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Abstract

This paper surveys some of the main design strategies of nonlinear model predictive control (MPC). The system under control, the
performance index to be minimized and the state and control constraints to be fulfilled are defined in the continuous time. The considered
algorithms are analyzed and compared in terms of stability, performance and implementation issues. In particular, it is shown that the solution
of the optimization problem underlying theMPC formulation calls for (a) a suitable parametrization of the control variable, (b) the use of a
suitable discretization of time, that is of a “sampled” control law and, (c) the numerical integration of the system over the considered prediction
horizon. In turn, these implementation aspects are such that many theoretical results concerning stability have to be critically evaluated. In order
to cope with these problems, two different methods guaranteeing stability are presented. One of them is used to global stabilize a pendulum.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The extraordinary industrial success of Model predictive
control (MPC) techniques based on linear plant models, see
e.g. the survey paper ofQin and Badgwell (1996), motivates
the development ofMPC algorithms for nonlinear systems.
Nowadays there are many theoretical results, seeMayne,
Rawlings, Rao, and Scokaert (2000)andMagni (2003), as
well as industrial applications, seeQin and Badgwell (2000),
which witness thatMPC for nonlinear systems is going to
have a diffusion and popularity similar to the one achieved
by MPC algorithms for linear systems.

MPCmethods for nonlinear systems are developed by as-
suming that the plant under control is either described by a
continuous-time model, seeMayne and Michalska (1990),
Michalska and Mayne (1993), Chen and Allgöwer (1998),
Magni and Sepulchre (1997), Jadbabaie and Hauser (2001),
andJadbabaie, Primbs, and Hauser (2001), or by a discrete
time one, seeKeerthi and Gilbert (1988), De Nicolao, Magni,
and Scattolini (1998), and Magni, De Nicolao, Magnani,
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and Scattolini (2001). A continuous time representation is
much more natural, since the plant model is usually derived
by resorting to first principles equations, but it results in a
more difficult development of theMPC control law, which
in principle calls for the solution of a functional optimiza-
tion problem. As a matter of fact, the performance index to
be minimized is defined in a continuous time setting and
the overall optimization procedure is assumed to be contin-
uously repeated after any vanishingly small sampling time,
which often turns out to be a computationally intractable
task. On the contrary,MPC algorithms based on a discrete
time system representation are computationally simpler, but
require the discretization of the model equations, so that
they rely from the very beginning on an approximate sys-
tem representation. Moreover, the performance index to be
minimized as well as the state constraints only consider the
system behavior in the sampling instants, so ignoring the
intersample behavior, which in some cases could be signif-
icant in the evaluation of the control performance.

In this paper, the hybrid nature of sampled data control
systems is fully considered. The plant under control, the
state and control constraints and the performance index to
be minimized are described in continuous time, while the
manipulated signals are allowed to change at fixed and uni-
formly distributed sampling times. It is shown that a proper
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choice of the terminal penalty and terminal inequality con-
straint is necessary in order to guarantee closed stability.
Among the other possibilities, the stabilizing methods pro-
posed inKeerthi and Gilbert (1988), Mayne and Michalska
(1990), Michalska and Mayne (1993), Chen and Allgöwer
(1998), De Nicolao et al. (1998)andMagni et al. (2001)are
presented and compared in term of performance, enlarge-
ment properties and computational issues. In the second part
of the paper, the effects of two approximation which must
be introduced in the numerical solution of the optimization
problem are considered: namely the parametrization of the
input profile and the numerical integration of the system over
the prediction horizon. Irrespective of the adopted algorithm,
the parametrization of the input profile is required to limit the
number of the optimization variables. In turn it forces the use
of a congruent auxiliary control law, that is of a control law
producing a signal compatible with the adopted parametriza-
tion. As for the numerical integration over the future predic-
tion horizon, it must be performed at any sampling time for
the on line solution of the optimization problem. However,
in so doing the state constraints, originally posed in the con-
tinuous time, can only be checked at the integration time in-
stants. Although the integration step can be definitely smaller
than the sampling time, this means that a priori there is not
any guarantee that these state constraints are fulfilled every-
where. When these approximations are considered, theMPC
algorithms previously considered do not guarantee stability
and constraints satisfaction, therefore two different nontriv-
ial schemes are suggested in order to recover closed-loop
stability (Magni & Scattolini, 2002; Magni, Scattolini, &
Åström, 2002). One of them is used in the final section of the
paper to globally stabilize a pendulum as well as to improve
the performance and the stability region of the nonlinear
energy control proposed inÅström and Furuta (2000).

2. Problem statement and preliminary results

Consider a plantP described by the nonlinear continuous-
time dynamic system

ẋ(t) = f(x(t), u(t)), t ≥ 0, x(0) = x0 (1)

wherex ∈ Rn is the state,u ∈ Rm is the input,f(0,0) =
0 andf(·, ·) is a C1 function of its arguments. The state
and control variables are restricted to fulfill the following
constraints:

x(t) ∈ X, u(t) ∈ U, t ≥ 0 (2)

whereX andU are compact subsets ofRn andRm, respec-
tively, both containing the origin as an interior point. The
solution of (1) from the initial timēt and initial statex(t̄)
for a control signalu(·) is denoted byϕ(t, t̄, x(t̄), u(·)).

Define byTs a suitable sampling period and lettk = kTs,
k is nonnegative integer, be the sampling instants; the goal
is to determine a “sampled” feedback control law:

u(t) ≡ κ(t, x(tk)), κ(t,0) = 0, t ∈ [tk, tk+1) (3)

which asymptotically stabilizes the origin of the associated
closed-loop system.

The description of the hold mechanism implicit in (3)
calls for a state augmentation. Lettingxc := [x′ x′

1]′ ∈ R2n,
the closed-loop systems (1)–(3) is

ẋc(t) =
[
f(x(t), κ(t, x1(t)))

0n,1

]
, t ∈ [tk, tk+1) (4)

xc(tk) =
[
x(t−k )

x(t−k )

]

and its solution from the initial timēt and initial statexc(t̄)
is denoted by

ϕc(t, t̄, xc(t̄)) =
[
ϕx
c(t, t̄, xc(t̄))

ϕ
x1
c (t, t̄, xc(t̄))

]

ϕx
c ∈ Rn, ϕx1

c ∈ Rn

With reference to the closed-loop system (4), define the fol-
lowing sets.

