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Chapter 1

Introduction

Model Predictive Control (MPC), also known as moving horizon control or

receding horizon control, refers to a class of algorithms which make ex-

plicit use of a process model to optimize the future predicted behavior

of a plant. During the past 30 years, MPC has proved enormously suc-

cessful in industry mainly due to the ease with which constraints can be

included in the controller formulation. It is worth to note that this con-

trol technique, has achieved great popularity in spite of the original lack

of theoretical results concerning some crucial points such as stability and

robustness. In fact, a theoretical basis for this technique started to emerge

more than 15 years after it appeared in industry. Originally developed to

cope with the control needs of power plants and petroleum re�neries, it is

currently successfully used in a wide range of applications, not only in the

process industry but also other processes ranging from automotive to clinical

anaesthesia. Several recent publications provide a good introduction to the-

oretical and practical issues associated with MPC technology (see e.g. the

books [Maciejowski 2002, Rossiter 2003, Camacho & Bordons 2004] and the

survey papers [Morari & H. Lee 1999, Mayne et al. 2000, Rawlings 2000,

Qin & Badgwell 2003, Findeisen et al. 2003, Magni & Scattolini 2007]).

One of the reasons for the success of MPC algorithms consists in the

intuitive way of addressing the control problem. Predictive control uses a

model of the system to obtain an estimate (prediction) of its future behavior.

The main items in the design of a predictive controller are:

• the process model

• a performance index re�ecting the reference tracking error and the

control action

• an optimization algorithm to compute a sequence of future control
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signals that minimizes the performance index subject to a given set

of constraints

• the receding horizon strategy, according to which only the �rst element

of the optimal control sequence is applied on-line.

At each sampling time t, a �nite horizon optimal control problem is

solved over a prediction horizonN , using the current state x of the process as

the initial state. The on-line optimization problem takes account of system

dynamics, constraints and control objectives. The optimization yields an

optimal control sequence, and only the control action for the current time

is applied while the rest of the calculated sequence is discarded. At the

next time instant the horizon is shifted one sample and the optimization is

restarted with the information of the new measurements. Figure 1.1 depicts

the basic principle of model predictive control.

Measured Outputs

Predicted Outputs

Closed-loop inputs

Open-loop inputs

Setpoint

ymax

ymin

umax

umin

r

               Sampling time
-4 +9-3 -2 -1 k +1 +2 +3 +4 +5 +6 +7 +8

Past Future

Prediction horizon

      Control Horizon

Figure 1.1: A graphical illustration of Model Predictive Control
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In general, linear and nonlinear MPC are distinguished. Linear MPC

refers to a family of MPC schemes in which linear models are used to pre-

dict the system dynamics. Linear MPC approaches have found success-

ful applications, especially in the process industries [Qin & Badgwell 2000,

Qin & Badgwell 2003]. By now, linear MPC theory is fairly mature (see

[Morari & H. Lee 1999] and the reference therein). However many systems

are inherently nonlinear. In this case, the results obtained by using a LMPC

are poor in term of performance and often not su�cient in order to cope

with the process requirements. Clearly the use of a more accurate model,

i.e. a nonlinear model, will provide quite better results. On the other hand,

the use of a nonlinear model implies higher di�culties in the calculation

of the control law and in the stability analysis of the obtained closed-loop

system.

Model predictive control for nonlinear systems (NMPC) has received

considerable attention over the past years. Many theoretical and prac-

tical issues have been addressed [Allgöwer et al. 1999, Mayne et al. 2000,

Rawlings 2000, De Nicolao et al. 2000]. By now there are several pre-

dictive control schemes with guaranteed stability for nonlinear sys-

tems: nonlinear MPC with zero state terminal equality constraint

[Chen & Shaw 1982, Keerthi & Gilbert 1988, Mayne & Michalska 1990],

dual-mode nonlinear MPC [Michalska & Mayne 1993], nonlinear MPC with

a suitable terminal state penalty and terminal inequality state constraint

[Parisini & Zoppoli 1995, Chen & Allgöwer 1998, De Nicolao et al. 1998b,

Magni et al. 2001a], and nonlinear MPC without terminal constraint

[Jadbabaie & Hauser 2001, Grimm et al. 2005, Limon et al. 2006b].

In [Keerthi & Gilbert 1988, Mayne & Michalska 1990] the value func-

tion (of a �nite horizon optimal control problem) was �rst employed as

a Lyapunov function for establishing stability of model predictive control

of time-varying, constrained, nonlinear, discrete-time systems (when a ter-

minal equality constraint is employed). Nowadays the value function is

universally employed as a Lyapunov function for stability analysis of MPC.

In practical applications, the assumption that system is identical to the

model used for prediction is unrealistic. In fact, model/plant mismatch or

unknown disturbances are always present. The introduction of uncertainty

in the system description raises the question of robustness, i.e. the mainte-

nance of certain properties such as stability and performance in the presence

of uncertainty.



