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Abstract

This note presents a stabilizing decentralized model predictive control (MPC) algorithm for nonlinear discrete time systems. No information
is assumed to be exchanged between local control laws. The stability proof relies on the inclusion of a contractive constraint in the formulation
of the MPC problem.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The development of synthesis methods for decentralized con-
trol schemes has received a great attention for a long time, and
many results are nowadays available, see e.g. Siljak (1991) and
the references reported therein, Ioannou (1986), Han and Chen
(1995), and Jiang (2002), just to cite a few. In fact, a distributed
control structure is often the most appropriate one in many dif-
ferent fields, such as in the power industry, in aerospace and
chemical applications or in the manufacturing industry.

At the same time, the last two decades have seen the
widespread diffusion of model predictive control (MPC) tech-
niques, which are now recognized as the most useful approach
to deal with the control problems typical of the process indus-
try. Indeed, with MPC it is possible to formulate the control
problem as an optimization one, where many different (and
possibly conflicting) goals are easily formalized and state
and control constraints can be included. Also for MPC, many
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results are nowadays available concerning stability and robust-
ness, see e.g. Mayne, Rawlings, Rao, and Scokaert (2000), so
that it can now be seen as a well assessed methodology.

In view of the above considerations, it is then natural to
look for MPC algorithms to be implemented according to a
decentralized structure. Indeed, the possibility to use MPC in
a decentralized fashion can also have the advantage to reduce
an original, large size, optimization problem into a number of
smaller and easily tractable ones. Decentralized MPC meth-
ods have already been studied in Dunbar and Murray (2004),
and Camponogara, Jia, Krough, and Talukdar (2002) and in a
number of papers quoted there. In particular, in Camponogara
et al. (2002), the system under control has been assumed to
be composed by a number of linear discrete-time subsystems,
and different information structures have been considered, all
of them guaranteeing the possibility to exchange some kind of
information between the distributed controllers.

Conversely, in this paper, a stabilizing decentralized MPC
algorithm is derived under the main assumptions that the over-
all system under control is nonlinear, discrete-time and no
information can be exchanged between local control laws, i.e.
a fully decentralized information structure is considered. The
proposed method deeply relies on the MPC approach presented
in de Oliveira Kothare and Morari (2000), where the closed-
loop stability property is achieved through the inclusion in the
optimization problem of a contractive constraint. With respect
to other methods often adopted in MPC to achieve stability, see
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e.g. Mayne et al. (2000) or Magni and Scattolini (2004), the
use of a contractive control law is preferred here since it does
not require the knowledge of an auxiliary stabilizing control
law, which could be difficult to derive in view of the distributed
nature of the problem.

2. Problem statement

Let the system under control be composed by the inter-
connection of N local subsystems described by the following
nonlinear, discrete-time models:

x
p
i (k + 1) = fi(x

p
i (k), ui(k)) + gi(x

p(k)) + di(k),

x
p
i (0) = x

p
i0, i = 1, . . . , N , (1)

where x
p
i ∈ R�i is the state of the ith subsystem, di ∈ Rri is

the disturbance, while ui is the control which is restricted to
fulfill the following constraint:

ui(k) ∈ Ui, k�0, (2)

where Ui is a compact subset of Rmi containing the origin as
an interior point.

In (1), the mutual influence of the N subsystems is described
by the functions gi , which depend on the overall state

xp(k) =
[
x

p′
1 (k) x

p′
2 (k) . . . x

p′
N (k)

]′ ∈ R�, � =
N∑

i=1

�i .

Define also the overall disturbance vector

d(k) = [
d ′

1(k) d ′
2(k) . . . d ′

N(k)
]′ ∈ Rr, r =

N∑
i=1

ri .

Concerning subsystems (1), the following assumptions are
introduced:

Assumption 1. The functions fi , i = 1, . . . , N, are C1 func-
tions of their arguments, such that fi(0, 0) = 0 and the follow-
ing Lipschitz condition is verified:

|fi(�i , ui) − fi(�i , ui)| �Lfi
|�i − �i |,

i = 1, . . . , N, �i , �i ∈ R�i .