Definition 1. A sampled output admissible set asso-
ciated to (4) is a setΓ c

s (κ) ∈ Rn such that for all
x ∈ Γ c

s (κ), ϕx
c(tk+1, tk, [x′ x′]′) ∈ Γ c

s (κ), ϕx
c(t, tk, [x′

x′]′) ∈ X, κ(t, ϕ
x1
c (τ, t, xc)) ∈ U, t ∈ [tk, tk+1),limt→∞

‖ϕx
c(t, t̄, xc(t̄)))‖ = 0. In other words,Γ c

s (κ) is a state
invariant set, associated to the closed-loop system (4),
defined at the sampling instantstk and such that (i) the
state and control constraints (2) are satisfied in all the fu-
ture continuous-time instants, (ii) the regulation problem
is asymptotically solved. The (unique) maximal sampled
output admissible setXc

s(κ) is defined as the union of all
sampled output admissible sets.

Definition 2. An output admissible set associated to (4)
is a setΓ c(t, κ) ∈ R2n such that for allxc ∈ Γ c(t, κ),
ϕx
c(tk, t, xc) ∈ Xc

s(κ), where tk is the closest sampling
time in the future,ϕx

c(τ, t, xc) ∈ X, κ(t, ϕ
x1
c (τ, t, xc)) ∈ U,

τ ∈ [t, tk). In other words,Γ c(t, κ) is a set, defined at
any continuous-time instantt, of states of the closed-loop
system (4) such that (i) the state of (1) at the closest sam-
pling time in the future belongs toXc

s(κ) and (ii) the state
and control constraints (2) are satisfied in all the future
continuous-time instants. The (unique) maximal output ad-
missible setXc(t, κ) is defined as the union of all output
admissible sets.

The regulation problem can now be formally stated as the
problem of finding a sampled control law (3) such that its
maximal output admissible set is nonempty. Such a con-
trol law will be called feasible hereafter. Besides, one can
also wish to find the control law (3) with the largest max-
imal output admissible setXc and which minimizes the
Infinite-HorizonIH cost function:

JIH(x(tk), u(·)) =
∫ ∞

tk

{‖x(τ)‖2
Q + ‖u(τ)‖2

R} dτ (5)
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subject to (1) and (2). In (5)Q andR are positive definite
weighting matrices. LetXIH be the set of statesx such that
the IH problem is solvable,uIH(·) is the optimal solution
and κIH(t, x(tk)) = uIH(t), t ∈ [tk, tk+1)is the optimalIH
control law, soXIH is the maximal output admissible set for
(4) with κ(·, ·) = κIH(·, ·). In general, theIH nonlinear op-
timal control problem is computationally intractable since
minimization must be performed with respect to functions.
Nevertheless, it constitutes a touchstone for suboptimal ap-
proaches yielding to nonlinear control lawsκ(t, x(tk)) with
the following properties:

(i) performance/complexity trade-off: by suitably tuning
the design parameters of the control synthesis algorithm,
it should be possible to obtain a fair compromise be-
tween an arbitrarily good approximation of the optimal
(but computationally intractable)IH controllerκIH and
a computationally cheap feasible control law;

(ii) enlargement property: the maximal output admissible
set associated withκ(·, ·) should be larger than the max-
imal output admissible set of a possible already known
feasible control law.

An effective strategy to design suboptimal controllers
based on theMPC strategy will be presented in the follow-
ing Section 3.

3. Model predictive control

In order to introduce theMPC algorithm, a finite-horizon
optimization problem is first defined. Letut1,t2: [t1, t2] →
Rm be a finite time control signal.

3.1. Finite horizon optimal control problem (FHOCP1)

GivenXf , a compact subset ofRn containing the origin,
a sampling timeTs, a prediction horizonNp, two positive
definite matricesQ andR, a penalty functionVf (·): Rn →
R, at every sampling time instanttk, minimize, with respect
to utk,tk+Np

, the performance index

JFH(xtk , utk,tk+Np
,Np)

=
∫ tk+Np

tk

{‖x(τ)‖2
Q + ‖u(τ)‖2

R} dτ

+Vf (ϕ(tk+Np, tk, x(tk), utk,tk+Np)) (6)

The minimization of (6) must be performed under the fol-
lowing constraints:

(i) the state dynamics (1) withx(tk) = xtk ;
(ii) the constraints (2),t ∈ [tk, tk+Np);

(iii) the terminal state constraintx(tk+Np) ∈ Xf .

According to the Receding Horizon approach, the state-
feedbackMPC control law is derived by solvingFHOCP1

at every sampling time instanttk, and applying the control

signalu(t) = uo
tk,tk+1

, t ∈ [tk, tk+1) whereuo
tk,tk+1

is the first
part of the optimal signaluo

tk,tk+Np
. In so doing, one implic-

itly defines the sampled state-feedback control law

u(t) = κRH(t, x(tk)), t ∈ [tk, tk+1) (7)

In order to establish the properties of the control law (7),
first let

ϕRH(t, t̄, xc(t̄)) =
[
ϕRH
x (t, t̄, xc(t̄))

ϕRH
x1

(t, t̄, xc(t̄))

]

ϕRH
x ∈ Rn, ϕRH

x1
∈ Rn

be the solution of (4) withκ(·, ·) = κRH(·, ·). Then, define
the following sets.

Definition 3. Let X0
s (Np) ∈ Rn be the set of statesxtk of

system (1) at the sampling timestk such that there exists a
feasible control sequenceutk,tk+Np

for FHOCP1.

