstk+N,,)' Then, by definition, XO(ty., N, both V(gRH(z, 1. xc(1)). 1) and

£ = of i1 0. [x), x,]) € XO(N,) and, in view of I
constraints (i) of theFHOCP!, (2) are satisfied along the / RH 2 RH . RH ‘ 2
trajectory of (4) withe(-. -) — k%H(.. .. Finally, forvx(ry) ¢ : oy (T, th, xe () g+l (7, @3 (%, 1, xe(8))) 13} dT
X9(N,) the MPC control law is not defined so that®(N )
is the maximal sampled output admissible set.

Let now show that the origin is an asymptotically stable |imt_>00¢§H(t, 1, xe(t))) = 0
equilibrium point for the closed-loop systems (1), (7). To

are bounded. These facts prove that

this end define (Michalska & Vinter, 1994)
The proof of (ii)—(iv) can be derived as in Theorem 6 in
Vixe(0), 1) == Jrr(x(2), ”%tkw,,’ Np) Magni et al. (2001)
if t =1 and - _
4. Stabilizing MPC control algorithm
fey1
V(xe(0), ) =/t ettt xe @)1 Many stabilizingMPC algorithms can be obtained de-

RH RH 2 pending on the choices made to sati8gsumption 1Here,
FlET (T @ (@ s Xe () Ik} dT the main algorithms proposed in the literature are briefly
+IeH (@t i1, 1, x0(2)), U9ty Np =D described.

if 1 € (1, trp1). Note thatVix.(), 1) is boundedvx e 4.1. Terminal equality constraint (EC)

XP(Np). Moreover,
The first algorithm presented in literature is characterized

o Vt € [, try1) by a terminal quality constraint(zx+x,) = 0 so thatX ; =



L. Magni, R. Scattolini/ Annual Reviews in Control 28 (2004) 1-11 5

{0} (Keerthi & Gilbert, 1988; Mayne & Michalska, 1990)
The auxiliary control law and the terminal penalty are de-
fined only in the origin so that the following trivial functions
can be chosenVy(x) = 0 and« ¢(x) = 0. The fulfillment

of Assumption lis easily checked. In facX ; = {0} € X,
kr(0) =0 e U, f(0,kr(0)) = 0 so thatX s is positively
invariant andV;(0) — V(0) < 0.

4.1.1. Performance/complexity trade-off
If a short optimization horizorV, is used, the terminal

constraint forces an excessive control effort, while increasing

the optimization horizon increases the computational load.

4.1.2. Enlargement property

The maximal output admissible set coincides with the
(constrained) controllability regioX“°"(N,) (Gilbert &
Tan, 1991) Note thatX®°"(N,) may be “small”. In par-
ticular, there is no guarantee th&t(N,) is larger than

the maximal output admissible set guaranteed by the trivial

control lawk(x) = 0.
4.2. Quadratic terminal penalty (QP)
A second well known method was presente€imen and

Allgéwer (1998)where a quadratic terminal penalty and a
linear auxiliary control law are considered. More precisely,

assume that system (1) is linearizable and denote the lin-

earized matrices with
0
i

0x x=0,u=0

0
g
ou x=0,u=0

s

The auxiliary control law is given by ¢ (x) = Kx whereK
is such thatd¢; = A + BKis Hurwitz. The terminal penalty
is a quadratic functiofs(x) = x’PxwhereP is the solution
of the following Lyapunov function:

(Acl + keD)' P+ P(Ag + k1) = Q (13)
whereQ = Q + K’RK and the scalar, € [0, co) satisfies
ke < —Amax(Acl)

The terminal region is defined as a level set of the terminal
penalty.
Xsi={xeR'x¥Px<a}CX (14)
such that

(i) Kxe U, forall x € Xy;
(i) X is a positively invariant for the closed-loop systems
with u = Kx;
(i) Vxe Xy
d / / 4
Ex Px< —x'(Q + K'RK)x
subject to the closed-loop dynamic with= Kx.