4 Chapter 1. Introduction

Input-to-State Stability (ISS) is one of the most important tools to

study the dependence of state trajectories of nonlinear continuous and dis-

crete time systems on the magnitude of inputs, which can represent con-

trol variables or disturbances. The concept of ISS was �rst introduced

in [Sontag 1989] and then further exploited by many authors in view of

its equivalent characterization in terms of robust stability, dissipativity

and input-output stability, see e.g. [Jiang et al. 1994], [Angeli et al. 2000],

[Jiang & Wang 2001], [Nesi¢ & Laila 2002], [Huang et al. 2005]. Now, sev-

eral variants of ISS equivalent to the original one have been devel-

oped and applied in di�erent contexts (see e.g. [Sontag & Wang 1995a],

[Sontag & Wang 1996], [Gao & Lin 2000], [Huang et al. 2005]).

In MPC, it is well known that asymptotic stability of the controlled sys-

tem does not su�ce to ensure robustness. As studied in [Grimm et al. 2004],

a nominal stabilizing MPC may exhibit zero-robustness. Then further con-

ditions must be considered.

When the plant is unconstrained, the resulting MPC is known to

be robust under certain variations of the gain of inputs [Glad 1987,

Geromel & Da Cruz 1987, De Nicolao et al. 1996]. Inherent robustness of

unconstrained MPC can also be derived from the inverse optimality of the

controller [Magni & Sepulchre 1997].

In the case of constrained MPC, in [Scokaert et al. 1997], the authors

demonstrate that Lipschitz continuity of the control law provides some ro-

bustness under decaying uncertainties. In [De Nicolao et al. 1998a], similar

results are obtained from the continuity of the optimal cost function. Re-

cently [Limon et al. 2002b], [Kellett & Teel 2004] and [Grimm et al. 2004]

have demonstrated that continuity of the optimal cost function plays an

important role in the robustness of nominal MPC.

Continuity of the optimal cost is a property di�cult to be proved in

general. In [Meadows et al. 1995] it was shown that MPC could generate

discontinuous feedback control law with respect to the state variable x even

if the dynamic system is continuous. This is due to the fact that the feed-

back law comes from the solution of a constrained optimization problem

(when constraints, as for example the terminal constraint, are considered).

Figure 1.2 shows this fact by recalling the example of [Meadows et al. 1995]:

the trajectories (depicted with triangles and daggers respectively) obtained

starting from two close initial states (depicted inside a circle) are com-
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pletely di�erent. Note that in the example just the terminal constraint is

present. Therefore, MPC control law could be a priori discontinuous and

Figure 1.2: Closed-loop state trajectories of example proposed in
[Meadows et al. 1995]

consequently also the closed-loop system dynamics and the value function.

This could be a problem since continuity of the value function is required

in most of the literature in order to prove robust stability of MPC (see

[Mayne et al. 2000]).

When the plant is unconstrained and the terminal constraint is not ac-

tive [Jadbabaie & Hauser 2001], or when only constraints on the inputs are

present [Limon et al. 2006b], discontinuity of the control law is avoided. An-

other relevant case is provided for linear systems with polytopic constraints

in [Grimm et al. 2004].

When the model function is discontinuous (as for instance the case of hy-

brid systems) these results can not be used and then, this problem remains

open [Lazar 2006].

Robust MPC stems from the consideration of the uncertainties explic-

itly in the design of the controller. To this aim, �rstly, satisfaction of

the constrained for any possible uncertainty, namely the robust constraint

satisfaction, must be ensured. This further requirement adds complex-

ity to the MPC synthesis. Several results have been proposed concern-

ing robust MPC (see e.g. [Mayne et al. 2000, Magni & Scattolini 2007]
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for a survey, the reference therein, and some of the most re-

cent papers [Grimm et al. 2004, Grimm et al. 2007, Mhaskar et al. 2005,

DeHaan & Guay 2007, Limon et al. 2005, Rakovi¢ et al. 2006b]).

In particular two di�erent approaches have been followed so far to derive

robust MPC algorithms:

• open-loop MPC formulations with restricted constraints, see for ex-

ample [Limon et al. 2002a], [Grimm et al. 2003]

• min-max open and closed-loop formulations, see for exam-

ple [Chen et al. 1998, Magni et al. 2001b, Gyurkovics 2002,

Magni et al. 2003, Magni & Scattolini 2005, Limon et al. 2006a].

The �rst method for the design of robust MPC consists in minimizing a

nominal performance index while imposing the ful�llment of constraints for

each admissible disturbance. This calls for the inclusion in the problem for-

mulation of tighter state and terminal constraints. The idea was introduced

in [Chisci et al. 2001] for linear systems and applied to nonlinear systems in

[Limon et al. 2002a] [Raimondo & Magni 2006]. The main drawback of this

open-loop strategy is the large spread of trajectories along the optimization

horizon due to the e�ect of the disturbances and leads to very conservative

solutions or even to unfeasible problems.

With a signi�cant increase of the computational burden, an alter-

native approach is the second one, that consists in solving a min-max

optimization problem, originally proposed in the context of robust

receding horizon control in [Witsenhausen 1968]. Speci�cally, in an

open-loop formulation, the performance index is minimized with re-

spect to the control sequence for the worst case, i.e. the disturbance

sequence over the optimization horizon which maximizes the performance

index. However, this solution may still be unsatisfactory, since the

minimization with respect to a single control pro�le may produce a

very little domain of attraction and a poor performance of the closed-

loop systems. As demonstrated in [Chen et al. 1997, Bemporad 1998]

if some feedback is added by pre-stabilizing the plant, then the con-

servativeness is reduced. Recently, a closed-loop formulation of the

min-max controller has been proposed to reduce this conservativeness

[Magni et al. 2001b, Scokaert & Mayne 1998, Mayne et al. 2000]. In this

predictive control technique, a vector of feedback control policies is



7

considered in the minimization of the cost in the worst disturbance case.