Definition 4. Let X0(t, Np) ∈ R2n be the set of statesxc
such that for allxc(t) ∈ X0(t, Np), ϕRH

x (tk, t, xc) ∈ X0
s (Np),

wheretk is the closest sampling time in the future,ϕRH
x (τ,

t, xc) ∈ X, κRH(τ, ϕRH
x1

(τ, t, xc)) ∈ U, τ ∈ [t, tk).

In order to guarantee the stability of theMPC closed-loop
system, the terminal setXf and the terminal cost function
Vf introduced in theFHOCP1 must be properly chosen.

Assumption 1. There exist an auxiliary control lawκf (x),
a terminal setXf and a terminal penaltyVf such that, letting
ϕf (t, t̄, x(t̄)) the solution of the closed-loop system:

ẋ(t) = f(x(t), κf (x(t))), (8)

from the initial time t̄ and initial statex(t̄), the following
conditions hold:

• Xf ⊂ X, Xf closed, 0∈ Xf ;
• κf (x) ∈ U, ∀x ∈ Xf ;
• Xf is positively invariant for (8);
• Vf (·): Rn → R is such that∀x(tk) ∈ Xf

Vf (ϕf (tk+1, tk, x(tk))) − Vf (x(tk))

≤ −
∫ tk+1

tk

{‖ϕf (τ, tk, x(tk))‖2
Q

+ ‖κf (ϕf (τ, tk, x(tk)))‖2
R} dτ (9)

Note that inAssumption 1, at this stage the auxiliary control
law κf (x) is not required to be a “sampled” control law
because, as it will be clarified below in the description of
some well knownMPCalgorithms, it is never applied to the
systems but it is only used in simulation in order to obtain
the terminal set and the terminal penalty.

Theorem 1. Given an auxiliary control lawκf , a terminal
setXf and a terminal penaltyVf satisfyingAssumption 1:
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(i) the origin is an asymptotically stable equilibrium point
for the closed-loop system formed by (1) and (7) with
maximal output admissible setX0(t, Np);

(ii) X0
s (Np + 1) ⊇ X0

s (Np), ∀Np;
(iii) X0

s (Np) ⊇ Xf , ∀Np;
(iv) there exist a finiteN̄p such thatX0

s (N̄p) ⊇ X̄f , where
X̄f is the maximal output admissible set for (8).

Proof of Theorem 2. In view of Definitions 1–4, ifX0
s (Np)

is the maximal sampled output admissible set of (4) with
κ(·, ·) = κRH(·, ·) thenX0(t, Np) is the maximal output ad-
missible set of (4) withκ(·, ·) = κRH(·, ·). Note in fact that,
from Definition 4it follows that∀x̄c(t) /∈ X0(t, Np) the con-
straints are not satisfied forτ ∈ [t, tk) and/orϕRH

x (tk, t, xc) /∈
X0

s (Np). But in view of Definition 2 this means that̄xc(t)
cannot belong to any output admissible set of (4) withκ(·) =
κRH(·). �

Moreover byAssumption 1it follows thatXf is nonempty,
then alsoX0(t, Np) is nonempty. Let now show thatX0

s (Np)

is the maximal sampled output admissible set for systems
(1) and (7). In fact lettingx(tk) := xtk ∈ X0

s (Np) and the
associated solutionuo

tk,tk+Np
of the FHOCP1 at time tk, a

feasible solution at timetk+1 for theFHOCP1 is

ũtk+1,tk+Np+1

:=

 uo

tk+1,tk+Np
t ∈ [tk+1, tk+Np)

κf (ϕf (t, tk+Np, ξ
Np) t ∈ [tk+Np, tk+Np+1)

(10)

with ξNp := ϕ(tk+Np, tk, xtk , u
o
tk,tk+Np

). Then, by definition,

ξ := ϕRH
x (tk+1, tk, [x′

tk
x′
tk

]′) ∈ X0
s (Np) and, in view of

constraints (ii) of theFHOCP1, (2) are satisfied along the
trajectory of (4) withκ(·, ·) = κRH(·, ·). Finally, for∀x(tk) /∈
X0

s (Np) theMPC control law is not defined so thatX0
s (Np)

is the maximal sampled output admissible set.
Let now show that the origin is an asymptotically stable

equilibrium point for the closed-loop systems (1), (7). To
this end define

V(xc(t), t) := JFH(x(t), u
o
tk,tk+Np

,Np)

if t = tk and

V(xc(t), t) : =
∫ tk+1

t

{‖ϕRH
x (τ, tk, xc(tk))‖2

Q

+‖κRH(τ, ϕRH
x1

(τ, tk, xc(tk)))‖2
R} dτ

+JFH(ϕ
RH
x (tk+1, t, xc(t)), u

o
tk+1,tk+Np

,Np − 1)

if t ∈ (tk, tk+1). Note thatV(xc(tk), tk) is bounded∀x ∈
Xo

k(Np). Moreover,

• ∀t ∈ [tk, tk+1)

V(ϕRH(t, tk, xc(tk)), t)

= V(xc(tk), tk) −
∫ t

tk

{‖ϕRH
x (τ, tk, xc(tk))‖2

Q

+ ‖κRH(τ, ϕRH
x1

(τ, tk, xc(tk)))‖2
R} dτ (11)

• At time t = tk+1, ũtk+1,tk+Np+1given by (10) is a

(sub-optimal) feasible solution for the newFHOCP1 so
that

V(ϕRH(tk+1, tk, xc(tk)), tk+1)

≤ JFH(ϕ
RH
x (tk+1, tk, xc(tk)), ũtk+1,tk+Np+1Np)

= V(ϕRH(t−k+1, tk, xc(tk)), t
−
k+1)

+
∫ tk+Np+1

tk+Np

{‖ϕx
c(τ, tk+Np, ξ

Np)‖2
Q

+ ‖κf (τ, ϕf (τ, tk+Np, ξ
Np))‖2

R} dτ

+Vf (ϕf (tk+Np+1, tk+Np, ξ
Np)) − Vf (ξ

Np)

≤ V(ϕRH(t−k+1, tk, xc(tk)), t
−
k+1) (12)