Satisfaction ofAssumption Jis easily checked. In fadt y C
X, Xy closed, Oe X/ in view of (14),k¢(x) € U, Vx €

X from (i); X ¢ is positively invariant for the closed-loop
system (8) from (ii); finallyvx(z) € X ¢

Vi (@t te, X)) — Vie(x (i)

Tk+1 9
<= [ oo xG1 ol
Tk

le+1 2
—/ (s (x ti, x()) 13
173
+ llie (@ £ (z, 1, x(t))) |12} d

4.2.1. Performance/complexity trade-off

In view of the constank, introduced in the Lyapunov
equation (13), the infinite horizon optimal performance are
not recovered even if the auxiliary control law is locally
optimal and||x|| — 0. The infinite horizon optimal control
law can be reached only at the cost of a "long” prediction
(optimization) horizonv,,.

4.2.2. Enlargement property

For any horizonN, the maximal output admissible set
includes the terminal seX ¢, but a sufficient long optimiza-
tion horizon N, occurs in order to enlarge the maximum
output admissible set of the auxiliary control law.

4.3. Infinite-Horizon closed-loop costing (CL)

A third method was presented e Nicolao et al. (1998)
where the infinite horizon cost associated with a gener-
ally nonlinear auxiliary control law is used as the terminal
penalty. More precisely, assume that an auxiliary locally sta-
bilizing control law is given by ¢(x). The terminal penalty
is given by

o0
Vi (x() = / o (@t x)I3,
179
+llie p (@ (z. i, x(0))) 15 de
The terminal region is implicitly defined as

Xy i={x € R'os@ 1, x(1x)) € X,
kp(pr(t e, x(tx) € U, t > 1,
V¢ (%) bounded C X

(15)

The fulfillment of Assumption 1is easily checked. In fact
Xy C X, Xyclosed, Oc Xy, k¢(x) € U, Vx € Xy in view

of (15); Xy is positively invariant for (8) because, from the
definition of X ¢, it follows that if x € X ¢, @ ¢ (¢, t, x(t) €
Xp,t>t finally Vx() € X

Tk+

1
Vi(x(ter1)) — Vex(t)) = —f {llor(z, t, X(tk)IIZQ

Tk

+ NIk (@ £ (T, 1, (1)) 12} d
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4.3.1. Performance/complexity trade-off R, at every sampling time instant, minimize, with respect
If the auxiliary control law is locally optimal, then also the  to u,, the performance index

MPC control law is locally optimal. If the auxiliary control

law is the solution of the unconstrained nonlinear infinite JrH (xz,, ts 1,y » Nes Np)

horizon control problem, then tHdPC control law is the e+Np ) )

solution of the constrained infinite horizon optimal control = /t {Ilx(@lp + llu(@ %} dr

problem. '

Tk+Ne 2

+Vi(@(tisn,, te, X(1), Usy 5 +N,))

4.3.2. Enlargement property ~ The minimization of (6) must be performed under the fol-
The maximal output admissible set guaranteed by this |oying constraints:

control scheme is larger than the maximal output admissible

set of the auxiliary control law for any optimization horizon (i) the state dynamics (1) with(r) = x;;;

Np. In fact X s is equal to the maximal output admissible

set of the auxiliary control law. Note that in ti@P algo- Unotiines T E [Tks tkgN,)]

rithm the terminal regiorX  must be explicitly computed (i) u(®) := 3 k(@ r(t, tirn,, V)

off-line, while in this one the explicit computation of ¢

is not needed. This difference is crucial in view of the dif-

ficulty to compute the maximal output admissible set for a

nonlinear system with constraints, so that only very conser-

vative approximations can be obtained. (iii) the constraints (2), withu(r) = «(x), € [t, tk+N,);
(iv) the terminal state constraim(tk+Np) € Xy.