Assumption 2. There exist positive Lipschitz constants
Lij , i, j ∈ [1, 2, . . . , N], such that

|gi(x
p)|�

N∑
j=1

Lij |xp
j |, i = 1, . . . , N .

As for the disturbances di , letting Np be a given positive in-
teger, henceforth called the “prediction horizon”, it is assumed
that the following assumption is fulfilled. �

Assumption 3. The disturbances di , i = 1, . . . , N , are asymp-
totically decaying and bounded, that is,

di(k) ∈ B�̄d
:= {di ∈ Rri : |di |� �̄d ∈ [0, ∞)}, k ∈ Z+,

where Z+ is the set of nonnegative integers.

The problem here considered can now be formally stated as
the one of finding a set of N local control laws

ui(k) = �i (x
p
i (k)), i = 1, . . . , N , (3)

such that, under Assumptions 1–4, the origin of the overall
system composed by the N subsystems (1) and control laws
(3) is an asymptotically stable fixed point defined, according to
Scokaert, Rawlings, and Meadows (1997), as follows: �

Definition 1. The origin is an asymptotically stable fixed point
of the perturbed system (1), (3) if:

(i) there exist strictly positive constants �̃i , �0
i and �̄d , i =

1, . . . , N, such that, if x
p
i0 ∈ B�0

i
, i = 1, . . . , N , and

di(k) ∈ B�̄d
, i = 1, . . . , N , for all k�0, then the solution

of the ith perturbed system (1), (3), i =1, . . . , N , remains
in a ball B�̃i

for all k�0;
(ii) if x

p
i0 ∈ B�0

i
, i = 1, . . . , N , and di(k) → 0 as k → ∞,

i =1, . . . , N , then the solution of the ith perturbed system
(1), (3) converges asymptotically to the origin.

3. Decentralized state-feedback MPC

The contractive MPC algorithm can now be formally stated
as in de Oliveira Kothare and Morari (2000). To this end, letting

ūi (t) = [ui(t) ui(t + 1) . . . ui(t + Np − 1)],
the ith, i = 1, . . . , N, decentralized control law (3) is obtained
by (locally) minimizing at any time instant t and with respect
to ūi (t) the following performance index:

Ji(xi(t), Np) =
t+Np∑
j=t

|xi(j)|2Qi
+ |ui(j)|2Ri

(4)

subject to constraints (2) and

xi(k + 1) = fi(xi(k), ui(k)), xi(t) = x
p
i (t), k� t , (5)

|x̄t
i (nNp + Np)| < �i |xp

i (nNp)|, �i ∈ [0, 1), (6)

where n = max�∈Z+�Np � t ,

x̄t
i (k + 1) = fi(x̄

t
i (k), ui(k)), k� t , (7)

x̄t
i (t) :=

{
x

p
i (t) if t = nNp,

x̄t−1
i (t) if t �= nNp.

(8)

In the definition of Ji , the positive integer Np is the prediction
horizon assumed for simplicity equal for any subsystem, while
Qi and Ri are positive definite matrices. Note that:

(i) the minimization is performed with respect to the nominal
model coinciding with (1) when the system is decoupled
and the disturbance is null;

(ii) the contractive constraint (6), which is crucial for the
closed-loop stability, is modified every Np time steps.
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Thus constraint is imposed on the trajectory x̄t
i defined

through (7) and (8).

According to the receding horizon approach, for the ith subsys-
tem the state-feedback MPC control law is derived by solving
at any sampling time t the optimization problem (4)–(8) and by
applying the control signal ui(t). In so doing, one implicitly
defines the decentralized state-feedback control laws

ui = �RH
i (x

p
i ), i = 1, . . . , N . (9)

In order to derive the main stability result, the following as-
sumption is introduced.