In conclusion using (11) fort ∈ [tk+i, tk+i+1), i ≥ 0, and
(12) for t = tk+i+1, i ≥ 0, ∀t ≥ tk

V(ϕRH(t, tk, xc(tk)), t)

+
∫ t

tk

{‖ϕRH
x (τ, tk, xc(tk))‖2

Q

+ ‖κRH(τ, ϕRH
x1

(τ, tk, xc(tk)))‖2
R} dτ ≤ V(xc(tk), tk)

and, sinceQ andR are positive definite matrices, ifxc(tk) ∈
X0(tk, Np), bothV(ϕRH(t, tk, xc(tk)), t) and∫ t

tk

{‖ϕRH
x (τ, tk, xc(tk))‖2

Q+‖κRH(τ, ϕRH
x1

(τ, tk, xc(tk)))‖2
R} dτ

are bounded. These facts prove that

lim t→∞ϕRH
x (t, tk, xc(tk))) = 0

(Michalska & Vinter, 1994).
The proof of (ii)–(iv) can be derived as in Theorem 6 in

Magni et al. (2001).

4. Stabilizing MPC control algorithm

Many stabilizingMPC algorithms can be obtained de-
pending on the choices made to satisfyAssumption 1. Here,
the main algorithms proposed in the literature are briefly
described.

4.1. Terminal equality constraint (EC)

The first algorithm presented in literature is characterized
by a terminal quality constraintx(tk+Np) = 0 so thatXf =
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{0} (Keerthi & Gilbert, 1988; Mayne & Michalska, 1990).
The auxiliary control law and the terminal penalty are de-
fined only in the origin so that the following trivial functions
can be chosen:Vf (x) ≡ 0 andκf (x) ≡ 0. The fulfillment
of Assumption 1is easily checked. In factXf = {0} ∈ X,

κf (0) = 0 ∈ U, f(0, κf (0)) = 0 so thatXf is positively
invariant andVf (0) − Vf (0) ≤ 0.

4.1.1. Performance/complexity trade-off
If a short optimization horizonNp is used, the terminal

constraint forces an excessive control effort, while increasing
the optimization horizon increases the computational load.

4.1.2. Enlargement property
The maximal output admissible set coincides with the

(constrained) controllability regionXcon(Np) (Gilbert &
Tan, 1991). Note thatXcon(Np) may be “small”. In par-
ticular, there is no guarantee thatXc(Np) is larger than
the maximal output admissible set guaranteed by the trivial
control lawκ(x) ≡ 0.

4.2. Quadratic terminal penalty (QP)

A second well known method was presented inChen and
Allgöwer (1998)where a quadratic terminal penalty and a
linear auxiliary control law are considered. More precisely,
assume that system (1) is linearizable and denote the lin-
earized matrices with

A = ∂f

∂x

∣∣∣∣
x=0,u=0

, B = ∂f

∂u

∣∣∣∣
x=0,u=0

The auxiliary control law is given byκf (x) = Kx whereK
is such thatAcl = A+ BK is Hurwitz. The terminal penalty
is a quadratic functionVf (x) = x′PxwhereP is the solution
of the following Lyapunov function:

(Acl + κεI)
′P + P(Acl + κεI) = Q̄ (13)

whereQ̄ = Q + K′RK and the scalarκε ∈ [0,∞) satisfies

κε < −λmax(Acl)

The terminal region is defined as a level set of the terminal
penalty.

Xf := {x ∈ Rn|x′Px ≤ α} ⊂ X (14)

such that

(i) Kx ∈ U, for all x ∈ Xf ;
(ii) Xf is a positively invariant for the closed-loop systems

with u = Kx;
(iii) ∀x ∈ Xf

d

dt
x′Px ≤ −x′(Q + K′RK)x

subject to the closed-loop dynamic withu = Kx.

Satisfaction ofAssumption 1is easily checked. In factXf ⊂
X, Xf closed, 0∈ Xf in view of (14); κf (x) ∈ U, ∀x ∈

Xf from (i); Xf is positively invariant for the closed-loop
system (8) from (ii); finally∀x(tk) ∈ Xf

Vf (ϕf (tk+1, tk, x(tk))) − Vf (x(tk))

≤ −
∫ tk+1

tk

‖ϕf (τ, tk, x(tk))‖2
Q+K′RK dτ

= −
∫ tk+1

tk

{‖ϕf (τ, tk, x(tk))‖2
Q

+ ‖κf (ϕf (τ, tk, x(tk)))‖2
R} dτ

4.2.1. Performance/complexity trade-off
In view of the constantκε introduced in the Lyapunov

equation (13), the infinite horizon optimal performance are
not recovered even if the auxiliary control law is locally
optimal and‖x‖ → 0. The infinite horizon optimal control
law can be reached only at the cost of a ”long” prediction
(optimization) horizonNp.

4.2.2. Enlargement property
For any horizonNp the maximal output admissible set

includes the terminal setXf , but a sufficient long optimiza-
tion horizonNp occurs in order to enlarge the maximum
output admissible set of the auxiliary control law.

4.3. Infinite-Horizon closed-loop costing (CL)

A third method was presented inDe Nicolao et al. (1998)
where the infinite horizon cost associated with a gener-
ally nonlinear auxiliary control law is used as the terminal
penalty. More precisely, assume that an auxiliary locally sta-
bilizing control law is given byκf (x). The terminal penalty
is given by

Vf (x(tk)) =
∫ ∞

tk

{‖ϕf (τ, tk, x(tk))‖2
Q

+‖κf (ϕf (τ, tk, x(tk)))‖2
R} dτ

The terminal region is implicitly defined as

Xf := {x̄ ∈ Rn|ϕf (t, tk, x(tk)) ∈ X,

κf (ϕf (t, tk, x(tk))) ∈ U, t > t̄,

Vf (x̄)bounded} ⊂ X

(15)

The fulfillment of Assumption 1is easily checked. In fact
Xf ⊂ X, Xf closed, 0∈ Xf , κf (x) ∈ U, ∀x ∈ Xf in view
of (15);Xf is positively invariant for (8) because, from the
definition ofXf , it follows that if x̄ ∈ Xf , ϕf (t, tk, x(tk) ∈
Xf , t > t̄; finally ∀x(tk) ∈ Xf

Vf (x(tk+1)) − Vf (x(tk)) = −
∫ tk+1

tk

{‖ϕf (τ, tk, x(tk)‖2
Q

+ ‖κf (ϕf (τ, tk, x(tk)))‖2
R} dτ
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4.3.1. Performance/complexity trade-off
If the auxiliary control law is locally optimal, then also the

MPC control law is locally optimal. If the auxiliary control
law is the solution of the unconstrained nonlinear infinite
horizon control problem, then theMPC control law is the
solution of the constrained infinite horizon optimal control
problem.