1 € [t Nes k)]

N -
where&™ 1= o(tktn,, ts Xo> Un iy, )

4.4. Infinite-Horizon closed-loop costing with control and
prediction horizons (CL-2H) 4.4.2. Performance/complexity trade-off
If the auxiliary control law is locally optimal, then also
The CL algorithm achieves better properties with respect the MPC control law obtained withV, — oo, is locally
to EC andQP both for performance and for the enlargement optimal. If the auxiliary control law is the solution of the
property with a lower computational burden. Its drawback unconstrained nonlinear infinite horizon control problem,
is that the terminal penalty cannot be computed exactly be-then theMPC control law obtained withV,, — oo, is the
cause the integration of the closed-loop system (8) should besolution of the constrained infinite horizon optimal control
performed for an infinite time. However, since the auxiliary problem.
control law is stabilizing, in practice it is possible to compute
the cost function until the state is sufficiently close to the 4.4.3. Enlargement property
origin. In Magni et al. (2001)this problem is analyzed and The maximal output admissible set guaranteed by this
a rule to compute a finite integration horizon that preserves control scheme is larger than the maximal output admissible
closed-loop stability is given. Otherwise, it is necessary to set of the auxiliary control law for any optimization horizon
guarantee that the state is in an output admissible set of theN. and for a sufficiently large prediction horizav,. Note
auxiliary control law. Consequently, an output admissible that the computational burden is mostly related the length
set for the auxiliary control law must be computed off line of the control horizon.
as in theQP algorithm. In order to recover the properties
of the CL algorithm without increasing the computational
burden, the use of a control (optimization) horizon shorter 5. Implementation and nominal stability
than the prediction horizon was proposedMagni et al.
(2001) In particular the terminal penalty and the terminal In view of Theorem 1theEC, QP, CL andCL-2H MPC
inequality constraint are imposed at the end of the predic- algorithms surveyed in the previous section guarantee nomi-
tion horizon, while the optimization is performed only with nal stability provided that the underlying optimization prob-
respect to a shorter horizon, the so called control horizon. lem is efficiently solved on line. As a matter of fact, this is
The control signal from the end of the control horizon to the not possible in practice for a couple of reasons, namely the
end of the prediction horizon is given by the auxiliary con- requirement to fulfill the state and control constraints at any
trol law. Accordingly, the optimization problem is changed continuous time instant and the necessity to use a suitable
in the following way. parametrization of the input signal. As for the first issue, it
is apparent that the numerical integration of the system over
4.4.1. Finite Horizon Optimal Control Problem (FHO&p the future prediction horizon is such that the state (and con-
Given X y, a compact subset @t" containing the origin, trol) constraints can be verified only at the integration time
the sampling timd, the control horizonV,, the prediction instants. However, in the original problem formulation they
horizonN,,, an auxiliary control law: = «(x), two positive are required to be fulfilled at any continuous tim&he sec-
definite matriceg) andR, a penalty functioV;(:) : R" — ond problem is even more intriguing and can be explained
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as follows: the on line optimization problem underlying the In view of the feasibility of (16), it is then easy to show that
MPC algorithms can be completed in the sampling period the closed-loop matrix\‘})' ‘= Ap + BpK of the linearized
only with respect to a finite number of parameters, instead discrete-time system (18) is Hurwitz and the following result
of functions, so that the input profile must be parametrized. holds.
For example, a typical procedure consists in assuming that
the input signal is held constant between two successiveLemma 1. Let«(x) be a feasible control lapsuppose that
sampling instants. In turn, this means that also the adoptedAssumption 2is satisfied and consider a positive definite
auxiliary control law must produce a congruent signal, that matrix Q0 and two real positive scalarg and y» such that
is a signal that satisfies the adopted parametrization, oth-y < Amin(Q). Define byIT the unique symmetric positive
erwise the signazl?,m,,HNP+1 computed at; and given in definite solution of the following Lyapunov equation
(10) would not be a feasible solution for the (parametrized) ., -
FHOCP at time #41. With respect to this problem, note AplTAp =11+ Q=0 (19)
that theEC method (where the auxiliary control law is ob-  \\here
tained by setting equal to zero the control variable) cannot ,
be solved in a finite number of iterations in view of the zero - * L ZOH, N/ 7 s ZOH
terminal equality constraints, while in all the othdPC al- Q= /(; AT QAT () dn + yaly
gorithms the stability proof relies on an auxiliary control law
providing a general continuous time control signal, a priori
not congruent with the adopted parametrization. ! _