Assumption 4. For subsystems (1), (9), i = 1, . . . , N , with
di(k) = 0 and gi(x

p(k)) = 0, there exist �i ∈ (0, ∞) so that

x
p
i (k) ∈ B�i |xp

i (nNp)|, k ∈ [nNp, (n + 1)Np), n ∈ Z+.

If (9) are Lipschitz state-feedback functions of x
p
i , the values

of �i , i = 1, . . . , N , can be easily computed. �

Lemma 1. Under Assumptions 1, 2, 4 let �̄i be such that
∀x

p
i (nNp) ∈ B�̄i

there exists a feasible solution of the opti-
mization problem (4)–(8), ∀i=1, . . . , N . Then, defining ∀k > 0,

D(nNp, k)

= [|d(nNp)| |d(nNp + 1)| . . . |d(nNp + k − 1)|]′ ∈ Rk

and

Xp(nNp) = [|xp
1 (nNp)| |xp

2 (nNp)| . . . |xp
N(nNp)|]′ ∈ RN ,

there exist computable functions

	i (X
p(nNp), D(nNp, k), k), i = 1, . . . , N ,

such that for the closed-loop systems (1), (9) and (7), (9), ∀k =
1, . . . , Np, ∀i = 1, . . . , N, the following relation holds:

|xp
i (nNp + k) − x̄i (nNp + k)|�	i (X

p(nNp), D(nNp, k), k).

Defining

�̄ = [�̄1 �̄2 . . . �̄N ]′, � = max
i=1,...,N

�i

and

I (
, j) = [
 
 . . . 
]′ ∈ Rj

for any positive integer j > 0 and real number 
, the main
stability result of the proposed approach can now be stated.

Theorem 1. Under the assumptions of Lemma 1 and Assump-
tion 3 if

(1) 	i (�̄, I (�̄d , Np), Np) < �̄i (1 − �i ),
(2) there exist 0��g < 1, �d �0, �̃ > 0 such that ∀�i � �̄i ,

	i (�, I (�, j), j) < (�g�M + �d�)(1 − �), ∀�� �̃, ∀j > 0,
with

� = [�1 �2 . . . �N ]′, �M = max
i=1,...,N

�i .

Then,

(i) there exist �0
i > 0 such that ∀x

p
i0 ∈ B�0

i
, x

p
i (nNp) ∈ B�̄i

,
∀n�0;

(ii) the origin is an asymptotically stable fixed point of the
perturbed closed-loop system (1), (9) with

�̃i := �i �̄i + max
j=0,...,Np−1

	i (�̄, I (�̄d , j), j).

The result of the theorem is rather conservative, due to the
need to consider bounds on the mutual influence between sub-
systems, their unmodelled dynamics and the effect of the distur-
bances. However, these bounds could be relaxed when partial
information can be exchanged between subsystems. Moreover,
in order to reduce the conservativeness inherent to any robust
open-loop minimization based MPC algorithm, one could re-
sort to min–max closed-loop strategies. For a discussion on this
point see e.g. Magni and Scattolini (2005).

4. Example

Consider the following second order system composed of
two subsystems S1 and S2:

S1 : x
p
1 (k + 1) =

√
x

p
1 (k)2 + 1 + u1(k) − 1 + �1x

p
2 (k)

+ d1(k), x1(0) = x10,

S2 : x
p
2 (k + 1) = e− sin(x

p
2 (k)) + u2(k) − 1 + �2x

p
1 (k)

+ d2(k), x2(0) = x20,

where the “nominal” part of S1, S2 is given by the Lipschitz
functions

f1(x
p
1 , u1) =

√
x

p2
1 + 1 + u1 − 1,

f2(x
p
2 , u2) = e− sin(x

p
2 ) + u2 − 1,

while their mutual influence is described by g1(x
p) = �1x

p
2 ,

g2(x
p) = �2x

p
1 .

As for the disturbances, they are assumed to be the states of
the following asymptotically stable first order systems

di(k + 1) = 	idi(k), di(0) = di0, i = 1, 2.