4.3.2. Enlargement property
The maximal output admissible set guaranteed by this

control scheme is larger than the maximal output admissible
set of the auxiliary control law for any optimization horizon
Np. In fact Xf is equal to the maximal output admissible
set of the auxiliary control law. Note that in theQP algo-
rithm the terminal regionXf must be explicitly computed
off-line, while in this one the explicit computation ofXf

is not needed. This difference is crucial in view of the dif-
ficulty to compute the maximal output admissible set for a
nonlinear system with constraints, so that only very conser-
vative approximations can be obtained.

4.4. Infinite-Horizon closed-loop costing with control and
prediction horizons (CL-2H)

TheCL algorithm achieves better properties with respect
to ECandQPboth for performance and for the enlargement
property with a lower computational burden. Its drawback
is that the terminal penalty cannot be computed exactly be-
cause the integration of the closed-loop system (8) should be
performed for an infinite time. However, since the auxiliary
control law is stabilizing, in practice it is possible to compute
the cost function until the state is sufficiently close to the
origin. In Magni et al. (2001), this problem is analyzed and
a rule to compute a finite integration horizon that preserves
closed-loop stability is given. Otherwise, it is necessary to
guarantee that the state is in an output admissible set of the
auxiliary control law. Consequently, an output admissible
set for the auxiliary control law must be computed off line
as in theQP algorithm. In order to recover the properties
of the CL algorithm without increasing the computational
burden, the use of a control (optimization) horizon shorter
than the prediction horizon was proposed inMagni et al.
(2001). In particular the terminal penalty and the terminal
inequality constraint are imposed at the end of the predic-
tion horizon, while the optimization is performed only with
respect to a shorter horizon, the so called control horizon.
The control signal from the end of the control horizon to the
end of the prediction horizon is given by the auxiliary con-
trol law. Accordingly, the optimization problem is changed
in the following way.

4.4.1. Finite Horizon Optimal Control Problem (FHOCP2)
GivenXf , a compact subset ofRn containing the origin,

the sampling timeTs, the control horizonNc, the prediction
horizonNp, an auxiliary control lawu = κ(x), two positive
definite matricesQ andR, a penalty functionVf (·) : Rn →

R, at every sampling time instanttk, minimize, with respect
to utk,tk+Nc

, the performance index

JFH(xtk , utk,tk+Nc
, Nc,Np)

=
∫ tk+Np

tk

{‖x(τ)‖2
Q + ‖u(τ)‖2

R} dτ

+Vf (ϕ(tk+Np, tk, x(tk), utk,tk+Np))

The minimization of (6) must be performed under the fol-
lowing constraints:

(i) the state dynamics (1) withx(tk) = xtk ;

(ii ) u(t) :=




utk,tk+Nc
, t ∈ [tk, tk+Nc)]

κf (ϕf (t, tk+Nc, ξ
Nc))

t ∈ [tk+Nc, tk+Np)]

whereξNc := ϕ(tk+Nc, tk, xtk , utk,tk+Nc
).

(iii) the constraints (2), withu(t) = κ(x), t ∈ [tk, tk+Np);
(iv) the terminal state constraintx(tk+Np) ∈ Xf .

4.4.2. Performance/complexity trade-off
If the auxiliary control law is locally optimal, then also

the MPC control law obtained withNp → ∞, is locally
optimal. If the auxiliary control law is the solution of the
unconstrained nonlinear infinite horizon control problem,
then theMPC control law obtained withNp → ∞, is the
solution of the constrained infinite horizon optimal control
problem.

4.4.3. Enlargement property
The maximal output admissible set guaranteed by this

control scheme is larger than the maximal output admissible
set of the auxiliary control law for any optimization horizon
Nc and for a sufficiently large prediction horizonNp. Note
that the computational burden is mostly related the length
of the control horizon.

5. Implementation and nominal stability

In view of Theorem 1, theEC, QP, CL andCL–2H MPC
algorithms surveyed in the previous section guarantee nomi-
nal stability provided that the underlying optimization prob-
lem is efficiently solved on line. As a matter of fact, this is
not possible in practice for a couple of reasons, namely the
requirement to fulfill the state and control constraints at any
continuous time instant and the necessity to use a suitable
parametrization of the input signal. As for the first issue, it
is apparent that the numerical integration of the system over
the future prediction horizon is such that the state (and con-
trol) constraints can be verified only at the integration time
instants. However, in the original problem formulation they
are required to be fulfilled at any continuous timet. The sec-
ond problem is even more intriguing and can be explained
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as follows: the on line optimization problem underlying the
MPC algorithms can be completed in the sampling period
only with respect to a finite number of parameters, instead
of functions, so that the input profile must be parametrized.
For example, a typical procedure consists in assuming that
the input signal is held constant between two successive
sampling instants. In turn, this means that also the adopted
auxiliary control law must produce a congruent signal, that
is a signal that satisfies the adopted parametrization, oth-
erwise the signal̃utk+1,tk+Np+1 computed attk and given in
(10) would not be a feasible solution for the (parametrized)
FHOCP at time tk+1. With respect to this problem, note
that theEC method (where the auxiliary control law is ob-
tained by setting equal to zero the control variable) cannot
be solved in a finite number of iterations in view of the zero
terminal equality constraints, while in all the otherMPC al-
gorithms the stability proof relies on an auxiliary control law
providing a general continuous time control signal, a priori
not congruent with the adopted parametrization.

