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Abstract

Min-Max model predictive control (MPC) is one of the few techniques suitable for robust stabilization
of uncertain nonlinear systems subject to constraints. Stability issues as well as robustness have been
recently studied and some novel contributions on this topic have appeared in the literature. In this survey,
we distill from an extensive literature a general framework for synthesizing min-max MPC schemes with
an a priori robust stability guarantee. Firstly, we introduce a general prediction model that covers a
wide class of uncertainties, which includes bounded disturbances as well as state and input dependent
disturbances (uncertainties). Secondly, we extend the notion of regional Input-to-State Stability (ISS) in
order to fit the considered class of uncertainties. Then, we establish that the standard min-max approach
can only guarantee practical stability. We concentrate our attention on two different solutions for solving
this problem. The first one is based on a particular design of the stage cost of the performance index,
which leads to a H∞ strategy, while the second one is based on a dual-mode strategy. Under fairly
mild assumptions both controllers guarantee Input-to-State Stability of the resulting closed-loop system.
Moreover, it is shown that the nonlinear auxiliary control law introduced in [29] to solve the H∞ problem
can be used, for nonlinear systems affine in control, in all the proposed min-max schemes and also in
presence of state independent disturbances. A simulation example illustrates the techniques surveyed in
this article.
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1 Introduction

Model Predictive Control (MPC) is a widely used technique for its facility of handling constraints and
model uncertainties (see e.g. the books [3, 28, 44] and the survey papers [39, 7]). Several results have been
proposed concerning robustness of nominal MPC and robust MPC design (see e.g. [35, 33] for a survey, the
reference therein, and some of the most recent papers [12, 13, 36, 6, 26, 43]). A first method for the design of
robust MPC consists in minimizing a nominal performance index while imposing the fulfillment of constraints
for each admissible disturbance, see [24, 41]. This calls for the inclusion in the problem formulation of tighter
state and terminal constraints and leads to very conservative solutions or even to unfeasible problems. With
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a significant increase of the computational burden, an alternative approach consists in solving a min-max
optimization problem. Specifically, in an open-loop formulation, the performance index is minimized with
respect to the control sequence for the worst case, i.e. the disturbance sequence over the optimization horizon
which maximizes the performance index. However, this solution is still unsatisfactory, since the minimization
with respect to a single control profile does not solve the feasibility problem. This drawback can be avoided
as in [4], where the MPC control law is applied to an already robustly stable system. Recently, a closed-loop
formulation of the min-max controller has been proposed to reduce this conservativeness [45, 35, 30]. In
this predictive control technique, a vector of feedback control policies is considered in the minimization of
the cost in the worst disturbance case. This allows to take into account the reaction to the effect of the
uncertainty in the predictions at expense of a practically untractable optimization problem.

In this context robust stability issues have been recently studied and some novel contributions on this
topic have appeared in the literature [45, 15, 19, 29, 16, 8, 32, 22, 23, 25, 31, 27, 20]. In [34] two different
cases are considered: when the uncertainty model does not depend on the state and when does depend
on the state in such a way that the origin remains as equilibrium point. In order to analyze the stability
properties of the uncertain system in the state dependent case, it is sufficient to use the notions of robust
stability and stability margin [34]. On the contrary, a state independent disturbance asks for the use of
Input-to-State Stability (ISS) and Input-to-State practical Stability (ISpS) concepts (see e.g. [48] and [18]
for the continuous and the discrete time case respectively, and the further papers [2, 38, 14, 51]) and sufficient
stability conditions have been presented in [25, 23].

In order to apply the ISS property to MPC closed-loop systems (see e.g. [9, 23, 42, 31, 13, 25, 11, 21]),
global results are in general not useful due to the presence of state and input constraints. On the other hand
local results, see e.g. [18, 17], do not allow the analysis of the properties of the predictive control law in
terms of its region of attraction. In [31] a regional version of the ISS has been used in the stability analysis
of min-max MPC controllers.

1.1 Purpose of this survey

The objective of this paper is to summarize the results appearing in literature and to provide a general
framework for synthesizing min-max MPC schemes with an a priori robust stability guarantee. To this
aim, a general prediction model that covers a wide class of uncertainty modeling that includes bounded
disturbances as well as state (and input) dependent disturbances (uncertainties) is introduced. This requires
that the regional Input-to-State Stability (ISS) and practical ISS results are extended in order to cover both
state dependent and state independent uncertainties. Moreover, Lyapunov-type sufficient conditions for the
regional ISS and ISpS are presented for the considered class of systems; this constitutes the base of the
stability analysis of the min-max MPC for the generalized prediction model.

Using this ISS tool, it is proven that if the terminal controller ensures ISS of the prediction system, w.r.t.
the state independent part of the disturbance (i.e. the state dependent part of the disturbance remains in
a certain stability margin) then the min-max MPC ensures that the closed loop system is ISpS maintaining
the same stability margin. The practical nature of the stability is a consequence of the worst-case approach
of the control action and causes the system to be ultimately bounded even if the real disturbances vanish.

In this survey paper, we concentrate on two different possible solutions to avoid this problem: the first one
is based on an H∞ like cost of the performance index (see e.g. [30, 29, 31, 16]), while the second one is based
on a dual-mode strategy [37, 5, 46, 45, 19, 23]. These solutions are extended to the generalized prediction
model and it is shown that under fairly mild assumptions both controllers guarantee Input-to-State Stability.

Moreover, a nonlinear auxiliary control law, based on the one presented in [29], is proposed for the case
of nonlinear systems affine in control (which are very usual). It is shown that a nonlinear auxiliary control
law and the terminal penalty can be derived from the solution of the discrete-time H∞ algebraic Riccati
equation for the linearized system.

This survey paper is organized as follows: first, some notations used through the paper are presented and
then the model of the plant and the control problem considered in this paper are stated. Section 4 is devoted



to the regional version of ISS and ISpS in the case of the considered controlled systems. Based on this result,
stability of the systems controlled by a min-max MPC is analyzed, considering different formulations: the
standard, the H∞ and the dual-mode approaches. In Section 6, the proposed method for the calculation of a
suitable auxiliary control law for a class of plants is presented. In the subsequent section, an example is given
in order to compare the different strategies and, finally, some conclusions are derived. Some definitions and
all the proofs of Theorems, Corollaries and Propositions are gathered in Appendix to improve readability.

2 Notations and basic definitions

Let R, R≥0, Z and Z≥0 denote the real, the non-negative real, the integer and the non-negative integer
numbers, respectively. Euclidean norm is denoted as |·|. Given a signal w, the signal’s sequence is denoted by
w , {w(0), w(1), ·· ·} where the cardinality of the sequence is inferred from the context. The set of sequences
w, whose values belong to a compact set W ⊆ Rm is denoted by MW , while W sup , supw∈W {|w|},
W inf , infw∈W {|w|}. Moreover ‖w‖ , supk≥0{|w(k)|} and ‖w[τ ]‖ , sup0≤k≤τ{|w(k)|}. The symbol id
represents the identity function from R to R, while γ1◦γ2 is the composition of two functions γ1 and γ2 from
R to R. Given a set A ⊆ Rn, |ζ|A , inf {|η − ζ| , η ∈ A} is the point-to-set distance from ζ ∈ Rn to A. The
difference between two given sets A ⊆ Rn and B ⊆ Rn with B ⊆ A, is denoted by A\B , {x : x ∈ A, x /∈ B}.
Given a closed set A ⊆ Rn, ∂A denotes the border of A. A function γ : R≥0→ R≥0 is of class K (or a
”K-function”) if it is continuous, positive definite and strictly increasing. A function γ : R≥0→ R≥0 is of
class K∞ if it is a K-function and γ(s) → +∞ as s → +∞. A function β : R≥0 × Z≥0 → R≥0 is of class
KL if, for each fixed t ≥ 0, β(·, t) is of class K, for each fixed s ≥ 0, β(s, ·) is decreasing and β(s, t) → 0 as
t →∞.