Finally, the control variables are required to fulfill the following
constraints:

−0.2�ui(k)�0.5, i = 1, 2.

The MPC algorithm described in Section 3 has been used in a
number of simulation experiments with initial conditions xi0 =
di0 =1, i=1, 2, and with performance indices characterized by
Np =5, Qi =Ri =1, i =1, 2. As for the disturbance dynamics,
it has been defined by 	i =0.9, i =1, 2. Finally, the contraction
constraints have been chosen as �i = 0.9, i = 1, 2.

In Fig. 1 the transients of the state and control variables
are reported when �i = �̄, i = 1, 2, with �̄ = {0, 0.2, 0.4}.



1234 L. Magni, R. Scattolini / Automatica 42 (2006) 1231–1236

0 10 20 30 40 50

0

1

2

3

4

time

0 10 20 30 40 50
-0.5

0

0.5

1

1.5

2
x2
p

x1
p

time

0 10 20 30 40 50

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

u1

time

0 10 20 30 40 50
-0.2

0

0.2

0.4

0.6
u2

time

Fig. 1. Transients of the state and control variables for �̄ = 0 (continuous line), �̄ = 0.2 (dashed line) and �̄ = 0.4 (dotted line).

Note that the stability of the origin of the closed-loop system
is always achieved, while the performances decrease when the
interaction (�̄) increases. Note also that constraint on the control
variable u1 is active in the initial instants of the transients.
Finally with �̄�0.5, starting from the same initial conditions,
the state transients diverge.

5. Conclusions

The decentralized predictive control algorithm presented in
this note can be extended in several directions. Among them,
the output feedback case and its modifications when partial in-
formation can be exchanged between local control laws appear
to be of interest.

Appendix.

Proof of Lemma 1. In view of Assumptions 1–4 one has

|xp
i (nNp + k) − x̄i (nNp + k)|
�Lfi

|xp
i (nNp + k − 1) − x̄i (nNp + k − 1)|

+
N∑

j=1

Lij {|x̄j (nNp + k − 1)|

+ |xp
j (nNp + k − 1) − x̄j (nNp + k − 1)|}

+ |di(nNp + k − 1)|

�Lfi
|xp

i (nNp + k − 1) − x̄i (nNp + k − 1)|

+
N∑

j=1

Lij {�j |xp
j (nNp)|

+ |xp
j (nNp + k − 1) − x̄j (nNp + k − 1)|}

+ |di(nNp + k − 1)|.
Finally by iterating backwards the right-hand-side of this ex-
pression and by recalling (8) the result follows.

Proof of Theorem 1. In view of Lemma 1, for i = 1, . . . , N,

|xp
i (nNp + Np)| − |x̄i (nNp + Np)|
� |xp

i (nNp + Np) − x̄i (nNp + Np)|
�	i (�̄, I (�̄d , Np), Np). (10)

Hence, from (6) and condition (1) of the theorem

|xp
i (nNp + Np)|��i |xp

i (nNp)| + 	i (�̄, I (�̄d , Np), Np) (11)

and

|xp
i (nNp)|��n

i �
0
i + 	i (�̄, I (�̄d , Np), Np)

1 − �i

��0
i + 	i (�̄, I (�̄d , Np), Np)

1 − �i

.

So, in order to guarantee

|xp
i (nNp)| < �̄i , ∀n�0, (12)
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it is sufficient to have

�0
i + 	i (�̄, I (�̄d , Np), Np)

1 − �i

< �̄i ,

and this is true if and only if

�0
i < �̄i − 	i (�̄, I (�̄d , Np), Np)

1 − �i

,

but in view of condition (1) this holds true with

�0
i > 0,

and then (i) is satisfied.
We now prove that x

p
i (k) ∈ B�̃i

, ∀k > 0. To this end with
the same arguments used to derive (10), it is easy to show that,
∀j ∈ [0, Np − 1],
|xp

i (nNp + j)|� |x̄i (nNp + j)| + 	i (�̄, I (�̄d , j), j), (13)

but from Assumption 4 and recalling that x̄i (nNp) = x
p
i (nNp)

|x̄i (nNp + j)|��i |x̄i (nNp)|
= �i |xp

i (nNp)|, ∀j ∈ [0, Np − 1].
Hence

|xp
i (nNp + j)|��i |xp

i (nNp)| + 	i (�̄, I (�̄d , j), j). (14)