In the following, the two implementation issues above
discussed are analyzed in a reverse order. Specifically, two
algorithms are first presented guaranteeing closed-loop sta-
bility when a piece-wise constant control parametrization is
used. Then, the problem of the fulfillment of (2) is solved by
specifying the (more restrictive) constraints to be imposed
at any integration time during the on line optimization.

5.1. The piece-wise constant MPC control law

In Magni and Scattolini (2004), a piece-wise constant sig-
nal parametrization has been considered in the numerical so-
lution of the optimization problem. Specifically, it has been
suggested to use a time invariant auxiliary control law

u(t) ≡ κ(x(tk)), t ∈ [tk, tk+1), (16)

with κ(0) = 0, satisfying the following assumption:

Assumption 2. The feasible control law (16) is aC1 func-
tion with Lipschitz constantLκ.

For control law (16), an associated sampled output admis-
sible set can be computed as follows. First, define the lin-
earization of system (1) at the origin

ẋ(t) = Ax(t) + Bu(t) (17)

Then introduce the discretization of (17) given by

x(tk+1) = ADx(tk) + BDu(tk), x(0) = x0 (18)

with

AD := eATs , BD :=
∫ Ts

0
eAηBdη

Finally, let

K = ∂κ(x)

∂x

∣∣∣∣
0

In view of the feasibility of (16), it is then easy to show that
the closed-loop matrixAcl

D := AD + BDK of the linearized
discrete-time system (18) is Hurwitz and the following result
holds.

Lemma 1. Let κ(x) be a feasible control law, suppose that
Assumption 2is satisfied and consider a positive definite
matrix Q̃ and two real positive scalarsγ and γ2 such that
γ < λmin(Q̃). Define byΠ the unique symmetric positive
definite solution of the following Lyapunov equation:

A′cl
D ΠAcl

D − Π + Q̄ = 0 (19)

where

Q̄ =
∫ Ts

0
AZOH

c (η)′Q̃AZOH
c (η)dη + γ2In

and

AZOH
c (t) := eAt +

(∫ t

0
eA(t−τ) dτ

)
BK

Then, there exist two constantsTs ∈ (0,∞) andc ∈ (0,∞)

specifying a neighborhoodΩc(κ, Ts) of the origin of the form

Ωc(κ, Ts) = {x ∈ Rn|‖x‖2
Π ≤ c} (20)

such that∀x ∈ Ωc(κ, Ts):

(i) ϕx
c(t, tk, [x′ x′]′) ∈ X, t ∈ [tk, tk+1), κ(x) ∈ U;

(ii) ‖ϕx
c(tk+1, tk, [x′x′]′)‖2

Π − ‖x‖2
Π

≤ −γ

∫ tk+1

tk

‖ϕx
c(η, tk, [x′x′]′)‖2 dη − γ2‖x‖2 (21)

The Lemma states that, in view of (i) and (ii),Ωc(κ, Ts) is
a sampled output admissible set for (4); moreover, from (ii)
VL(x) = x′Πx is a positive definite function decreasing in
the sampling times along the trajectory of (4).

Remark 1. An obvious way to determine a feasible sam-
pled control law is to choose a suitableTs, to consider the
linearization of (1) around the origin and the sampled lin-
ear model described by (18) and to synthesize with any
standard linear control synthesis technique, a linear control
law

u(t) = Kx(tk), t ∈ [tk, tk+1) (22)

such thatAD + BDK is Hurwitz. �

Let us suppose that the auxiliary control lawu = κ(x)

is known, together with an associated sampled output
admissible set and the Lyapunov function both given in
Lemma 1. It is now shown howMPC allows one to stabi-
lize the closed-loop system, to extend the maximal output
admissible set ofκ and to improve the control performance
by minimizing a cost function suitably chosen by the
designer.
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To this end, given a control sequence

ū1,Nc (tk) := [u1tk
, u2tk

, ..., uNctk
]

with Nc ≥ 1, define the Finite Horizon piece-wise constant
control signal

uFH
tk

(t) =




ujtk

t ∈ [tk+j−1, tk+j) j = 1, . . . , Nc

κ(ϕ(tk+j−1, tk, x(tk), u
FH
tk

(·)))
t ∈ [tk+j−1, tk+j) j = Nc + 1, . . . , Np

(23)

whereNp ≥ Nc. Moreover, denote bȳuFH
tk

(tfin, tin) the signal
uFH
tk

(t) in the intervalt ∈ [tin, tfin).
For system (1) theMPC control problem here considered

is based on the solution of the following

5.1.1. Finite Horizon Optimal Control Problem (FHOCP3)
Given the sampling timeTs, the control horizonNc, the

prediction horizonNp, Nc ≤ Np, two positive definite ma-
tricesQ andR, a feasible auxiliary control lawκ(x), the
matrix Π and the regionΩc(κ, Ts) given in Lemma 1with
γ > λmax(Q) and γ2 > Tsλmax(R)Lκ, at every sampling
time instanttk, minimize, with respect tōu1,Nc (tk), the per-
formance index

JFH(xtk , ū1,Nc (tk), Nc,Np)

=
∫ tk+Np

tk

{‖x(τ)‖2
Q + ‖u(τ)‖2

R} dτ

+Vf (ϕ(tk+Np, tk, x(tk), ū
FH
tk

(tk+Np, tk))) (24)

where the terminal penaltyVf is selected as

Vf (x) = ‖x‖2
Π

The minimization of (24) must be performed under the fol-
lowing constraints:

(i) the state dynamics (1) withx(tk) = xtk ;
(ii) the constraints (2),t ∈ [tk, tk+Np) with u given by (22);

(iii) the terminal state constraintx(tk+Np) ∈ Ωc(κ, Ts).