3 Problem statement

In this paper it is assumed that the plant to be controlled is described by discrete-time nonlinear model:

x(k + 1) = f(x(k), u(k), d1(k), d2(k)), k ≥ t, x(t) = x̄ (1)

where x(k) ∈ Rn is the system state, u(k) ∈ Rm is the current control vector and d1(k) and d2(k) are
disturbances which model the uncertainties present in the model. This partition on the disturbance signals
stems from its nature: d1(k) ∈ Rp models a class of uncertainty which depends on the state and the control
input while d2(k) ∈ Rq models a class of uncertainty that does not depend neither on the state nor on the
input signal.

Most of the models of nonlinear systems considers the uncertainty as bounded disturbances, that is,
the only knowledge of the model mismatches is a bounded set where the error lies in. However, this
representation may lead to conservative results when, as usually occurs, there exists a relationship between
the model mismatch bounds and the state and input of the plant. In this case, this conservativeness would
be reduced if this information were considered in the model of the plant by means of the proposed partition
of the disturbance model.

In the following assumption, the considered structure of such models is formally presented.

Assumption 1

1. The uncertainty d1 is such that

d1(k) = d1η(k)η(|(x(k), u(k))|) (2)

for all k ≥ 0, where η is a known K-function and d1η ∈ Rp is modeled as confined in a compact set

D1η ⊂ Rp (3)

not necessarily including the origin with Dinf
1η and Dsup

1η known.



2. The uncertainty d2 is such that
d2(k) ∈ D2 (4)

for all k ≥ 0, where D2 ⊂ Rq is a compact set containing the origin with Dsup
2 known.

3. The system has an equilibrium point at the origin, that is f(0, 0, 0, 0) = 0.

4. The control and state of the plant must fulfill the following constraints on the state and the input:

u(k) ∈ U (5)

x(k) ∈ X (6)

where X is a closed set and U a compact set, both of them containing the origin.

5. The state of the plant x(k) can be measured at each sample time.

¤
The control objective consists in designing a control law u = κ(x) such that it steers the system to (a

neighborhood of) the origin fulfilling the constraints on the input and the state along the system evolution
for any possible disturbance and yielding an optimal closed performance according to certain performance
index.

This control problem is well studied in the literature and there exist a number of control techniques that
could be used. However, among the existing solutions, one of the most successfully used control technique is
the model predictive control in its min-max approach. This is due to its optimal formulation, its capability
to ensure the robust constraint satisfaction and its stabilizing design [35].

A primary family of min-max MPC controllers determines the control law from the calculation of a
sequence of control actions which ensures the constraint along the predicted trajectory of the plant for any
possible uncertainty and minimizes the worst case performance index of the predicted evolution of the plant.
These controllers are called open-loop min-max MPC and it is well-known that this may lead to extremely
conservative solutions. This is a consequence of the open loop nature of the predicted control actions.

If a control law is considered as decision variable in the optimization problem (instead of a control action),
the solution results to be less conservative since the predicted controlled system reacts to the effect of
the disturbance. The predictive controllers derived from this approach are called closed-loop min-max MPC
controllers and can provide larger domain of attraction and a better closed-loop performance index. However,
the optimization problem may be difficult (or even impossible) to be solved even for linear prediction models.

A practical solution, located between the open-loop and the closed-loop approach, is the so-called semi-
feedback formulation of the problem. In this case, control policies are considered as decision variables, but
forcing a given structure of the control law. Thus, the decision variable of each control law is its set of
defining parameters, yielding to an optimization problem similar to the open-loop case one.

In this paper, the considered control law is derived from a closed-loop min-max MPC formulation κ(x) =
κMPC(x). Although, from a practical point of view, the control law is difficult to calculate, from a theo-
retical point of view makes sense since the closed-loop approach includes the open-loop and semi-feedback
controllers, and these can be considered as particular cases. Thus, the stability results derived in the paper
for closed-loop min-max MPC will be valid for the rest of formulations. It is worth remarking that this
control law might be a discontinuous function of the state.

The resulting closed-loop system is given by

x(k + 1) = f(x(k), κMPC(x(k)), d1(k), d2(k)), k ≥ t, x(t) = x̄

where the disturbance d1(k) is such that d1(k) = d1η(k)η(|(x(k), κMPC(x(k)))|) with d1η ∈ D1η, and the
disturbance d2(k) is such that d2(k) ∈ D2. The control law should ensure that if the initial state is in a
certain stability region, i.e. x̄ ∈ XMPC , then the resulting evolution of the system fulfils the constraints,
that is x(k) ∈ X and κMPC(x(k)) ∈ U for all k ≥ t, for any possible evolution of the disturbance signals.

In the following section it is presented a suitable framework for the analysis of stability of such class of
closed loop systems: the regional ISS.



4 Regional Input-to-state stability

In this section the ISS framework for discrete-time autonomous nonlinear systems is presented and
Lyapunov-like sufficient conditions are provided. This will be employed in this paper to study the behavior
of perturbed nonlinear systems in closed-loop with min-max MPC controllers.

Consider a nonlinear discrete-time system described by

x(k + 1) = F (x(k), d1(k), d2(k)) (7)

where x(k) ∈ Rn is the state, d1(k) ∈ Rp is the component of the uncertainty depending from the state and
d2(k) ∈ Rq is the other component of the uncertainty.

The transient of the system (7) with initial state x(0) = x̄ and uncertainties d1 and d2 is denoted by
x(k, x̄,d1,d2). Denote MD1 the set of sequences d1 such that d1(k) ∈ D1(x(k)), ∀k ≥ 0.

Consider the following assumptions.

Assumption 2 The uncertainty d1 is such that

d1(k) ∈ D1(x(k)) ⊂ Rp

for all k ≥ 0, where, for each x, D1(x) is closed and contains the origin. Moreover there exist a K-function
η and a signal d1η ∈ Rp, limited in a compact set D1η ⊂ Rp (not necessarily including the origin as an
interior point) such that

d1(k) = d1η(k)η(|x(k)|)
for all k ≥ 0 and all x ∈ Ξ, where Ξ ⊆ Rn is a closed set containing the origin as an interior point.

The uncertainty d2 is such that
d2(k) ∈ D2 ⊂ Rq

for all k ≥ 0, where D2 is a compact set containing the origin.

Assumption 3 The set A ⊂ Rn, containing the origin, is a zero-invariant set for the system (7), that is,
a positively invariant set for the associated “undisturbed” system x(k + 1) = F (x(k), 0, 0), that means

F (x, 0, 0) ∈ A, ∀x ∈ A.
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Consider the following definition.

Definition 1 (Robust positively invariant set) Suppose that Assumption 2 is satisfied. A set Ξ ⊆ Rn

is a robust positively invariant set for system (7) if F (x, d1, d2) ∈ Ξ, for all x ∈ Ξ, all d1 ∈ D1(x) and all
d2 ∈ D2. ¤

A regional version of ISpS [48, 18] is defined in the following.

Definition 2 (Regional ISpS in Ξ) Suppose that Assumption 2 is satisfied. Given a closed set Ξ ⊆ Rn,
including the origin as an interior point, system (7) with d1∈MD1 and d2∈MD2 is said to be ISpS (Input-
to-State practical Stable) in Ξ with respect to d2 if Ξ is robust positively invariant for (7) and if there exist
a KL-function β, a K-function γ2 and a constant c ≥ 0 such that

|x(k, x̄,d1,d2)| ≤ β(|x̄|, k) + γ2(||d2[k−1]||) + c (8)

for all x̄ ∈ Ξ and k > 0. Whenever c = 0 and (8) is satisfied, the system (7) is said to be ISS (Input-to-State
Stable) in Ξ with respect to d2. ¤



In many applications it is of interest to study the stability with respect to an invariant set A, where A in
general does not consist of a single point. The ”set” version of the ISS property (also known as ”compact-
ISS”) was originally proposed in [49]. Suppose that Assumption 3 is satisfied. A regional version of ISS
with respect to A [47, 10] is given in Appendix. In Proposition VI.3 of [48] and in Definition 2.4 of [50], it
is shown, for the continuous-time case, that concept of ISpS is equivalent to concept of ISS with respect to
A. In this case, the constant c of equation (8) is c , Asup. The same relation holds for discrete-time case.