In the following, the two implementation issues above ALZ‘OH(t) =t (/0 et df) BK
discussed are analyzed in a reverse order. Specifically, two
algorithms are first presented guaranteeing closed-loop sta-Then, there exist two constarifs € (0, o0) andc € (0, 00)
bility when a piece-wise constant control parametrization is SPecifying a neighborhoa@. («, T) of the origin of the form

and

used. Then, the problem of the fulfillment of (2) is solved by e, Ty) = (x € %n”'x”% <) (20)
specifying the (more restrictive) constraints to be imposed o -
at any integration time during the on line optimization. such thatvx € 2.(x, Ty):

() ¢t 1, [x x1) € X, t € [t, try1), k(x) € U;

() o terrs tes VX — Ixl1%

5.1. The piece-wise constant MPC control law

In Magni and Scattolini (2004 piece-wise constant sig- fs1
nal parametrization has been considered in the numerical so- < —y/ lgX (., e, [X X112 dny — p2llxl> (21)
lution of the optimization problem. Specifically, it has been I

suggested to use a time invariant auxiliary control law o . . )
The Lemma states that, in view of (i) and (ifp.(x, Ty) is

u(@® =k(x(t), t et trra), (16) a sampled output admissible set for (4); moreover, from (ii)
Vi (x) = x'Ix is a positive definite function decreasing in

with «(0) = 0, satisfying the following assumption: the sampling times along the trajectory of (4).

Assumption 2. The feasible control law (16) is @* func-

tion with Lipschitz constant.,. Remark 1. An obvious way to determine a feasible sam-

pled control law is to choose a suitalifg to consider the
linearization of (1) around the origin and the sampled lin-
ear model described by (18) and to synthesize with any
standard linear control synthesis technique, a linear control

For control law (16), an associated sampled output admis-
sible set can be computed as follows. First, define the lin-
earization of system (1) at the origin

law
x(r) = AX(?) + Bu(z 17
() 0+ B ) u(®) = Kx(te), t € [t, trt1) (22)
Then introduce the discretization of (17) given by
such thatA p + BpK is Hurwitz. O
x(tx+1) = Apx(tx) + Bpu(t), x(0) = xo (18
with Let us suppose that the auxiliary control law= «(x)
. is known, together with an associated sampled output
Ap =T, Bp ::/ : e Bdy admissible set and the Lyapunov function both given in
0 Lemma 1 It is now shown howMPC allows one to stabi-
Finally, let lize the closed-loop system, to extend the maximal output
admissible set ot and to improve the control performance
K — oK (x) by minimizing a cost function suitably chosen by the
x| designer.




To this end, given a control sequence

i1 N, (1) o= [ug,  uz, s o un,, ]

with N, > 1, define the Finite Horizon piece-wise constant
control signal

uj,k

teltirj-1 i) j=1...,
K (@t j—15 ey X(2), MZH(')))
teltiyj1.tey))j=Ne+1,...,

Ne (23)

Np

whereN, > N.. Moreover, denote by} " (¢in, 7in) the signal
utkH(z‘) in the intervalt € [fin, ffin).
For system (1) th&PC control problem here considered

is based on the solution of the following

5.1.1. Finite Horizon Optimal Control Problem (FHOGP
Given the sampling tim&, the control horizonV,, the
prediction horizonV,, N. < N,, two positive definite ma-
trices O and R, a feasible auxiliary control law(x), the
matrix I7 and the regio2. («, T;) given inLemma lwith
y > Amax(Q) andyz > Tihimax(R)L,, at every sampling
time instantr, minimize, with respect tay v, (%), the per-

formance index

Jen (xg, ua, N, (t1), Ne, Np)