According to the Receding Horizon approach, the state-
feedbackMPC control law is derived by solvingFHOCP3

at every sampling time instanttk, and applying the constant
control signalu(t) = uo

1tk
, t ∈ [tk, tk+1)whereuo

1tk
is the first

column of the optimal sequenceūo
1,Nc

(tk). In so doing, one
implicitly defines the sampled state-feedback control law

u(t) = κRH(x(tk)), t ∈ [tk, tk+1) (25)

Remarkably, the algorithm proposed here satisfies all the
assumptions ofTheorem 1, so that closed-loop stability can
be guaranteed.

5.2. Prestabilized MPC control scheme

In many cases, a stabilizing continuous time control law
κ(x(t)) is already known and applied to the plant. For this

reason, the scheme already proposed inMagni et al. (2002)
is presented here. It can be used to improve the performance
provided byκ(x(t)) with a reduced computational effort.

Given the control lawκ(x(t)), the problem is to determine
with theMPC approach an additive feedback control signal
v(t), such that the overall resulting control law:

u(t) = κ(x(t)) + v(t) (26)

enlarges the stability region ofκ(x(t)) and enhances the
overall control performance with the fulfillment of the con-
straints (2).

The closed-loop system (1), (26) is described fort ≥ t̄ by

ẋ(t) = f(x(t), κ(x(t)) + v(t)) (27)

with x(t̄) = x̄. Hence, for system (27) theMPCproblem can
be formally stated as follows: consider the control sequence

v̄1,Nc (tk) := [v1tk
, v2tk

, . . . , vNctk
]

with Nc ≥ 1, for anyt ≥ tk define the associated piece-wise
constant control signal

v(t) =
{
vjtk

t ∈ [tk+j−1, tk+j), j = 1, ..., Nc

0 t ≥ tk + NcTs
(28)

and consider the following

5.2.1. Finite Horizon Optimal Control Problem (FHOCP3)
Given the positive integersNc andNp, Nc ≤ Np at ev-

ery “sampling time” instanttk, minimize, with respect to
v̄1,Nc (tk), the performance index

JFH(xtk , v̄1,Nc (tk), Nc,Np)

=
∫ tk+NpTs

tk

{‖x(τ)‖Q + ‖v(τ)‖R} dτ + Vf (x(tk+NpTs))

(29)

As for the terminal penaltyVf , it is here selected such that
Assumption 1is satisfied withκf (x) = 0.

The minimization of (29) must be performed under the
following constraints:

(i) the state dynamics (27) withx(tk) = xtk ;
(ii) the constraints (2),t ∈ [tk, tk + NpTs) with u given by

(26);
(iii) v(t) given by (28);
(iv) the terminal state constraintx(tk +NpTs) ∈ Xf , where

Xf is a set satisfyingAssumption 1with κf (x) ≡ 0.

According to the well known Receding Horizon approach,
the state-feedbackMPC control law is derived by solving
the FHOCP3 at every sampling time instanttk, and apply-
ing the constant control signalu(t) = κ(x) + vo

1tk
, t ∈

[tk, tk+1) wherevo
1tk

is the first column of the optimal se-

quencēvo
1,Nc

(tk). In so doing, one implicitly defines the dis-
continuous (with respect to time) state-feedback control law

v(t) = κ(x) + κRH(xk), t ∈ [tk, tk+1) (30)
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Again, all the assumptions ofTheorem 1are satisfied by the
algorithm, so that closed-loop stability is achieved.

5.3. Continuous time state space constraint fulfillment

Recall that the second issue related to the practical imple-
mentation ofMPC algorithms for continuous time systems
was related to the fulfillment of the continuous time con-
straints (2) at any time instantt. This problem can be easily
solved by forcing in the on line optimization a finite num-
ber of suitable constraints on the state variable at any inte-
gration time step. In particular, lettingδ be the (maximum)
integration step used in the optimization phase to simulate
the plant (1) with the control signal (23) and defining by
Bν
r = {x ∈ Rn : ‖x‖ν ≤ r}, ν > 0, the following result

holds(Magni & Scattolini, 2004).

Theorem 2. Let

M := ‖maxx∈Bν
g,u∈Uf(x, u)‖ν

if (a) 0 < δ < g/M, g > 0, (b) x(t̄) ∈ Bν
ḡ, ḡ = g − δM,

thenϕ(t̄ + t, t̄, x(t̄), ū) ∈ Bν
g, ∀t ∈ [0, δ), ū ∈ U.

From this result it is clear that one can choose the maximum
integration stepδ and a more conservative discrete-time state
constraint (defined bȳg) so as to guarantee continuous-time
state constraint satisfaction. More precisely, givenν andg

such thatBν
g ⊆ X, a nonnegative integerns, a constant

integration stepδ = Ts/ns, condition(ii) in theFHOCPcan
be replaced by

‖ϕ(tk + nδδ, tk, x(tk), u
FH
tk

(·))‖ν ≤ ḡ,

nδ = 1,2, . . . , < Npns−1, u(tk+j) ∈ U, j = 0, . . . , Np

The use of a more conservative constraints set has already
been proposed for linear systems inBerardi, De Santis, Di
Benedetto and Pola (2001). Notably the conservatism intro-
duced is substantially less than the one of the discrete-time
MPC, because the maximum integration timeδ can be
chosen much smaller than the sampling timeTs.

6. Global stabilization of a pendulum

In this section the global stabilization of a pendulum is
solved using as pre-stabilizing control law the nonlinear en-
ergy control proposed inÅström and Furuta (2000). The
MPC control law, according to the scheme described in
Section 5.2, is used to improve performance and to achieve
global stability. The equation of motion of a pendulum, writ-
ten in normalized variables(Åström & Furuta, 2000), is

θ̈(t) − sinθ(t) + u(t) cosθ(t) = 0, (31)

whereθ is the angle between the vertical and the pendulum,
assumed to be positive in the clockwise direction, andu is the

normalized acceleration, positive if directed as the positive
real axis. The system has two state variables, the angleθ and
its rate of changėθ (i.e.x = [θ θ̇]′), defined takingθ modulo
2π, with two equilibria, i.e.u = 0, θ = 0, θ̇ = 0, andu = 0,
θ = π, θ̇ = 0. Moreover, it is assumed that|u| ≤ n.