The concepts of LpS, UpAG in Ξ, LS and UAG in Ξ with respect to A are given in Appendix. As for the
ISpS property, the concepts of LpS and UpAG are equivalent to the concepts of LS and UAG with respect
to A. On the base of the results obtained in [50, 48, 10], it is possible to give the following equivalence
result.

Theorem 1 Suppose that Assumption 3 is satisfied. Consider system (7). The following properties are
equivalent:

a) ISpS in Ξ;

b) ISS in Ξ with respect to A;

c) UpAG in Ξ and LpS;

d) UAG in Ξ with respect to A and LS with respect to A.

¤

Remark 1 The assumption that Ξ is robust positively invariant could render the definitions of ISpS and
UpAG in Ξ trivials. In fact ISS in Ξ with respect to Ξ and ISpS in Ξ with A ≡ Ξ are always satisfied.
However, if in the ISpS property, c is shown to be smaller than Ξsup, and in the ISS the set A is shown to
be smaller than Ξ, then the ISpS in Ξ (or the ISS in Ξ with respect to A) give more information than the
solely robust positively invariance of Ξ.

Regional ISpS will be now associated to the existence of a suitable Lyapunov function (in general, a priori
non-smooth) with respect to d2. A sufficient condition, that extends the ISS results of [31], using the results
of [25], is introduced. In order to clarify the relation between the sets introduced in the following definition
see Figure 1.

Definition 3 (ISpS-Lyapunov function in Ξ) Under Assumption 2, a function V : Rn → R≥0 is called an
ISpS-Lyapunov function in Ξ for system (7) with respect to d2, if:

1) Ξ is a closed robust positively invariant set including the origin as an interior point

2) there exist a compact set Ω ⊆ Ξ (including the origin as an interior point), a pair of suitable K∞-
functions α1, α2 and a constant c1 ≥ 0 such that:

V (x) ≥ α1(|x|), ∀x ∈ Ξ (9)

V (x) ≤ α2(|x|) + c1, ∀x ∈ Ω (10)

3) there exists a suitable K∞-function α3, a K-function λ2 and a constant c2 ≥ 0 such that:

∆V (x) , V (F (x, d1, d2))− V (x)
≤ −α3(|x|) + λ2(|d2|) + c2,

∀x ∈ Ξ, ∀d1 ∈ D1(x), ∀d2 ∈ D2

(11)



4) there exist suitable K∞-functions ζ and ρ (with ρ such that (id− ρ) is a K∞-function) and a suitable
constant cθ > 0, such that there exists a nonempty compact set Θ ⊂ {x : x ∈ Ω, d(x, δΩ) > cθ}
(including the origin as an interior point) defined as follows:

Θ , {x : V (x) ≤ b(λ2(D
sup
2 ) + c3)} (12)

where b , α−1
4 ◦ρ−1, with α4 , α3 ◦α−1

2 , α3(s) , min(α3(s/2), ζ(s/2)), α2 , α2(s)+ s, c3 , c2 + ζ(c1).

A function V : Rn →R≥0 is called an ISS-Lyapunov function in Ξ if it is an ISpS-Lyapunov function in
Ξ with c1 = c2 = 0 (see [31]).

¤

Figure 1: Example of sets satisfying Definition 3.

A sufficient condition for regional ISpS of system (7), that extends the ISS results of [31] using the results
of [25], can now be stated.

Theorem 2 If system (7) admits an ISpS-Lyapunov function in Ξ with respect to d2, then it is ISpS in Ξ
with respect to d2 and limk→∞ |x(k, x̄,d1,d2)|Θ = 0.

Remark 2 In the proof of Theorem 2, it is shown that, in order to prove the ISpS, the upper bound (10) in
a local region is sufficient. However, this could be a limitation due to (12). In fact the uncertainty should
be such that Θ ⊆ Ω. In order to enlarge the set of admissible uncertainty it could be useful to find an upper
bound in a region Ω1 ⊇ Ω as suggested in [25, 23] for the MPC case. However this idea can either enlarge
or restrict the set of admissible uncertainty since Ω1 ⊇ Ω but the upper bound could be more conservative.

Remark 3 Note that for a generic disturbance d1, condition 3) of Definition 3 should be:
there exists a suitable K∞-function α3, a pair of K-functions λ1 and λ2 and a constant c2 ≥ 0 such that:

∆V (x) , V (F (x, d1, d2))− V (x) ≤ −α(|x|) + λ1(|d1|) + λ2(|d2|) + c2,
∀x ∈ Ξ, ∀d1 ∈ D1(x), ∀d2 ∈ D2.

(13)

However, in view of Assumption 2, since d1 is a function of x, the term λ1(d1(x)) is incorporated in −α3(|x|).
In order to satisfy the condition that α3 is a K∞-function, it is necessary that the K∞-function α in (13)
compensates the effect of the disturbance d1. This means that system (7) must have a stability margin: under
Assumption 2, it is required that

−α(|x|) + λ1(|d1|) = −α(|x|) + λ1(|d1η|η(|x|)) ≤ −α(|x|) + λ1(D
sup
1η η(x)) , −α3(|x|)

with α3 ∈ K∞-function.

5 Min-max model predictive control

This section presents new results that allows the presentation of previous results in a unified framework.
Firstly, the formulation of the closed-loop min-max control law is presented. Then, the stability of different
approaches of this control technique is studied, deriving sufficient conditions and generalizing existing results.

As it was claimed in Section 3, the control law derived by means of a closed-loop min-max MPC considers
a vector of feedback control policies κt,t+N−1 = [κ0(x(t)), κ1(x(t + 1)), · · ·, κN−1(x(t + N − 1))] in the
minimization of the cost in the worst disturbance case. This optimization problem can be posed as the
following Finite Horizon Closed-Loop Game (FHCLG).



Definition 4 (FHCLG) Suppose that Assumption 1 is satisfied. Given the positive integer N , the stage
cost l, the terminal penalty Vf and the terminal set Xf , the FHCLG problem consists in minimizing, with
respect to κt,t+N−1 and maximizing with respect to d1[t,t+N−1] and d2[t,t+N−1] the cost function

J(x̄, κt,t+N−1, d1[t,t+N−1], d2[t,t+N−1], N) ,
∑t+N−1

k=t l(x(k), u(k), d1(k), d2(k)) + Vf (x(t + N)) (14)

subject to

i) the state dynamics (1), with x(t) = x̄;

ii) the constraints (3)-(6), k ∈ [t, t + N − 1];

iii) the terminal constraint x(t + N) ∈ Xf .

¤

Letting κo
t,t+N−1, d

o
1[t,t+N−1], d

o
2[t,t+N−1] be the solution of the FHCLG, according to the Receding Horizon

(RH) paradigm, the feedback control law u = κMPC(x) is obtained by setting

κMPC(x) = κo
0(x) (15)

where κo
0(x) is the first element of κo

t,t+N−1.
¤

The parameters of the controller are the prediction horizon N , the stage cost function, the terminal cost
function and the terminal region. The stage cost defines the performance index to optimize and must satisfy
following assumption.

Assumption 4 The stage cost l(·) is such that l(0, 0, 0, 0) = 0 and l(x, u, d1, d2) ≥ αl(|x|)− αd(|d2|) where
αl and αd are K∞-functions.

As it is standard in MPC [35], the terminal ingredients are added to provide closed-loop stability as it
can be seen in the following section.

5.1 Stability

In this section we provide tools for analyzing stability of closed-loop min-max MPC systems. Firstly,
it will be shown that, when persistent disturbances are present, the standard min-max approach can only
guarantee ISpS. Secondly, two different solutions for overcoming this problem and guaranteing ISS of the
min-max MPC closed-loop system are given: the first one is derived using a particular design of the stage
cost of the performance index, while the second one is based on a dual-mode strategy.