Ik+Np 2 2
=/ {Ix(@ 1% + llu()1%} dz
T

+ Ve(@tin,y s e X1, dED (tern, . 10))) (24)

where the terminal penalty, is selected as

Vi) =

The minimization of (24) must be performed under the fol-
lowing constraints:

2
lxll77

(i) the state dynamics (1) with(z) = x;,;
(i) the constraints (2), € [, tx+n,) With u given by (22);
(i) the terminal state constraim(tHNp) € 2.k, Ty).

According to the Receding Horizon approach, the state-
feedbackMPC control law is derived by solvinfHOCP?

at every sampling time instant, and applying the constant
control signak (r) = ug 1€ [tr, 1) Whereufl’ is the first
column of the optimal sequen@@ v, (k). In so domg one
implicitly defines the sampled state-feedback control law

u(® = ")), 1€ [, i) (25)
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reason, the scheme already proposeliagni et al. (2002)

is presented here. It can be used to improve the performance

provided byk(x(¢)) with a reduced computational effort.
Given the control law (x (7)), the problem is to determine

with the MPC approach an additive feedback control signal

v(f), such that the overall resulting control law:

u(t) = k(x(®) + v(d

enlarges the stability region of(x()) and enhances the
overall control performance with the fulfillment of the con-
straints (2).

The closed-loop system (1), (26) is described:ferz by

x(1) = flx(@®), k(x(1)) + v(D) (27)

with x(r) = x. Hence, for system (27) thdPC problem can
be formally stated as follows: consider the control sequence

(26)

U1, (1) = v, vz, 0oy UNg, ]

with N, > 1, for anyr > 1, define the associated piece-wise
constant control signal

t € [tktj—1, kv j)s J =1, ..., Ne
t >t + N T

Vi

v(r) = 0

(28)

and consider the following

5.2.1. Finite Horizon Optimal Control Problem (FHOGP
Given the positive integer&, and N,, N. < N, at ev-
ery “sampling time” instant;, minimize, with respect to

v1,N, (t), the performance index

JeH (xg, 1N, (8), Ne, Np)
tk+Nst
= / {Ix(@llo + lv(@Ir} dr + Vi (x(te+N, T5))
T
(29)

As for the terminal penalty/’s, it is here selected such that
Assumption 1is satisfied with ¢ (x) =

The minimization of (29) must be performed under the
following constraints:

(i) the state dynamics (27) with(r;) = x;,;
(i) the constraints (2); € [#, & + N, T;) with u given by
(26);
(i) v(r) given by (28);
(iv) the terminal state constraints; + N,T;) € X s, where
X r is a set satisfyingAssumption Iwith « ¢(x) =0

According to the well known Receding Horizon approach,

Remarkably, the algorithm proposed here satisfies all thethe state-feedbackiPC control law is derived by solving

assumptions ofheorem 1 so that closed-loop stability can
be guaranteed.

5.2. Prestabilized MPC control scheme

In many cases, a stabilizing continuous time control law
k(x(1)) is already known and applied to the plant. For this

the FHOCP?® at every sampling time instant, and apply-

ing the constant control signal(r) k(x) + vik, t €

[, tre1) Wherevftk is the first column of the optimal se-
quencei‘l’ch (). In so doing, one implicitly defines the dis-
continuous (with respect to time) state-feedback control law

(30)

() = k(x) + KR, 1€ [tk i)
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Again, all the assumptions dtheorem lare satisfied by the = normalized acceleration, positive if directed as the positive

algorithm, so that closed-loop stability is achieved. real axis. The system has two state variables, the rayhel
its rate of changé (i.e.x = [0 6]"), defined taking’ modulo
5.3. Continuous time state space constraint fulfillment 27, with two equilibria, i.ex = 0,6 = 0,6 = 0, andu = 0,

6 =, 6 = 0. Moreover, it is assumed that| < .