The normalized total energy of the uncontrolled system
(u = 0) is

En(t) = 1
2 θ̇

2(t) + cosθ(t) − 1

Consider now the energy control law

u(t) = satn(kuEn(t)sign(θ̇(t) cosθ(t))) (32)

where satn is a linear function which saturates atn. In
Åström and Furuta (2000)it is shown that the control law
(32) is able to bring the pendulum at the upright position
provided that its initial condition does not coincide with the
download stationary position (in fact, withθ = π, θ̇ = 0,
(32) givesu = 0 so that the pendulum remains in the down-
load equilibrium). However, the upright equilibrium is an
unstable saddle point. For this reason, when the system ap-
proaches the origin of the state space, a different strategy is
used to locally stabilize the system. In the reported simu-
lations, a linear control law computed with theLQ method
applied to the linearized system has been used. This switch-
ing strategy, synthetically called in the sequel again “energy
control”, is described by the control law

κ(x) =
{

satn(kuEnsign(θ̇ cosθ)), if x2π /∈ Ω(K)

−Kx′
2π if x2π ∈ Ω(K),

(33)

where x2π := [mod2π(θ)θ̇], K is the gain of the locally
stabilizingLQ control law andΩ(K) is an associated output
admissible set.

TheNMPCcontrol algorithm described in Section 5.2 has
been applied to the closed-loop systems (31) and (33), with

−4 −3 −2 −1 0 1 2 3 4
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0.9

1
φ (θ )

Fig. 1. φ(θ) with β = 0.01 (dash-dot line),β = 1 (continuous line),
β = 100 (dashed line).
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Table 1

Nc 0 2 4 8

β = 0
J1H 73.9 70.0 68.7 67.0
% 0 −5.3 −7.0 −9.4

β = 0.01
J1H 64.7 60.6 61.0 58.7
% 0 −6.3 −5.7 −9.2

β = 1
J1H 37.0 35.9 35.5 35.5
% 0 −3.2 −4.2 −4.2

β = 100
J1H 26.4 26.2 25.9 25.7
% 0 −0.6 −1.8 −2.3

the aim of enhancing the performance provided by (33) in
terms of the energy required to swing up the pendulum and
of the time required to reach the upright position.

For this reason, the stage-cost of theFHOCP is given by

ψ(x, u) = φ(θ)E2
n + (1 − φ(θ))Vn (34)

where

Vn = kv1
1
2 sin2(1

2θ) + 1
2 θ̇

2 (35)

and

φ(θ) = β tan2(θ/2)

1 + β tan2(θ/2)
(36)

The functionVn given by (35) penalizes the state deviation
from the origin, whileφ(θ) allows to balance the need to
reduce the total energy applied and to bring the state to zero.
The dependence ofφ(θ) from the parameterβ is shown in
Fig. 1.

In the following simulation examples the saturation limit
is n = 0.29, theFHOCP is solved everyTs = 0.1 sec and

0 5 10 15 20 25
−6

−5

−4

−3

−2

−1

0

1

2

3

A
ng

le
 p

os
iti

on

Time(sec)

Fig. 2. Angle position movement with “energy control” (continuous line),
MPC with β = 0 andNc = 2 (dash-dot line),Nc = 4 (dashed line) and
Nc = 8 (dotted line).
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Fig. 3. Angle velocity movement with “energy control” (continuous line),
MPC with β = 0 andNc = 2 (dash-dot line),Nc = 4 (dashed line) and
Nc = 8 (dotted line).

the following parameters are used to synthesize theNMPC
control law.

• Auxiliary control law (33):ku = 100,K is theLQ con-
trol gain with state penalty matrixQ = diag{2.5,1}, and
control penalty matrixR = 1;Ω(K) is given by

Ω(K) = {x ∈ Rn|x′
2πPx2π ≤ c}

whereP is the solution of the Riccati equation for the
solution of theLQ control problem andc = 0.001.

• FHOCP: Np = 2500,kv1 = 10, Ωc(κ) = Ω(K), Q̃ =
Q + K′RK, γ = λmin(Q̃)/20.

For different choices of the tuning parameters, and starting
from the initial condition [π,0], the results summarized in
the Table 1 have been obtained. In the table,JIH is the
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Fig. 4. Control signal with “energy control” (continuous line),MPC with
β = 0 andNc = 2 (dash-dot line),Nc = 4 (dashed line) andNc = 8
(dotted line).
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infinite horizon performance index with stage cost (34) and
% is the variation with respect to the performance provided
by the “energy control” strategy. Note that forNc = 0,
when the “energy control’ strategy is used, a numerical error
is sufficient to move the pendulum in the maximal output
admissible set guaranteed by the energy control strategy. On
the contrary, withNc ≥ 1, theMPC control law guarantees
the global stabilization of the inverted pendulum. Moreover
note that the best improvement is obtained with a low value
of β because in this case the energy is not considered in
the cost function. InFigs. 2–4the movement of the angle
position, of the velocity and of the control signal are reported
for the control strategies withβ = 0 and for different control
horizonsNc.

7. Conclusions

In this paper, the main algorithms for the stabilization of
continuous time nonlinear systems with theMPC approach
have been critically analyzed. In particular, emphasis has
been given on the necessity to resort to a “sampled” imple-
mentation of the methods and on all the theoretical issues
related to the implementation phase. It has been shown how
the need to use a suitable parametrization of the control
signal forces the selection of a coherent auxiliary control
law, usually required to compute the terminal penalty and
the terminal state constraint providing closed-loop stability.
Also the problem to guarantee the satisfaction of the state
constraints has been addressed and solved by reformulating
these constraints in the integration times. Many problems are
still open and widely studied inMPC for nonlinear systems,
among them we recall the development of stabilizing output
feedback solutions, for which some significant results have
already been suggested inMagni, De Nicolao, and Scattolini
(1998)andFindeisen, Imsland, Allgöwer, and Foss (2003),
or the analysis of the algorithms when disturbances act on
the system.
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