The presence of constraints in the system may limit the domain of attraction of the controlled system to
a certain region. This region is introduced in the following definition.

Definition 5 (Robust invariant region) Suppose that Assumption 1 is satisfied. Given a control law
u = κ(x), X̄ ⊆ X is a robust invariant region for the closed-loop system (1) with u(k) = κ(x(k)), if x̄ ∈ X̄
implies x(k) ∈ X̄ and κ(x(k)) ∈ U , ∀k ≥ t. ¤

In order to derive the main stability properties, the optimal value of the performance index, i.e.

V (x,N) , J(x̄, κo
t,t+N−1, d

o
1[t,t+N−1], d

o
2[t,t+N−1], N),

is employed as an ISpS-Lyapunov function. Furthermore, the following assumptions are introduced.

Assumption 5 The design parameters Vf , Xf are such that, given an auxiliary control law κf



1) Xf ⊆ X, Xf closed, 0 ∈ Xf ;

2) κf (x) ∈ U , |κf (x)| ≤ Lf |x|, ∀x ∈ Xf , where Lf > 0;

3) f(x, κf (x), d1, d2) ∈ Xf , ∀x ∈ Xf , ∀d1η ∈ D1η, ∀d2 ∈ D2;

4) αVf
(|x|) ≤ Vf (x) ≤ βVf

(|x|), ∀x ∈ Xf , where αVf
and βVf

are K∞-functions;

5) Vf (f(x, κf (x), d1, d2)− Vf (x) ≤ −l(x, κf (x), d1, d2) + %(|d2|),
∀x ∈ Xf , ∀d1η ∈ D1η, ∀d2 ∈ D2, where % is a K∞-function.

¤

Assumption 5 implies that the closed-loop system formed by (1) and u(k) = κf (x), is ISS in Xf (Vf is an
ISS-Lyapunov function in Xf ).

Remark 4 If the feedback policies κi(x), i = 0, . . . , N − 1 are restricted to belong to a particular class
of functions then also κf must belong to this class. This motivates the difficulty to guarantee closed-loop
stability if optimization is performed with respect to open-loop strategies [4]. In fact, Assumption 5 should
be verified with κf (x) = 0. On the contrary, a natural choice, when semi-feedback controllers are used, is to
include the auxiliary control law among the regressors (see the example in Section 7).

Assumption 6 Let XMPC(N) denote the set of states for which a solution of the FHCLG problem exists.
Let Ω = Xf , α1 = αl, α2 = βVf

, c1 = N%(Dsup
2 ), α3 = αl, λ = αd, c2 = %(Dsup

2 ). The set D2 is such that
the set Θ (depending from Dsup

2 ), defined in (12), is strictly contained in Ω.
¤

Consider now the following stability result for the classic min-max MPC problem.

Theorem 3 Under Assumptions 1, 4-6, the closed-loop system formed by (1) and (15) is ISpS with respect
to d2 with robust invariant region XMPC(N).

¤

Remark 5 Following the result in [46] for standard NMPC, assuming that an initial feasible solution of
the FHCLG is available, it is possible to show that it is not necessary to obtain the global optimum solution
of the FHCLG in order to guarantee the ISpS (or the ISS) of the closed-loop system. In fact the vector
of feedback control policies κ̃1,N , [κ̃0,N−1 κf ], where κ̃0,N−1 is the possible sub-optimal solution obtained
at the previous step, is an available feasible solution that guarantees ISpS or ISS. Indeed this sequence is
such that the value function satisfies (11). The only requirement on the possible sub-optimal solution is to
be not worst than κ̃1,N . On the contrary, the applicability of a sub-optimal solution of the maximization of
the FHCLG is still an open issue [1, 40].

The previous theorem formulated for the general case of standard min-max MPC states that only ISpS
is guaranteed for the resulting closed-loop system, irrespective of the fact that the disturbances may vanish
in reality. However, when this is the case, it would be preferable that the closed-loop system is ISS, so that
nominal asymptotic stability is recovered when disturbances are no longer active.

In the following subsections we present some ingredients, in the form of assumptions on the type of dis-
turbances or the min-max MPC cost function, that make it possible to establish ISS, instead of ISpS, of
closed-loop min-max MPC systems.



5.1.1 Standard min-max with only state dependent uncertainty

Consider the case when system (1) is affected only by the uncertainty d1 satisfying (2) (it is known that
d2(k) = 0, ∀k ≥ 0). This assumption led to the result published in [34], which is stated in the following
theorem.

Theorem 4 [34] Consider that d2 = 0. Under Assumptions 1, 4-6, the origin of the closed-loop system
formed by (1) and (15) is robustly asymptotically stable with domain of attraction XMPC(N).

Remark 6 Note that Assumption 5 states that control law u = κf (x) is designed in such a way that the
closed-loop system has a stability margin in Xf . Moreover, note that the robustness of the auxiliary control
law is translated to the MPC, that is, the min-max MPC controller extends to XMPC(N) the stability margin
provided by the auxiliary control law.

Next, we will consider the more challenging case when both state dependent and state independent
uncertainties are present.

5.1.2 Standard min-max with state independent uncertainty

Consider the case system (1) is affected by both uncertainties of the type d1(k) and of the type d2(k).
A new condition on the stage cost (standard min-max stage cost) is introduced.

Assumption 7 The stage cost l(x, u) is disturbance independent and such that l(0, 0) = 0 and l(x, u) ≥
αl(|x|), where αl is a K∞-function.

¤

Under the above assumption, the following ISpS result (which can be recovered also from Theorem 3) for
min-max MPC was obtained in [25].

Corollary 1 [25] Under Assumptions 1, 5-7, the closed-loop system formed by (1) and (15) is ISpS with
respect to d2 with robust invariant region XMPC(N).

¤

Note that, even if the auxiliary control strategy guarantees ISS, only ISpS can be established for the min-
max MPC closed-loop system. As already mentioned, this is not a desirable property, as the employed control
design method prevents that closed-loop asymptotic stability is attained when there are no disturbances
active.

In the followings we will discuss two solutions for solving this problem of standard min-max MPC. The
first solution employs a particular design of the stage cost such that Assumption 5 can be satisfied also
with % ≡ 0, leading, for example, to the well-known H∞ strategy. The second solution exploits the ISS
property of the auxiliary control law via a dual-mode strategy to establish ISS of the dual-mode min-max
MPC closed-loop system.

5.1.3 H∞ strategy

The proof of Corollary 1 clearly illustrates that the difficulty of proving ISS of min-max MPC, which is
attempted in Theorem 3, is related to the terms c1 and c2 that are depending on the K∞-function % defined
in Assumption 5 and whose necessity is related to the stage cost considered in the standard min-max MPC
optimization problem.

This observation leads to the following new condition on the stage cost, which will turn out to be sufficient
for proving ISS of the corresponding min-max MPC closed-loop system.



Assumption 8 The stage cost is composed by the functions lx : Rn×Rm×Rp → R and ld : Rq×Rm →R
as follows

l(x, u, d1, d2) = lx(x, u, d1)− ld(d2)

and satisfies Assumption 4.
¤

If Assumption 8 is satisfied, as it will be shown in Section 6, then Assumption 5 can be satisfied also with
% ≡ 0. Then, using the proof of Theorem 3, ISS of the closed-loop system can be guaranteed, as established
by the following result.

Corollary 2 [31] Under Assumptions 1, 5, 6, 8 with % ≡ 0, the closed-loop system formed by (1) and (15)
is ISS with respect to d2 with robust invariant region XMPC(N).

The above result shows that by adding a new term to the stage cost, which depends solely on the dis-
turbance signal, ISS of the resulting min-max MPC closed-loop system can be attained. It remains to be
explored how the modified cost function affects the solvability of the min-max optimization problem and
whether standard min-max MPC solvers can still be employed.