This allows to take into account the reaction to the e�ect of the uncertainty

in the predictions at expense of a practically untractable optimization

problem. In this context robust stability issues have been recently studied

and some novel contributions on this topic have appeared in the litera-

ture [Scokaert & Mayne 1998, Gyurkovics 2002, Kerrigan & Mayne 2002,

Magni et al. 2003, Gyurkovics & Takacs 2003, Fontes & Magni 2003,

Löfberg 2003, Kerrigan & Maciejowski 2004, Magni & Scattolini 2005,

Lazar 2006, Limon et al. 2006a, Lazar et al. 2008].

The ISS property has been recently introduced in the study of

nonlinear perturbed discrete-time systems controlled with MPC (see

for example [Goulart et al. 2006, Limon et al. 2006a, Kim et al. 2006,

Grimm et al. 2007, Lazar et al. 2008]), Note that, in order to apply the ISS

property to MPC closed-loop systems global results are in general not useful

due to the presence of state and input constraints. On the other hand local

results, see e.g. [Jiang & Wang 2001, Jiang et al. 2004], do not allow the

analysis of the properties of the predictive control law in terms of its region

of attraction.

Thesis overview

In this thesis, the ISS tool is used in order to study the stability proper-

ties of nonlinear perturbed discrete-time systems controlled with MPC. As

previously stated, since global and local results do not allow the analysis of

the properties of MPC, the notion of regional ISS will be introduced. The

equivalence between the ISS property and the existence of a suitable possi-

bly discontinuous ISS-Lyapunov function will be established. As discussed

before, since MPC could provide a discontinuous control law with respect

to the state x, the value function, used as ISS-Lyapunov function, should

be possible discontinuous. Just the continuity of the Lyapunov function at

the equilibrium point is required.

The developed tool will be used in order to analyze and synthesize ro-

bust MPC controllers. Both open-loop and min-max robust MPC are con-

sidered. In particular it will be shown that open-loop MPC algorithms can

guarantee ISS of the closed-loop systems while min-max MPC algorithms

with standard stage cost can only guarantee Input-to-State practical Sta-

bility (ISpS). Di�erent stage cost and dual-mode strategy will be used in
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order to recover the ISS for closed-loop system. Moreover, since the min-

max problem is very computational demanding, a relaxed formulation, in

which the max stage is replaced by a simple suitable choice of an uncertain

realization, will be presented. Then, in order to e�ciently consider state

dependent disturbances and improve existent algorithms, a new open-loop

robust MPC algorithm will be presented.

Subsequently the problems of decentralized and cooperative NMPC con-

trol will be addressed and stability properties will be stated by using the

concepts of ISS and small-gain theorem.

Finally, the problem of glucose control in type 1 diabetic patients will

be coped with by using linear and nonlinear model predictive controllers.

Thesis structure

Chapter 2: Regional ISS for NMPC controllers. In this chapter,

regional input-to-state stability is introduced and studied in order to ana-

lyze the domain of attraction of nonlinear constrained systems with distur-

bances. ISS is derived by means of a possible non smooth ISS-Lyapunov

function with an upper bound guaranteed only in a sub-region of the do-

main of attraction. These results are used to study the ISS properties of

nonlinear model predictive control algorithms.

Chapter 2 contains results published in:

• [Magni et al. 2006b]: L. Magni, D. M. Raimondo and R. Scattolini.

Input-to-State Stability for Nonlinear Model Predictive Control. In

Proceedings of 45th IEEE CDC, pages 4836�4841, 2006.

• [Magni et al. 2006a]: L. Magni, D. M. Raimondo and R. Scattolini.

Regional Input-to-State Stability for Nonlinear Model Predictive Con-

trol. IEEE Transactions on Automatic Control, vol. 51, no. 9, pages

1548�1553, 2006.

Chapter 3: Min-Max NMPC: an overview on stability. Min-

Max MPC is one of the few techniques suitable for robust stabilization

of uncertain nonlinear systems subject to constraints. Stability issues as

well as robustness have been recently studied and some novel contributions

on this topic have appeared in the literature. In this chapter, a general
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framework for synthesizing min-max MPC schemes with an a priori robust

stability guarantee is distilled. Firstly, a general prediction model that

covers a wide class of uncertainties, which includes bounded disturbances as

well as state and input dependent disturbances (uncertainties) is introduced.

Secondly, the notion of regional Input-to-State Stability (ISS) is extended in

order to �t the considered class of uncertainties. Then, it is established that

only the standard min-max approach can only guarantee practical stability.