Recall that the second issue related to the practical imple- The normalized total energy of the uncontrolled system
mentation ofMPC algorithms for continuous time systems (« = 0) is
was related to the fulfillment of the continuous time con- 152
straints (2) at any time instantThis problem can be easily ~ £n(®) = 26°(0) + cosé() — 1
solved b)_/ forcing in th(_a on line optimizatio_n a finite num- - ~onsider now the energy control law
ber of suitable constraints on the state variable at any inte- )
gration time step. In particular, lettingbe the (maximum)  u(?) = sa¥, (k, E, (1)Sign6(r) cosh(1))) (32)
integration step used in the optimization phase to simulate

the plant (1) with the control signal (23) and defining by Where sat is a linear function which saturates at In
B = {xe R : x|, < r},v > O, the following result Astréom and Furuta (2000} is shown that the control law
v = : v <1}, \

holds (Magni & Scattolini, 2004) (32)_is able t(_) briqg the pe_r_1du|um at the u_pright ppsition
provided that its initial condition does not coincide with the
download stationary position (in fact, with= n, 6 = 0,

Theorem 2. Let . o
(32) givesu = 0 so that the pendulum remains in the down-

M = [maXeepy,ucv fx, )y load equilibrium). However, the upright equilibrium is an
unstable saddle point. For this reason, when the system ap-

if(@0<d8<g/M,g>0,(b)x7 € Bg, g =g — oM, proaches the origin of the state space, a different strategy is

theng(t + 1,1, x(7), 1) € B, Vt €[0,8),u € U. used to locally stabilize the system. In the reported simu-

lations, a linear control law computed with th€ method
From this result it is clear that one can choose the maximum applied to the linearized system has been used. This switch-
integration step and a more conservative discrete-time state ing strategy, synthetically called in the sequel again “energy
constraint (defined by) so as to guarantee continuous-time control”, is described by the control law

state constraint satisfaction. More precisely, giveand g L )
sat, (k, E,sign0 cosd)), if xop ¢ 2(K)

such thath, C X, a nonnegative integet;, a constant K(x) = _ (33)
integration step = T;/n,, condition(ii) in the FHOCPcan —Kx,, if x2r € $2(K),
be replaced by )

where xp, = [mody;(6)6], K is the gain of the locally
otk + nsd., i, x(te), ug (v < & stabilizingLQ control law and2(K) is an associated output

admissible set.

TheNMPCcontrol algorithm described in Section 5.2 has
The use of a more conservative constraints set has alreadypeen applied to the closed-loop systems (31) and (33), with
been proposed for linear systemsBerardi, De Santis, Di
Benedetto and Pola (200N otably the conservatism intro-
duced is substantially less than the one of the discrete-time 1 ——
MPC, because the maximum integration tindecan be

ns=212,...,<Npng—1, u(tryj) €U, j=0,...,Np

0((0)

chosen much smaller than the sampling tifye 091 |
0.8r 1
. 0.7r i

6. Global stabilization of a pendulum
0.6F 1

In this section the global stabilization of a pendulum is g5/
solved using as pre-stabilizing control law the nonlinear en-
ergy control proposed istrém and Furuta (2000)The
MPC control law, according to the scheme described in 0.3+
Section 5.2is used to improve performance and to achieve