Next, we present a dual-mode strategy for guaranteeing ISS of min-max MPC, which relies on the same
cost function as the one used in standard min-max MPC.

5.1.4 Dual-mode strategy

Sufficient conditions for input-to-state stability of nonlinear discrete-time systems in closed-loop with
dual-mode min-max MPC controllers were recently developed in [23]. Therein, only state independent un-
certainties were considered. In this section we exploit the results presented in [23] and we use Theorem 2
to apply the dual-mode approach to the more general class of uncertainties considered in this paper.

First, let us recall the classical dual-mode strategy. In dual-mode MPC, the receding horizon controller
(15) is employed outside Xf and the auxiliary control law κf is used inside Xf , i.e.

uDM ,
{

κMPC(x) if x ∈ XMPC(N)\Xf ,
κf (x) if x ∈ Xf .

(16)

Next, we present the ISS result for dual-mode min-max MPC with standard cost function.

Theorem 5 Under Assumptions 1, 4-6, the closed-loop system formed by (1) and (16) is ISS with respect
to d2 with robust invariant region XMPC(N).

So far, we have presented two methods for establishing ISS of min-max MPC. However, both these methods
rely on a specific cost function that must satisfy certain assumptions. Therefore, the computation of suitable
cost functions is equally important for synthesizing min-max MPC schemes with an a priori ISS guarantee.
A solution that applies to nonlinear systems affine in control is presented in the next section.

6 The auxiliary control law

In this section it is shown that, if nonlinear input affine systems are considered, a nonlinear control law
u = κ̂(x) satisfying Assumption 5 can be derived by the solution of theH∞ control problem for the linearized
system. In this respect, consider the system

x(k + 1) = f1(x(k)) + f2(x(k))u(k) + f3(x(k))w(k) (17)

z(k) =
[

h1(x(k))
u

]



where w = [d1 d2]′, f1, f2, f3 and h1 are C2 functions with f1(0) = 0 and h1(0) = 0. For convenience, we
represent the corresponding discrete-time linearized system as

x(k + 1) = F1x(k) + F2u(k) + F3w(k)

z(k) =
[

H1x(k)
u

]

where F1 = ∂f1

∂x

∣∣∣
x=0

, F2 = f2(0), F3 = f3(0), H1 = ∂h1
∂x

∣∣∣
x=0

. Given a square n×n matrix P , define also the
symmetric matrix

R = R(P ) =
[

R11 R12

R21 R22

]
(18)

where

R11 = F ′
2PF2 + I

R12 = R′
21 = F ′

2PF3

R22 = F ′
3PF3 − γ2I

and the quadratic function
Vf (x) = x′Px.

Proposition 1 Suppose that Assumptions 1 is satisfied. Suppose there exists a positive definite matrix P
such that

(i) R22 < 0

(ii) −P + F ′
1PF1 + H ′

1H1 − F ′
1P

[
F2 F3

]
R−1

[
F2 F3

]′
PF1 < 0

and that

(iii) |d1|2 = |d1ηη(|(x, u)|)|2 ≤ Kdx|x|2 + Kdu|u|2, with Kdx ≥ 0 and Kdu ≥ 0.

Then, there exist sets D1(x) and D2 such that ∀w ∈ W̄ne = D1(x)×D2 the control law u = κ∗(x) where
[

κ∗(x)
ξ∗(x)

]
= −R(x)−1

[
f2(x) f3(x)

]′
Pf1(x)

with

R(x) =
[

f2(x)′Pf2(x) + I f2(x)′Pf3(x)
f3(x)′Pf2(x) f3(x)′Pf3(x)− γ2I

]
=

[
r11(x) r12(x)
r21(x) r22(x)

]

satisfies Assumption 5 with stage cost

(a) l(x, u, d1, d2) = |z|2 − γ2|w|2 and % ≡ 0

or

(b) l(x, u, d1, d2) = |zl|2 with zl =
[

hl(x)
u

]
, where hl is such that h1(x)′h1(x) ≥ hl(x)′hl(x)+a|x|2+c|x|2,

a , γ2Kdx, b , γ2Kdu, c , bL2
f and %(s) , γ2|s|2

and
Xf ,

{
x : x′Px ≤ α

} ⊆ X,

where α is a finite positive constant.

Remark 7 P can be computed by solving a discrete-time H∞ algebraic Riccati equation.



7 Example

In this section, the MPC law introduced in the paper is applied to a cart with mass M moving on a
plane (the model is the same of the paper [29]). This carriage (see Figure 2) is attached to the wall via a
spring with elastic constant k given by k = k0e

−x1 , where x1 is the displacement of the carriage from the
equilibrium position associated with the external force u = 0 and the external disturbance force (wind force)
d2 = 0. Finally a damper with damping factor hd affects the system in a resistive way. The model of the

Figure 2: Cart and spring-damper example.

system is given by the following continuous-time state space nonlinear model
{

ẋ1(t) = x2(t)
ẋ2(t) = − k0

M e−x1(t)x1(t)− hd
M x2(t) + u(t)

M + d2(t)
M

where x2 is the carriage velocity. The parameters of the system are M = 1 kg, k0 = 0.33 N
m , while the

damping factor in not well known and is given by hd = h̄d + d1η(t), where h̄d = 1.1Ns
m and |d1η(t)| ≤ 0.1.

Wind force is limited: −0.2 ≤ d2 ≤ 0.4. The system can be rewritten as
{

ẋ1(t) = x2(t)
ẋ2(t) = − k0

M e−x1(t)x1(t)− h̄d
M x2(t) + u(t)

M − d1η(t)
M x2(t) + d2(t)

M

The state and control variables have to satisfy the following constraints |u| ≤ 4.5 N , |x1| ≤ 2.65 m. An
Euler approximation of the system with sampling time Tc = 0.4 s is given by





x1(k + 1) = x1(k) + Tcx2(k)
x2(k + 1) = −Tc

k0
M e−x1(k)x1(k) + x2(k)− Tc

h̄d
M x2(k)

+Tc
u(k)
M − Tc

d1η(k)
M x2(k) + Tc

d2(k)
M

which is a discrete-time nonlinear system. The system can be rewritten as
[

x1(k + 1)
x2(k + 1)

]
=

[
1 Tc

−Tc
k0
M e−x1(k) 1− Tc

h̄d

M

] [
x1(k)
x2(k)

]

︸ ︷︷ ︸
f1(x(k))

+
[

0
Tc

M

]

︸ ︷︷ ︸
F2

u(k) +
[

0 0
−Tc

M
Tc

M

]

︸ ︷︷ ︸
F3

[
d1(k)
d2(k)

]

︸ ︷︷ ︸
w(k)

where d1(k) = d1η(k)x2(k). Disturbance d1(k) satisfies point (iii) of Proposition 1 with Kdx = 0.01 and
Kdu = 0. Let choose l(x, u, d1, d2) = |zl|2 − γ2|w|2 and l(x, u) = |zl|2 where

zl =
[

hl(x)
u

]
=




HL︷ ︸︸ ︷[
q1l 0
0 q2l

] [
x1

x2

]

u




with q1l = 1 and q2l = 1 and γ = 3. The auxiliary control law is obtained as described in Section 6 with

z =
[

h1(x)
u

]
=




H1︷ ︸︸ ︷[
q1 0
0 q2

] [
x1

x2

]

u






with q1 = 1.1 and q2 = 1.1. Note that, as required at point b) of Proposition 1, h1(x)′h1(x) ≥ hl(x)′hl(x) +
a|x|2 + c|x|2 with a = γ2Kdx = 0.09, b = γ2Kdu = 0, c = bL2

f = 0, where Lf = 2. In fact

q2
1x

2
1 + q2

2x
2
2 ≥ q2

1lx
2
1 + q2

2lx
2
2 + ax2

1 + ax2
2

1.21x2
1 + 1.21x2

2 ≥ x2
1 + x2

2 + 0.09x2
1 + 0.09x2

2.