Two di�erent solutions for solving this problem are proposed. The �rst one

is based on a particular design of the stage cost of the performance index,

which leads to a H∞ strategy, while the second one is based on a dual-mode

strategy. Under fairly mild assumptions both controllers guarantee Input-

to-State Stability of the resulting closed-loop system. Moreover, it is shown

that the nonlinear auxiliary control law introduced in [Magni et al. 2003] to

solve theH∞ problem can be used, for nonlinear systems a�ne in control, in

all the proposed min-max schemes and also in presence of state independent

disturbances. A simulation example illustrates the techniques surveyed in

this article.

The results presented in Chapter 3 are published in:

• [Raimondo et al. 2007b] D. M. Raimondo, D. Limón, M. Lazar, L.

Magni and E. F. Camacho. Regional input-to-state stability of min-

max model predictive control. In Proceedings of IFAC Symp. on

Nonlinear Control Systems, 2007.

• [Raimondo et al. 2008b]: D. M. Raimondo, D. Limón, M. Lazar, L.

Magni and E. F. Camacho. Min-max model predictive control of

nonlinear systems: A unifying overview on stability. To appear in

European Journal of Control, 2008.

Chapter 4: Min-Max Nonlinear Model Predictive Control: a

min formulation with guaranteed robust stability.

This chapter presents a relaxed formulation of the min-max MPC for

constrained nonlinear systems. In the proposed solution, the maximization

problem is replaced by the simple evaluation of an appropriate sequence of

disturbances. This reduces dramatically the computational burden of the

optimization problem and produces a solution that does not di�er much

from the one obtained with the original min-max problem. Moreover, the
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proposed predictive control inherits the convergence and the domain of at-

traction of the standard min-max strategy.

The results of Chapter 4 are presented in:

• [Raimondo et al. 2007a]: D. M. Raimondo, T. Alamo, D. Limón and

E. F. Camacho. Towards the practical implementation of min-max

nonlinear Model Predictive Control. In Proceedings of 46th IEEE

CDC, pages 1257�1262, 2007.

• [Raimondo et al. 2008a] D. M. Raimondo, T. Alamo, D. Limón and

E. F. Camacho. Min-Max Nonlinear Model Predictive Control: a Min

formulation with guaranteed robust stability. Submitted to a journal,

2008.

Chapter 5 Robust MPC of Nonlinear Systems with Bounded

and State-Dependent Uncertainties.

In this chapter, a robust model predictive control scheme for constrained

discrete-time nonlinear systems a�ected by bounded disturbances and state-

dependent uncertainties is presented. Two main ideas are used in order to

improve the performance and reduce the conservatism of some existing ro-

bust open-loop algorithms. In order to guarantee the robust satisfaction

of the state constraints, restricted constraint sets are introduced in the

optimization problem, by exploiting the state-dependent nature of the con-

sidered class of uncertainties. Moreover, di�erent control and prediction

horizons are used. Unlike the nominal model predictive control algorithm,

a stabilizing state constraint is imposed at the end of the control horizon in

place of the usual terminal constraint posed at the end prediction horizon.

The regional input-to-state stability of the closed-loop system is analyzed.

A simulation example shows the e�ectiveness of the proposed approach.

Chapter 5 is based on:

• [Pin et al. 2008a]: G. Pin, L. Magni, T. Parisini and D. M. Raimondo.

Robust Receding - Horizon Control of Nonlinear Systems with State

Dependent Uncertainties: an Input-to-State Stability Approach. In

Proceedings of American Control Conference, Seattle, Washington,

USA, June 11-13, pages 1667-1672, 2008.

• [Pin et al. 2008b] G. Pin, D. M. Raimondo, L. Magni and T. Parisini.

Robust Model Predictive Control of Nonlinear Systems with Bounded
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and State-Dependent Uncertainties. Provisionally accepted for publi-

cation in IEEE Transaction on Automatic Control, 2008.

Chapter 6 Decentralized NMPC: an ISS approach.

This chapter presents stabilizing decentralized model predictive control

algorithms for discrete-time nonlinear systems. The overall system under

control is composed by a number of subsystems, each one locally controlled

with an MPC algorithm guaranteeing the ISS property. Then, the main

stability result is derived by considering the e�ect of interconnections as

perturbation terms and by showing that also the overall system is ISS.

Both open-loop and closed-loop min-max formulations of robust MPC are

considered.

The results in Chapter 6 are appeared in:

• [Raimondo et al. 2007c] D. M. Raimondo L. Magni and R. Scattolini.

A decentralized MPC algorithm for nonlinear systems. In Proceedings

of IFAC Symp. on Nonlinear Control Systems, 2007.

• [Raimondo et al. 2007e] D. M. Raimondo L. Magni and R. Scattolini.

A decentralized MPC algorithm for nonlinear systems. In Proceedings

of IFAC Symp. on Nonlinear Control Systems, 2007.

• [Raimondo et al. 2007d]: D. M. Raimondo L. Magni and R. Scattolini.

Decentralized MPC of nonlinear systems: An input-to-state stability

approach. International Journal of Robust and Nonlinear Control,

vol. 17, pages 1651-1667, 2007.

Chapter 7 Cooperative NMPC for Distributed Agents.