0.4r

global stability. The equation of motion of a pendulum, writ- 0.2r |
ten in normalized variable@strom & Furuta, 200Q)is 0.1f 1
6(f) — sind(r) + u(r) coss(r) = 0, (31) o 2

wheregd is the angle between the vertical and the pendulum, Fig. 1. ¢) with g = 0.01 (dash-dot line)8 = 1 (continuous line),
assumed to be positive in the clockwise direction, aisthe B =100 (dashed line).
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Table 1 3
N 0 2 4 8
p=0
Jin 73.9 70.0 68.7 67.0
% 0 -5.3 -7.0 -94 >
g =001 38
Jin 64.7 60.6 61.0 58.7 ¢
% 0 -6.3 —57 -9.2 g
C
=1 <
Jin 37.0 35.9 355 355
% 0 -32 —4.2 —4.2
£ =100
Jin 26.4 26.2 25.9 25.7
% 0 -0.6 -18 -23
-3 ! L L L
0 5 10 15 20 25
the aim of enhancing the performance provided by (33) in Time(sec)
terms of the energy required to swing up the pendulum and rig. 3. Angle velocity movement with “energy control” (continuous line),
of the time required to reach the upright position. MPC with 8 =0 andN. = 2 (dash-dot line) N, = 4 (dashed line) and
For this reason, the stage-cost of fi#OCPis given by N, = 8 (dotted line).
x,u) = O E2 4+ (1L—9p©®)V, 34 , _
Vo) = ¢OE, + 1= 6DV (34) the following parameters are used to synthesizeNN#PC
where control law.
Vo = ko1 sinz(%é) + %92 (35) o Auxiliary control law (33):k, = 100, K is theLQ con-
d trol gain with state penalty matrig = diag{2.5, 1}, and
an 5 control penalty matrixk = 1; £2(K) is given by
Btan<(6/2)
PO =1 ptan2@/2) B8 Q(K) = {r € NIy Prer = )

The functionV,, given by (35) penalizes the state deviation ~ where P is the solution of the Riccati equation for the

from the origin, while¢(9) allows to balance the need to solution of theLQ control problem and = 0.001.

reduce the total energy applied and to bring the state to zeroe FHOCP. N, = 2500,k,1 = 10, 2.(x) = 2(K), Q0 =

The dependence @f(6) from the parameteg is shown in 0 + K'RK, y = Amin(Q)/20.

Fig. 1L . . : .
In the following simulation examples the saturation limit " different choices of the tuning parameters, and starting

; - from the initial condition f, 0], the results summarized in
sn = 0.29, theFHOCP s solved eveny, = 0.1 sec and ot )
S I v venys the Table 1 have been obtained. In the tablgy is the

—

0.25 It i ! "

0.15¢ 1 l\‘ !

Angle position
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o ©
g

Control Signal
o

—oost fi| 6| |||
0.1
015/ |
—0.2b Wl "
-0.25

|
|
I
|
|
|
|
|
|
I
|
|
|
|
|
|
|
1
|
I
|
|
1
|
|
|
I
|

0 5 10 15 20 25
Time(sec) Time(sec)

Fig. 2. Angle position movement with “energy control” (continuous line), Fig. 4. Control signal with “energy control” (continuous lin&PC with
MPC with 8 =0 and N, = 2 (dash-dot line) N. = 4 (dashed line) and B =0 and N, = 2 (dash-dot line),N, = 4 (dashed line) anaVv, = 8
N, = 8 (dotted line). (dotted line).



L. Magni, R. Scattolini/ Annual Reviews in Control 28 (2004) 1-11 11

infinite horizon performance index with stage cost (34) and  Proceedings of European Control Conference-ECC{fA. 803-808).
% is the variation with respect to the performance provided _ Porto. Portugal.