The auxiliary control law is given by

κf (x) = −[1 0 0]R−1

[
F2

F3

]
Pf1(x) = −[0.8783 1.1204]f1(x)

where

P =
[

7.0814 3.3708
3.3708 4.2998

]

is computed solving a discrete time H∞ algebraic Riccati equation

P = F ′
1PF1 + H ′

2H2 − F ′
1P

[
F2 F3

]
R−1

[
F2 F3

]′
PF1

with
H ′

2H2 = 1.2H ′
1H1

in order to satisfy inequality (ii) of Proposition 1. Matrix P satisfies inequality (i) of Proposition 1. The
terminal penalty is given by Vf = x′Px. The auxiliary control law satisfies Assumption 5, for the stages
cost chosen, in the region Xf , {x : x′Px ≤ 4.7}. Region Xf has been obtained numerically. The length of
horizon is N = 4. The policies κi(x) are functions of the form κi(x) = αiκf (x) + βi(x2

1 + x2
2) + γi. Figure

3(a) and 3(b) show the time evolution of position and velocity of the cart, starting from x1(0) = 0.5m and
x2(0) = 0m

s . Figure 3(c) shows the control sequence. Figure 3(d) show the time evolution of d1η and d2.
For t ≥ 1.6s the signal d2 is equal to zero. Note that, H∞ and dual mode strategies guarantee ISS: cart
position goes to zero when the disturbance vanishes. On the other hand, standard min-max strategy only
guarantees ISpS. In fact, when the disturbance vanishes, cart position does not tend to the origin but to
x1 = 0.1541m. Moreover, note that that H∞ and dual mode performances are comparable since, in the
neighborhood of the origin, the auxiliary control law is a good approximation of the H∞ strategy.

8 Conclusions

In this paper a unified framework for the synthesis of min-max MPC control algorithms has been provided.
The ISpS or ISS property of such algorithms is analyzed with respect to a general class of disturbances that
considers both state dependent and state independent disturbances. The algorithms based on a standard
stage cost, on an H∞ cost and on a dual mode approach are compared. The relevance of the adopted stage
cost to achieve ISS clarifies the difference between some of the results appeared in the literature.

9 Appendix

Definition 6 (Regional ISS in Ξ with respect to A) Suppose that Assumption 2-3 are satisfied. Given
a closed set Ξ ⊂ Rn including the origin as an interior point, the system (7) with d1∈MD1 and d2∈MD2,
is said to be ISS in Ξ with respect to set A (compact-ISS), with respect to d2, if Ξ is robust positively invariant
for (7) and if there exist a KL-function β and a K-function γ2 such that

|x(k, x̄,d1,d2)|A ≤ β(|x̄|A, k) + γ2(||d2[k−1]||)
for all x̄ ∈ Ξ and k > 0.

Definition 7 (LpS) Suppose that Assumption 2 is satisfied. System (7) with d1∈ MD1 and d2∈ MD2

satisfies the LpS (Local practical Stability) property if there exists a constant c ≥ 0 such that for each ε > 0,
there exists a δ > 0 such that |x(k, x̄,d1,d2)| ≤ c + ε, ∀k ≥ 0 for all |x̄| ≤ δ and all |d2(k)| ≤ δ.
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(d) Time evolution of uncertainty d1η and disturbance d2.

Figure 3: Simulation with initial conditions x1(0) = 0.5m and x2(0) = 0m
s

Definition 8 (LS with respect to A) Suppose that Assumption 2-3 are satisfied. System (7) with d1∈
MD1 and d2∈MD2 satisfies the LS (Local Stability) property with respect to set A, if for each ε > 0, there
exists a δ > 0 such that |x(k, x̄,d1,d2)|A ≤ ε, ∀k ≥ 0 for all |x̄|A ≤ δ and all |d2(k)| ≤ δ.

Definition 9 (UpAG in Ξ) Suppose that Assumption 2 is satisfied. Given a closed set Ξ ⊆ Rn including
the origin as an interior point, system (7) with d1∈ MD1 and d2∈ MD2 satisfies the UpAG (Uniform
practical Asymptotic Gain) property in Ξ, if Ξ is robust positively invariant for (7) and if there exists
a constant c ≥ 0 and a K-function γ2 such that for each ε > 0 and ν > 0, ∃T = T (ε, ν) such that
|x(k, x̄,d1,d2)| ≤ γ2(||d2[k−1]||) + c + ε for all x̄ ∈ Ξ with |x̄| ≤ ν, and all k ≥ T . If c = 0, the system is
said to satisfy the UAG (Uniform Asymptotic gain) property.

Definition 10 (UAG in Ξ with respect to A) Suppose that Assumption 2-3 are satisfied. Given a closed
set Ξ ⊆ Rn including the origin as an interior point, system (7) with d1∈ MD1 and d2∈ MD2 satisfies
the UAG (Uniform Asymptotic Gain) property in Ξ, if Ξ is robust positively invariant for (7) and if there
exist a K-function γ2 such that for each ε > 0 and ν > 0, ∃T = T (ε, ν) such that |x(k, x̄,d1,d2)|A ≤
γ2(||d2[k−1]||) + ε for all x̄ ∈ Ξ with |x̄|A ≤ ν, and all k ≥ T .

¤



Proof of Theorem 2: Let x̄ ∈ Ξ. The proof will be carried out in four steps.
Step 1: First we show that the set Θ defined in (12) is robust positively invariant for system (7). From
the definition of α2(s) it follows that α2(|x|) + c1 ≤ α2(|x|+ c1). Therefore V (x) ≤ α2(|x|+ c1) and hence
|x|+ c1 ≥ α−1

2 (V (x)), ∀x ∈ Ω. Moreover (see [25]):

α3(|x|) + ζ(c1) ≥ α3(|x|+ c1) ≥ α4(V (x)) (19)

where α4 , α3 ◦ α−1
2 is a K∞-function. Then

∆V (x) ≤ −α4(V (x)) + ζ(c1) + c2 + λ(|d2|)
= −α4(V (x)) + λ(|d2|) + c3

≤ −α4(V (x)) + λ(Dsup
2 ) + c3,

∀x ∈ Ξ, ∀d1 ∈ D1(x), ∀d2 ∈ D2

where c3 , c2 + ζ(c1). Let us now assume that x(k) ∈ Θ. Then V (x(k)) ≤ b(λ(Dsup
2 ) + c3); this implies

ρ◦α4(V (x)) ≤ λ(Dsup
2 )+ c3. Without loss of generality, assume that (id−α4) is a K∞-function (see Lemma

B.1 [18]). Then

V (F (x, d1, d2)) ≤ (id− α4)(V (x)) + λ(Dsup
2 ) + c3

≤ (id− α4)(b(λ(Dsup
2 ) + c3)) + λ(Dsup

2 ) + c3

= −(id− ρ) ◦ α4(b(λ(Dsup
2 ) + c3)) + b(λ(Dsup

2 ) + c3)
−ρ ◦ α4(b(λ(Dsup

2 ) + c3)) + λ(Dsup
2 ) + c3.

From the definition of b, it follows that ρ◦α4(b(s)) = s and, owing to the fact that (id−ρ) is a K∞-function,
we obtain

V (F (x, d1, d2)) ≤ −(id− ρ) ◦ α4(b(λ(Dsup
2 ) + c3)) + b(λ(Dsup

2 ) + c3)
≤ b(λ(Dsup

2 ) + c3).

Hence Θ is robust positively invariant for system (7).

Step 2: Next, we show that the state, starting from Ξ/Θ, tends asymptotically to Θ. Firstly, if x ∈ Ω/Θ,
then

ρ ◦ α4(V (x)) > λ(Dsup
2 ) + c3.

From the inequality (19), we have

ρ(α3(|x|) + ζ(c1)) > λ(Dsup
2 ) + c3.