This chapter addresses the problem of cooperative control of a team of

distributed agents, with decoupled nonlinear discrete-time dynamics, which

operate in a common environment and exchange-delayed information be-

tween them. Each agent is assumed to evolve in discrete-time, based on

locally computed control laws, which are computed by exchanging delayed

state information with a subset of neighboring agents. The cooperative

control problem is formulated in a receding-horizon framework, where the

control laws depend on the local state variables (feedback action) and on

delayed information gathered from cooperating neighboring agents (feed-

forward action). A rigorous stability analysis exploiting the input-to-state
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stability properties of the receding-horizon local control laws is carried out.

The stability of the team of agents is then proved by utilizing small-gain

theorem results.

The results in Chapter 7 are published in:

• [Franco et al. 2008]: E. Franco, L. Magni, T. Parisini, M. Polycar-

pou and D. M. Raimondo. Cooperative Constrained Control of Dis-

tributed Agents With Nonlinear Dynamics and Delayed Information

Exchange: A Stabilizing Receding-Horizon Approach. IEEE Trans.

on Automatic Control, vol. 53, no. 1, pages 324�328, 2008.

Chapter 8 MPC of Glycaemia in Type 1 Diabetic Patients.

In this chapter, the feedback control of glucose concentration in type

1 diabetic patients using subcutaneous insulin delivery and subcutaneous

continuous glucose monitoring is considered. A recently developed in-silico

model of glucose metabolism is employed to generate virtual patients on

which control algorithms can be validated against interindividual variabil-

ity. An in silico trial consisting of 100 patients is used to assess the per-

formances of a linear and a nonlinear state feedback model predictive con-

troller designed on the basis of the in-silico model. The simulation experi-

ments highlight the increased e�ectiveness of the meal announcement signal

with respect to the linear MPC due to a more accurate nonlinear model.

Moreover, one of the main advantages of a nonlinear approach is the pos-

sibility to use a nonlinear cost function based on the risk index de�ned in

[Kovatchev et al. 2005]. The obtained results encourage a deeper investi-

gation along this direction. It is worth to note that currently, experiments

using the developed linear model predictive controller are in progress at the

Charlottesville and Padova hospitals.

Chapter 8 contains results based on:

• [Dalla Man et al. 2007a]: C. Dalla Man, D. M. Raimondo, R. A.

Rizza, C. Cobelli. GIM, Simulation Software of Meal Glucose-Insulin

Model. Journal of Diabetes Science and Technology, vol. 2, no. 4,

pages 323�330, 2007.

• [Magni et al. 2007b]: L. Magni, D. M. Raimondo, L. Bossi, C. Dalla

Man, G. De Nicolao, B. Kovatchev and C. Cobelli. Model Predictive
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Control of Type 1 Diabetes: An in Silico Trial. Journal of Diabetes

Science and Technology, vol. 1, no. 6, pages 804�812, 2007.

• [Magni et al. 2007a]: L. Magni, G. De Nicolao, D. M. Raimondo.

Model Predictive Control Based Method for Closed-Loop Control

of Insulin Delivery in Diabetes Using Continuous Glucose Sensing.

U.S. Provisional Application Patent. Serial No. 60/984,956. Filed

11/02/2007.

• [Magni et al. 2008b]: L. Magni, D. M. Raimondo, C. Dalla Man, G.

De Nicolao, B. Kovatchev and C. Cobelli. Model Predictive Control

of glucose concentration in subjects with type 1 diabetes: an in silico

trial. In Proceedings of 17th IFAC World Congress, Seoul, Korea,

July 6-11, pages 4246�4251, 2008.

• [Kovatchev et al. 2008]: B. Kovatchev, D. M. Raimondo, M. Breton,

S. Patek and C. Cobelli. In Silico Testing and in Vivo Experiments

with Closed-Loop Control of Blood Glucose in Diabetes. In Proceed-

ings of 17th IFAC World Congress, Seoul, Korea, July 6-11, pages

4234-4239, 2008.

• [Magni et al. 2008a]: L. Magni, D. M. Raimondo, C. Dalla Man,

M. Breton, S. Patek, G. de Nicolao, C. Cobelli and B. Kovatchev.

Evaluating the e�cacy of closed-loop glucose regulation via control-

variability grid analysis (CVGA). Journal of Diabetes Science and

Technology, vol. 2, no. 4, pages 630�635, 2008.

Each chapter has an appendix that contains the proofs of all lemmas

and theorems. Moreover, the notations and basic de�nitions used in the

thesis are are gathered in the Chapter 9, Appendix of the Thesis.
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2.1 Introduction

Input-to-state stability (ISS) is one of the most important tools to study the

dependence of state trajectories of nonlinear continuous and discrete time

systems on the magnitude of inputs, which can represent control variables or

disturbances. In order to apply the ISS property to MPC, global results are

in general not useful in view of the presence of state and input constraints.

On the other hand, local results, do not allow to analyze the properties

of the predictive control law in terms of its region of attraction. Then,

in this chapter, the notion of regional ISS is initially introduced, see also

[Nesi¢ & Laila 2002], and the equivalence between the ISS property and

the existence of a suitable Lyapunov function is established. Notably, this
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Lyapunov function is not required to be smooth nor to be upper bounded

in the whole region of attraction. An estimation of the region where the

state of the system converges asymptotically is also given.