“ " _ Chen, H., & Aligéwer, F. (1998). A quasi-infinite horizon nonlinear model
by the “energy control” strategy. Note that fo. = O, predictive control scheme with guaranteed stabilftytomatica, 34

when the “energy control’ strategy is used, a numerical error  545_1217.

is sufficient to move the pendulum in the maximal output De Nicolao, G., Magni, L., & Scattolini, R. (1998). Stabilizing
admissible set guaranteed by the energy control strategy. On  receding-horizon control of nonlinear time-varying systertsEE
the contrary, withV. > 1, theMPC control law guarantees Transaction on Automatic Control, AC-43030-1036.

the global stabilization of the inverted pendulum. Moreover Fndeéisen: R., Imsland, L., Allgower, £, & Foss, B. A. (2003). Output
feedback stabilization of constrained systems with nonlinear predictive

note that the b?St |mprovement IS Obtall‘.led with a IC_)W valug control. International Journal of Robust and Nonlinear Control,,13
of B because in this case the energy is not considered in  211-228.

the cost function. IrFigs. 2-4the movement of the angle  Gilbert, E. G, & Tan, K. T. (1991). Linear systems with state and control
position, of the velocity and of the control signal are reported constraints: the theory and application of maximal output admissible

: . : sets.|IEEE Transaction on Automatic Control, AC-36008-1020.
for the control strategies with = 0 and for different control Jadbabaie, A., & Hauser, J. (2001). Unconstrained receding-horizon con-

horizonsN.. trol of nonlinear systemdEEE Transactions on Automatic Control,
5, 776-783.

Jadbabaie, A., Primbs, J., & Hauser, J. (2001, June 25-27). Unconstrained
receding horizon control with no terminal coftroceedings of the
American Control Conferencérlington, VA.

. . . e Keerthi, S. S., & Gilbert, E. G. (1988). Optimal, infinite-horizon feedback
In this paper, the main algorithms for the stabilization of laws for a general class of constrained discrete-time systéoosnal

continuous time nonlinear systems with thi€®C approach of Optimization and Theoretical Applications, ,5765—293.

have been critically analyzed. In particular, emphasis has Magni, L. (2003). Editorial of the special issue on control of nonlinear

been given on the necessity to resort to a “sampled” imple- ~ Systems with model predictive contréiiternational Journal of Robust

mentation of the methods and on all the theoretical issues,, and Nonlinear Control, 13189-190.

. . agni, L., De Nicolao, G., & Scattolini, R. (1998). Output feedback
related to the implementation phase. It has been shown how receding-horizon control of discrete-time nonlinear systetf8.C
the need to use a suitable parametrization of the control NOLCOS'98 Enschede, The Netherlands.

signal forces the selection of a coherent auxiliary control Magni, L., De Nicolao, G., Magnani, L., & Scattolini, R. (2001). A sta-
law, usually required to compute the terminal penalty and  bilizing model-based predictive control for nonlinear systevsto-

. . - . matica, 37 1351-1362.
the terminal state constraint providing closed-loop stability. Magni, L., & Scattolini, R. (2002, December 10-13). State-feedback MPC

Also th? problem to guarantee the satisfaction of the Sta_te with piecewise constant control for continuous-time systetB&E
constraints has been addressed and solved by reformulating conference on Decision and Contrdlas Vegas, NV, USA.

these constraints in the integration times. Many problems areMagni, L., & Scattolini, R. (2004). Model predictive control of
still open and widely studied iNMPC for nonlinear systems continuous-time nonlinear systems with piecewise constant control.

e IEEE Transactions on Automatic Control
among them we recall the deveIOpment of stab|I|Z|ng output Magni, L., Scattolini, R., & Astrom, K.J. (2002). Global stabilization of

feedback solutions, for which some significant results have  ihe inverted pendulum using model predictive contrubceedings of
already been suggestedhtagni, De Nicolao, and Scattolini the 5th IFAC World CongressBarcelona, Spain.
(1998)andFindeisen, Imsland, Allgdwer, and Foss (2003) Magni, L., & Sepulchre, R. (1997). Stability margins of nonlinear receding
or the analysis of the algorithms when disturbances act on horizon control via inverse optimalitysystem& Control Letters, 32

241-245.
the system. Mayne, D. Q., & Michalska, H. (1990). Receding horizon control of

nonlinear systemdEEE Transaction on Automatic Control, 3814—
824.
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