On the other hand, (id− ρ) is a K∞-function, hence

id(s) > ρ(s), ∀s > 0

then
α3(|x|) + ζ(c1) > ρ(α3(|x|) + ζ(c1)) > λ(Dsup

2 ) + ζ(c1) + c2.

Hence
α3(|x|) > λ(|d2|) + c2 (20)

that means
∆V (x) < 0, ∀x ∈ Ω/Θ.

Moreover, in view of (12), ∃c̄θ > 0 such that ∀x1 ∈ Ξ/Ω, there exists x2 ∈ Ω/Θ such that α3(|x2|) ≤
α3(|x1|)− c̄θ. Then from (20) it follows that

−α3(|x1|) + c̄θ ≤ −α3(|x2|) < −λ(|d2|)− c2, ∀x1 ∈ Ξ/Ω.



Then
∆V (x) < −c̄θ, ∀x ∈ Ξ/Ω

so that there exists T1 such that
x(T1, x̄,d1,d2) ∈ Ω.

Therefore, starting from Ξ, the state will reach the region Ω in a finite time. If x(T1, x̄,d1,d2) ∈ Θ, the region
Θ is achieved in a finite time. Since Θ is robust positively invariant, it is true that limk→∞ |x(k, x̄,d1,d2)|Θ =
0. Otherwise, if x(T1, x̄,d1,d2) /∈ Θ, ρ ◦ α4(V (x(T1, x̄,d1,d2)) > λ(Dsup

2 ) + c3 and

∆V (x(T1, x̄,d1,d2)) ≤ −α4(V (x(T1, x̄,d1,d2))) + λ(Dsup
2 ) + c3

= −(id− ρ) ◦ α4(V (x(T1, x̄,d1,d2)))
−ρ ◦ α4(V (x(T1, x̄,d1,d2))) + λ(Dsup

2 ) + c3

≤ −(id− ρ) ◦ α4(V (x(T1, x̄,d1,d2)))
≤ −(id− ρ) ◦ α4 ◦ α1(|x(T1, x̄,d1,d2)|)

where the last step is obtained using (9). Then, ∀ε′ > 0, ∃T2(ε′) ≥ T1 such that

V (x(T2, x̄,d1,d2)) ≤ ε′ + b(λ(Dsup
2 ) + c3). (21)

Therefore, starting from Ξ, the state will arrive close to Θ in a finite time and to Θ asymptotically. Hence
limk→∞ |x(k, x̄,d1,d2)|Θ = 0.

Step 3: Given e ∈ R≥0, let R(e) , {x : V (x) ≤ e}. Let Ψ , {x : V (x) ≤ ē = maxR(e)⊆Ω e}. It is
clear that Ψ ⊇ Θ and that Ψ is robust positively invariant. Since the upper bound of V (x) is known in
Ψ ⊆ Ω then, using the same steps of the proof of Lemma 3.5 in [18], the regional ISpS in Ψ is obtained.

Step 4: Finally we show that system (7) is regional ISpS in Ξ. Using (21) and (9) there is

α1(|x(T2, x̄,d1,d2)|) ≤ V (x(T2, x̄,d1,d2)) ≤ ε′ + b(λ(Dsup
2 ) + c2)

hence
|x(T2, x̄,d1,d2)| ≤ α−1

1 (ε′ + b(λ(Dsup
2 ) + c2)).

Noting that, given a K∞-function θ1, θ1(s1 + s2) ≤ θ1(2s1) + θ1(2s2), see [25], it follows that

|x(T2, x̄,d1,d2)| ≤ α−1
1 (2ε′) + α−1

1 (2b(2λ(Dsup
2 ))) + α−1

1 (2b(2c2)).

Now, letting ε , α−1
1 (2ε′) and γ(Dsup

2 ) , α−1
1 (2b(2λ(Dsup

2 ))) and c , α−1
1 (2b(2c2)), the UpAG property in

Ξ is proven (if c1 = 0 and c2 = 0, the UAG property in Ξ holds). In view of Theorem 1, since the system is
regional ISpS in Ψ, it is LpS and UpAG in Ψ. Finally, LpS with UpAG in Ξ imply that the system is ISpS
in Ξ with respect to d2. Moreover, if c1 = 0 and c2 = 0 the ISS in Ξ holds.

¥
Proof of Theorem 3: The robust positively invariance of XMPC(N) is easily derived from Assumption 5

by taking

κ̄t+1,t+N =
{

κo
t+1,t+N−1 t + 1 ≤ k ≤ t + N − 1

κf (x(t + N)) k = t + N

as admissible policy vector at time t + 1 starting from the optimal sequence κo
t,t+N−1 at time t. Moreover it

is possible to show that V (x,N) is an ISpS-Lyapunov function for the closed-loop system (1), (15). In fact

V (x,N) = J(x̄, κo
t,t+N−1, d

o
1[t,t+N−1], d

o
2[t,t+N−1], N) ≥ minκt,t+N−1 J(x̄, κt,t+N−1, 0, 0, N)

≥ l(x, κt,t, 0, 0) ≥ αl(|x|), ∀x ∈ XMPC(N).
(22)



In order to derive the upper bound, consider the following policy vector for the FHCLG with horizon N +1

κ̃t,t+N =
{

κo
t,t+N−1 t ≤ k ≤ t + N − 1

κf (x(t + N)) k = t + N

Then

J(x̄, κ̃t,t+N , d1[t,t+N ], d2[t,t+N ], N + 1) = Vf (x(t + N + 1))− Vf (x(t + N))
+l(x(t + N), u(t + N), d1(t + N), d2(t + N))

+
t+N−1∑

k=t

l(x(k), u(k), d1(k), d2(k)) + Vf (x(t + N))

so that in view of Assumption 5

J(x̄, κ̃t,t+N , d1[t,t+N ], d2[t,t+N ], N + 1) ≤
t+N−1∑

k=t

l(x(k), u(k), d1(k), d2(k)) + Vf (x(t + N)) + %(|d2|)

which implies

V (x,N + 1) ≤ max
d1η∈MD1η

,d2∈MD2

J(x̄, κ̃t,t+N , d1[t,t+N ], d2[t,t+N ], N + 1)

≤ max
d1η∈MD1η

,d2∈MD2

t+N−1∑

k=t

l(x(k), u(k), d1(k), d2(k)) + Vf (x(t + N)) + %(|d2|)

= V (x,N) + %(Dsup
2 ) (23)

which holds ∀x ∈ XMPC(N),∀d1η ∈MD1η , ∀d2η ∈MD2η .
Moreover

V (x,N) ≤ V (x,N − 1) + %(Dsup
2 ) ≤ . . . ≤ V (x, 0) + N%(Dsup

2 )
= Vf (x) + N%(Dsup

2 ) < βVf
(|x|) + N%(Dsup

2 ), ∀x ∈ Xf . (24)

From the monotonicity property (23) it is easily derived that

V (f(x, κMPC(x), d1, d2), N)− V (x, N) ≤ −l(x, κMPC(x), d1, d2) + %(Dsup
2 )

≤ −αl (|x|) + αd (|d2|) + %(Dsup
2 ), ∀x ∈ XMPC(N), ∀d1η ∈ D1η, ∀d2 ∈ D2. (25)

Then, by (22), (24), (25), the ISpS with respect to d2 is proven in XMPC(N).
¥

Proof of Corollory 1: Proof of Corollary 1 is derived by proof of Theorem 3. One of the key steps in the
proof of Theorem 3 is to show that condition 3) in Definition 3 is satisfied. In particular, using Assumption
4, point 5) of Assumption 5 and monotonicity property (23), it is shown that condition 3) in Definition 3 is
satisfied by the inequality (25). Only ISpS can be proven because of term %(Dsup

2 ) derived by term %(|d2|)
in point 5) of Assumption 5. The necessity of this term is related to the particular stage cost considered in
the optimization problem. In Corallary 1, a standard stage cost l(x, u) is considered. In order to guarantee
the satisfaction of Assumption 5 for a disturbance d2 different from zero, term %(|d2|) must be different from
zero. However, note that in this case, by Assumption 7, αd ≡ 0. This fact, considering Assumption 6, leads
to a less conservative estimation of the region Θ defined in (12).