The achieved results are used to derive the ISS properties of two families

of MPC algorithms for nonlinear systems. The �rst one relies on an open-

loop formulation for the nominal system, where state and terminal con-

straints are modi�ed to improve robustness, see also [Limon et al. 2002a].

The second algorithm resorts to the closed-loop min-max formulation al-

ready proposed in [Magni et al. 2003]. No continuity assumptions are re-

quired on the value function or on the resulting MPC control law, which

indeed are di�cult and not immediately veri�able hypothesis.

2.2 Problem statement

Assume that the plant to be controlled is described by discrete-time non-

linear dynamic model

xk+1 = F(xk,uk, dk), k ≥ 0 (2.1)

where xk ∈ IRn is the state, uk ∈ IRm is the current control vector, dk ∈ IRq

is the disturbance term. Given the system (2.1), let f(xk,uk) denote the

nominal model, such that

xk+1 = f(xk,uk) + wk, k ≥ 0 (2.2)

where wk , F(xk,uk, dk)− f(xk,uk) denote the additive uncertainty.

The system is supposed to ful�ll the following assumption.

Assumption 2.1

1. For simplicity of notation, it is assumed that the origin is an equilib-

rium point, i.e. f(0, 0) = 0.

2. The disturbance w is such that

w ∈ W (2.3)

where W is a compact set containing the origin, with Wsup known.
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3. The state and the control variables are restricted to ful�ll the following

constraints

x ∈ X (2.4)

u ∈ U (2.5)

where X and U are compact sets, both containing the origin as an

interior point.

4. The map f : IRn × IRm → IRn is Lipschitz in x in the domain X ×U ,
i.e. there exists a positive constant Lf such that

|f(a,u)− f(b,u)| ≤ Lf |a− b| (2.6)

for all a, b ∈ X and all u ∈ U .

5. The state of the plant xk can be measured at each sample time.

�

The control objective consists in designing a control law u = κ(x) such
that it steers the system to (a neighborhood of) the origin ful�lling the

constraints on the input and the state along the system evolution for any

possible disturbance and yielding an optimal closed-loop performance ac-

cording to certain performance index.

In the following section it is presented a suitable framework for the

analysis of stability: the regional ISS.

2.3 Regional Input-to-State Stability

Consider a discrete-time autonomous nonlinear dynamic system described

by

xk+1 = F (xk,wk), k ≥ 0, (2.7)

where F : IRn × IRq → IRn is a nonlinear possibly discontinuous function,

xk ∈ IRn is the state and wk ∈ IRq is an unknown disturbance. The transient

of the system (2.7) with initial state x0 = x̄ and disturbance sequence w
is denoted by x(k, x̄, w). This system is supposed to ful�ll the following

assumptions.
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Assumption 2.2

1. The origin of the system is an equilibrium point, i.e. F (0, 0) = 0.

2. The disturbance w is such that

w ∈ W (2.8)

where W is a compact set containing the origin, with Wsup known.

Assumption 2.3 The solution of (2.7) is continuous at x̄ = 0 and w = 0
with respect to disturbances and initial conditions. �

Let introduce the following de�nitions.

De�nition 2.1 (UAG in Ξ) Given a compact set Ξ ⊂ Rn including the

origin as an interior point, the system (2.7) with w ∈ MW satis�es the

UAG (Uniform Asymptotic Gain) property in Ξ, if Ξ is a RPI set for system

(2.7) and if there exists a K-function γ such that for each ε > 0 and ν >

0, ∃T = T (ε, ν) such that

|x(k, x̄, w)| ≤ γ(‖w‖) + ε (2.9)

for all x̄ ∈ Ξ with |x̄| ≤ ν, and all k ≥ T .

De�nition 2.2 (LS) The system (2.7) with w ∈ MW satis�es the LS

(Local Stability) property if, for each ε > 0, there exists a δ > 0 such that

|x(k, x̄, w)| ≤ ε, ∀k ≥ 0 (2.10)

for all |x̄| ≤ δ and all |wk| ≤ δ.

De�nition 2.3 (ISS in Ξ) Given a compact set Ξ ⊂ Rn including the

origin as an interior point, the system (2.7) with w ∈ MW , is said to be

ISS (Input-to-State Stable) in Ξ if Ξ is a RPI set for system (2.7) and if

there exist a KL-function β and a K-function γ such that

|x(k, x̄, w)| ≤ β(|x̄|, k) + γ(‖w‖), ∀k ≥ 0, ∀x̄ ∈ Ξ. (2.11)

�
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Note that, by causality, the same de�nition of ISS in Ξ would result if one

would replace (2.11) by

|x(k, x̄, w)| ≤ β(|x̄|, k) + γ(‖w[k−1]‖), ∀k ≥ 0, ∀x̄ ∈ Ξ. (2.12)

Recall that w[k−1] denotes the truncation of w at k − 1.