From (12) and condition (2), ∀n ∈ Z+ and ∀j ∈ [0, Np − 1] it
follows that

|xp
i (nNp + j)|
��i �̄i + 	i (�̄, I (�̄d , j), j)

��i �̄i + max
j=0,...,Np−1

	i (�̄, I (�̄d , j), j) = �̃i ,

so that (i) of Definition 1 is satisfied.
In order to prove (ii) of Definition 1 first we note that if

di(k) → 0 as k → ∞, then for any � > 0 there exists a finite
n̄� ∈ Z+ so that |di(k)|��, ∀k� n̄�Np. In view of (11) one has

|xp
i (n̄�Np + Np)|��i |xp

i (n̄�Np)| + 	i (�̄, I (�, Np), Np)

and, ∀l ∈ Z+, letting

�̄max
i (n̄�Np, l) := max

k=0,...,l−1
|xp

i ((n̄� + k)Np)|,

�̄max(n̄�Np, l) := max
i=1,...,N

�̄max
i (n̄�Np, l),

then

|xp
i ((n̄� + h)Np)|
< �h

i |xp
i (n̄�Np)|

+ 	i (I (�̄max(n̄�Np, h), N), I (�, Np), Np)

1 − �i

. (15)

Then, in view of (15) and condition (2) there exists �̃ such that
∀� < �̃

�̄max((n̄� + h)Np, 0)

< �h�̄max(n̄�Np, 0) + �g�̄
max(n̄�Np, h) + �d�

�(�h + �g)�̄
max(n̄�Np, h) + �d�.

In view of condition (2) there exists a positive integer l such
that �̄g(h) := �h + �g < 1, ∀h� l,

�̄max((n̄� + l)Np, l)

= max=0,...,l−1{�̄max((n̄� + l + )Np, 0)}
� max

=0,...,l−1
�̄g(l)�̄

max(n̄�Np, l + ) + �d�.

Moreover,

�̄max(n̄�Np, l + )

= max{�̄max(n̄�Np, l +  − 1),

�̄max((n̄� + l +  − 1)Np, 0)}
� max{�̄max(n̄�Np, l +  − 1),

�̄g(l +  − 1)�̄max(n̄�Np, l +  − 1) + �d�}
so that

lim
�→0

�̄max(n̄�Np, l + )

� lim
�→0

�̄max(n̄�Np, l +  − 1)� · · · � lim
�→0

�̄max(n̄�Np, l),

and then

lim
�→0

�̄max((n̄� + l)Np, l)� lim
�→0

�̄g(l)�̄
max(n̄�Np, l)

and

lim
�→0

�̄max((n̄� + ml)Np, l)� lim
�→0

�̄m
g (l)�̄max(n̄�Np, l),

so that

lim
�→0

lim
m→∞ �̄max((n̄� + ml)Np, l) = 0.

Hence

lim
n→∞ lim

di→0
|xp

i (nNp)| = 0, ∀i = 1, . . . , N . (16)

Finally, in view of Lemma 1, j �0, i = 1, . . . , N,

|xp
i (nNp + j)|
� |xp

i (nNp + j) − x̄i (nNp + j)| + |x̄i (nNp + j)|
�	i (X

p(nNp), D(nNp, j), j) + �j |xp
i (nNp)|

and from (16) and Assumption 4

lim
n→∞ lim

di→0
|xp

i (nNp + j)| = 0, ∀j ∈ [0, Np − 1],
∀i = 1, . . . , N ,

so that (ii) of Definition 1 is satisfied and the origin is an
asymptotically stable fixed point of the perturbed closed loop
system (1)–(9).
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