¥
Proof of Theorem 5: As shown in the proof of Theorem 3, Assumptions 1, 4-6 guarantee that the closed-

loop system (1)-(15) is ISpS in XMPC(N). Following the steps of the proof of Theorem 2, it can be proven
that region Xf is achieved in a finite time. The auxiliary control law is used when the state reaches the



region Xf or when it starts in Xf . By Assumption 5, Vf (x) is an ISS-Lyapunov function in Xf . Hence
the closed-loop system with the auxiliary control law is ISS in Xf . ISS in Xf is equivalent to UAG in Xf

and LS. Since Xf is achieved in a finite time and system satisfies UAG property in Xf , UAG in XMPC(N)
is obtained. Finally, by Theorem 1, the closed-loop system (1)-(16) is ISS in XMPC(N) since UAG in
XMPC(N) and LS are equivalent to ISS in XMPC(N).

¥
Proof of Proposition 1: Considering the particular auxiliary control law used, there exists a positive

constant r0 such that point 2) of Assumption 5 is satisfied for all x belonging to

Ω0 = {x : |x| ≤ r0} ⊂ X.

Define
H(x, u, w) = Vf (f1(x) + f2(x)u + f3(x)w)− Vf (x) + |z|2 − γ2|w|2. (26)

Then

H(x, u, w) = (f1(x) + f2(x)u + f3(x)w)′P (f1(x) + f2(x)u + f3(x)w)
−x′Px + h1(x)′h1(x) + u′u− γ2w′w

=
(
f1(x)′Pf1(x)− x′Px + h1(x)′h1(x)

)
+ u′

(
f2(x)′Pf2(x) + I

)
u

+w′
(
f3(x)′Pf3(x)− γ2

)
w + 2

[
u′ w′

] [
f2(x)′Pf1(x)
f3(x)′Pf1(x)

]

+2u′F2(x)′PF3(x)w

=
(
f1(x)′Pf1(x)− x′Px + h1(x)′h1(x)

)
+

[
u′ w′

]
R(x)

[
u
w

]

+2
[

u′ w′
] [

f2(x)′Pf1(x)
f3(x)′Pf1(x)

]

and, computing H(x, u, w) for u = κ∗(x) and w = ξ∗(x),

H(x, κ∗(x), ξ∗(x)) =
(
f1(x)′Pf1(x)− x′Px + h1(x)′h1(x)

)

+
[

κ∗(x)′ ξ∗(x)′
]
R(x)

[
κ∗(x)
ξ∗(x)

]
− 2

[
κ∗(x)′ ξ∗(x)′

]
R(x)

[
κ∗(x)
ξ∗(x)

]

=
(
f1(x)′Pf1(x)− x′Px + h1(x)′h1(x)

)

− [
f1(x)′Pf2(x) f1(x)′Pf3(x)

]
R(x)−1

[
f2(x)′Pf1(x)
f3(x)′Pf1(x)

]

From (ii) it follows that there exist positive constants ε, r such that

H(x, κ∗(x), ξ∗(x)) ≤ −ε|x|2, ∀x ∈ Ω1 = {x : |x| ≤ r} ⊂ Ω0. (27)

By the Taylor expansion Theorem (note that the first order term evaluated in (u,w) = (κ∗(x), ξ∗(x)) and
terms of order > 2 are null)

H(x, u, w) = H(x, κ∗(x), w∗) +
1
2

[
u− κ∗(x)
w − ξ∗(x)

]′
R(x)

[
u− κ∗(x)
w − ξ∗(x)

]

Assumption (i) implies that there exists a neighborhood Xne of x = 0 such that ∀x ∈ Xne, r22(x) < 0.
If the system is controlled by u = κ∗(x) then

H(x, κ∗(x), w) = H(x, κ∗(x), ξ∗(x)) +
1
2

(w − ξ∗(x))′ r22(x) (w − ξ∗(x)) .



Since r22(x) < 0, it follows that, given Xne, there exist an open neighborhoods Wne of w = 0 such that

H(x, κ∗(x), w) ≤ H(x, κ∗(x), ξ∗(x)), ∀x ∈ Xne, ∀w ∈ Wne.

In view of (27), there exists a positive constant r2 such that

H(x, κ∗(x), w) ≤ H(x, κ∗(x), ξ∗(x)) ≤ −ε|x|2 (28)

∀x ∈ Ω2 = {x : |x| ≤ r2} ⊂ Ω1 and for all w ∈ Wne. Let us choose some β > 0 such that

Ωβ = {x : Vf (x) ≤ β} ⊂ Ω2. (29)

From (26), (28), (29) follows that

Vf (f1(x) + f2(x)κ∗(x) + f3(x)w) ≤ Vf (x)− |z|2 + γ2|w|2 − ε|x|2
≤ Vf (x)− |z|2 + γ2|w|2, ∀x ∈ Ωβ, ∀w ∈ Wne.

Hence, if H∞ strategy is used with l(x, u, d1, d2) = |z|2 − γ2|w|2 and % ≡ 0, point 5) of Assumption 5 is
satisfied. Consider now the case of l(x, u, d1, d2) = |zl|2 as defined in point b) of Proposition 1 (standard
min-max stage cost)

Vf (f1(x) + f2(x)κ∗(x) + f3(x)w) ≤ Vf (x)− |z|2 + γ2|w|2
= Vf (x)− h1(x)′h1(x)− u′u + γ2d′1(x)d1(x) + γ2d′2d2.

Using point (iii) of Proposition 1

Vf (f1(x) + f2(x)κ∗(x) + f3(x)w) ≤ Vf (x)− h1(x)′h1(x)− u′u + γ2(Kdx|x|2 + Kdu|u|2) + γ2d′2d2

≤ Vf (x)− h1(x)′h1(x)− u′u + a|x|2 + b|u|2 + γ2d′2d2

with a , γ2Kdx and b , γ2Kdu. Considering that point 2) of Assumption 5 is locally satisfied

Vf (f1(x) + f2(x)κ∗(x) + f3(x)w) ≤ Vf (x)− h1(x)′h1(x)− u′u + a|x|2 + c|x|2 + γ2d′2d2

with c , bL2
f . Then, using point b) of Proposition 1

Vf (f1(x) + f2(x)κ∗(x) + f3(x)w) ≤ Vf (x)− hl(x)′hl(x)− u′u + γ2|d2|2
≤ Vf (x)− hl(x)′hl(x)− u′u + %(|d2|)
= Vf (x)− l(x, u) + %(|d2|), ∀x ∈ Ωβ, ∀w ∈ Wne

where %(s) , γ2|s|2. Hence point 5) of Assumption 5 is satisfied for the standard min-max stage cost too.
In order to verify that Assumption 5 is satisfied, it remains to prove points 1), 3), 4). Point 1) is obtained

if Xf ⊆ Ωβ ⊂ X. Point 4) is obviously satisfied since Vf (x) = x′Px, with P positive definite matrix, is such
that

αVf
(|x|) , λmin(P )||x||2 ≤ x′Px ≤ λmax(P )||x||2 , βVf

(|x|)
where λmin(P ) and λmax(P ) are minimum and maximum eigenvalues of P .

In order to prove point 3), the robust invariance of Xf , let consider the proof of Theorem 2. By step 1,
Θ(Dsup

2 ) is robust positively invariant. Since Θ(Dsup
2 ) ∝ Dsup

2 , there exists a set W̄ne = D1(x)×D2 ⊂ Wne

and a positive constant α such that, defining Xf as

Xf , {x : Vf (x) ≤ α},
there is Θ ⊂ Xf ⊂ Ωβ. It is clear that Xf is robust positively invariant.

The invariance of the closed-loop system (with the auxiliary control law) in Xf ends the proof of Assump-
tion 5.

¥
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