In [Sontag & Wang 1995a] and in [Gao & Lin 2000], it was shown that,

for continuous-time and discrete-time systems respectively (with F (·, ·)
continuously di�erentiable), the ISS property is equivalent to the con-

junction of UAG and LS. By examinating the proof of Lemma 2.7 in

[Sontag & Wang 1995a] carefully, one can see that it also applies to discon-

tinuous systems (both continuous and discrete-time), if a RPI compact set

Ξ is considered. In fact, in the proof, the continuity is necessary just in or-

der to use Proposition 5.1 in [Lin et al. 1996], to prove that given ε, r, s > 0
and time T = T (ε, s) > 0 as in De�nition 2.1, there is an L > 0 such that

|x(t, x̄, w)| ≤ L for all 0 ≤ t ≤ T , all |x̄| ≤ s and all ||w|| ≤ r. But if Ξ is a

RPI compact set, this is always satis�ed, since all the possible trajectories

are bounded. Hence, the following lemma can be stated.

Lemma 2.1 Suppose that Assumption 2.2 holds. System (2.7) is ISS in Ξ
if and only if UAG in Ξ and LS hold. �

If also Assumption 2.3 holds, it turns out that LS property is redundant.

In fact, the following proposition holds.

Proposition 2.1 Consider system (2.7). If Assumptions 2.2 and 2.3 hold,

UAG in Ξ implies LS. �

The proof is equal to the one given in [Sontag & Wang 1995a] and

[Gao & Lin 2000], for continuous-time and discrete-time case respectively,

because the continuity of function F (·, ·) is not used.

Lemma 2.2 Suppose that Assumptions 2.2 and 2.3 hold. System (2.7) is

ISS in Ξ if and only if UAG in Ξ holds. �

Note that, by De�nition 2.3, Assumption 2.3 is necessary in order to

have ISS. In fact, if the solution of (2.7) is not continuous at x̄ = 0 and
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w = 0 with respect to disturbances and initial conditions, ISS does not

hold.

The ISS property is now related to the existence of a suitable a-priori

non smooth Lyapunov function de�ned as follows. In order to clarify the

relation between the sets introduced in the de�nition see Figure 2.1.

De�nition 2.4 (ISS-Lyapunov function in Ξ)
A function V : IRn → IR≥0 is called an ISS-Lyapunov function in Ξ for

system (2.7), if

1. Ξ is a compact RPI set including the origin as an interior point

2. there exist a compact set Ω ⊆ Ξ (including the origin as an interior

point), and a pair of suitable K∞-functions α1,α2 such that

V (x) ≥ α1(|x|),∀x ∈ Ξ (2.13)

V (x) ≤ α2(|x|),∀x ∈ Ω (2.14)

3. there exist a suitable K∞-function α3 and a K-function σ such that

∆V (x) , V (F (x,w))− V (x) ≤ −α3(|x|) + σ(|w|) (2.15)

for all x ∈ Ξ, and all w ∈ W

4. there exist a suitable K∞-function ρ (with ρ such that (id − ρ) is

a K∞-function) and a suitable constant cθ > 0, such that, given a

disturbance sequence w ∈ MW , there exists a nonempty compact set

Θw ⊆ IΩ , {x : x ∈ Ω, |x|δΩ > cθ} (including the origin as an

interior point) de�ned as follows

Θw , {x : V (x) ≤ b(||w||)} (2.16)

where b , α−1
4 ◦ ρ−1 ◦ σ, with α4 , α3 ◦ α−1

2 . �

Note that, by (2.13) and (2.14), function V is continuous at the origin.

Remark 2.1 Note that, in order to verify that Θw ⊆ IΩ for all w ∈MW ,

one has to verify that

Θ , {x : V (x) ≤ b(Wsup)} ⊆ IΩ (2.17)
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Figure 2.1: Example of sets satisfying De�nition 2.4

�
Now, the following su�cient condition for regional ISS of system (2.7) can

be stated.

Theorem 2.1 Suppose that Assumptions 2.2 and 2.3 hold. If system (2.7)

admits an ISS-Lyapunov function in Ξ, then it is ISS in Ξ and, for all

disturbance sequences w ∈MW , limk→∞ |x(k, x̄, w)|Θw = 0. �

Remark 2.2 Theorem 2.1 gives an estimation of the region Θw where the

state of the system converges asymptotically. In some cases, as for example

in the MPC, the function V is not known in explicit form. Hence, in order

to verify that point 4 of De�nition 2.4 is satis�ed, considering also Remark

6.1, one has to verify that

Θ̄ , {x : |x| ≤ α−1
1 ◦ b(W

sup)} ⊆ IΩ (2.18)

In fact, in view of (2.13) and Remark 6.1, Θ̄ ⊇ Θ.

This region depends on the bound on w through σ, as well as on α1,

α2, α3 and ρ. Note that, since the size of Θ̄ (as well as the size of Θ)
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is directly related to α2, an accurate estimation of the upper bound α2 is

useful in order to compute a smaller region of attraction Θ. Moreover,

if Wsup = 0, then σ(Wsup) = 0 so that asymptotic stability is guaranteed

(for this particular case see [Lazar et al. 2005] that copes also discontinuous

Lyapunov function). In order to clarify the relation between the sets, see

Figure 2.2. �

Figure 2.2: Relation between sets

2.4 Nonlinear Model Predictive Control

In this section, the results derived in Theorem 2.1 are used to analyze

under which assumptions open-loop and closed-loop min-max formulations

of stabilizing MPC for system (2.2) ful�ll the ISS property.

In the following, since not necessary, the regularities of the value

function or of the resulting control law are not assumed.
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2.4.1 Open-loop formulation

In order to introduce the MPC algorithm formulated according to an open-

loop strategy, �rst let u[t2,t3|t1] , [ut2|t1 ut2+1|t1 . . . ut3|t1 ], with t1 ≤ t2 ≤
t3, a control sequence. Moreover, given k ≥ 0, j ≥ 1, let x̂k+j|k be the

predicted state at k + j obtained with the nominal model f(xk,uk), with
initial condition xk and input u[k,k+j−1|k].

Then, the following �nite-horizon optimization problem can be stated.

De�nition 2.5 (FHOCP) Consider system (2.2) with xt = x̄. Given the

positive integer N , the stage cost l, the terminal penalty Vf and the terminal

set Xf , the Finite Horizon Optimal Control Problem (FHOCP) consists in

minimizing, with respect to u[t,t+N−1|t], the performance index

J(x̄, u[t,t+N−1|t],N) ,
t+N−1∑
k=t

l(x̂k|t,uk|t) + Vf (x̂t+N |t)

subject to

1. the nominal state dynamics x̂k+1 = f(x̂k,uk), with x̂t = x̄

2. the constraints (2.4), (2.5), k ∈ [t, t+N − 1]

3. the terminal state constraints x̂t+N |t ∈ Xf . �

The stage cost de�nes the performance index to optimize and satis�es

the following assumption.

Assumption 2.4 The stage cost l(x,u) is such that l(0, 0) = 0 and

l(x,u) ≥ αl(|x|) where αl is a K∞-function. Moreover, l(x,u) is Lips-

chitz in x, in the domain X ×U , i.e. there exists a positive constant Ll such
that

|l(a,u)− l(b,u)| ≤ Ll|a− b|

for all a, b ∈ X and all u ∈ U . �

It is now possible to de�ne a �prototype� of a nonlinear MPC algorithm:

at every time instants t, given xt = x̄, �nd the optimal control sequence
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uo[t,t+N−1|t] by solving the FHOCP. Then, according to the Receding Horizon

(RH) strategy, de�ne

κMPC(x̄) , uot|t(x̄)

where uot|t(x̄) is the �rst column of uo[t,t+N−1|t], and apply the control law

u = κMPC(x). (2.19)

Recall that, since uo[t,t+N−1|t] is the solution of a constrained optimiza-

tion, (2.19) could be discontinuous w.r.t. x.

Although the FHOCP has been stated for nominal conditions, under

suitable assumptions and by choosing accurately the terminal cost func-

tion Vf and the terminal constraint Xf , it is possible to guarantee the ISS

property of the closed-loop system formed by (2.2) and (2.19), subject to

constraints (2.3)-(2.5).

Assumption 2.5 The solution of closed-loop system formed by (2.2),

(2.19) is continuous at x̄ = 0 and w = 0 with respect to disturbances and

initial conditions.

Assumption 2.6 The design parameters Vf and Xf are such that, given

an auxiliary control law κf ,

1. Xf ⊆ X , Xf closed, 0 ∈ Xf

2. κf (x) ∈ U , for all x ∈ Xf

3. f(x,κf (x)) ∈ Xf , for all x ∈ Xf

4. there exist a pair of suitable K∞-functions αVf and βVf such that

αVf < βVf and

αVf (|x|) ≤ Vf (x) ≤ βVf (|x|)

5. Vf (f(x,κf (x)))− Vf (x) ≤ −l(x,κf (x)), for all x ∈ Xf

6. Vf is Lipschitz in Xf with a Lipschitz constant LVf . �

Assumption 2.6 implies that the closed-loop system formed by the

nominal system f(xk,κf (xk)) is asymptotically stable in Xf (Vf is a

Lyapunov function in Xf for the nominal system).
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In the following, let XMPC(N) denote the set of states for which a

solution of the FHOCP problem exists.

Assumption 2.7 Consider the closed-loop system (2.2) and (2.19). For

each xt ∈ XMPC(N), ũ[t+1,t+N |t+1] , [uo[t+1,t+N−1|t] κf (x̂t+N |t+1)] is an

admissible, possible suboptimal, control sequence for the FHOCP at time

t+ 1, for all possible w ∈ W. �

Note that Assumption 2.7 implies that XMPC(N) is a RPIA set for the

closed-loop system (2.2) and (2.19).

In what follows, the optimal value of the performance index, i.e.

V (x) , J(x, uo[t,t+N−1|t],N) (2.20)

is employed as an ISS-Lyapunov function for the closed-loop system formed

by (2.2) and (2.19).

Assumption 2.8 Let

• Ξ = XMPC

• Ω = Xf

• α1 = αl

• α2 = βVf

• α3 = αl

• σ = LJ , where LJ , LVfL
N−1
f + Ll

LN−1
f −1

Lf−1 .

The set W is such that the set Θ (depending from Wsup), de�ned in (2.17),

with function V given by (2.20), is contained in IΩ.

Remark 2.3 Many methods have been proposed in the literature to compute

Vf , Xf satisfying Assumption 2.6 (see e.g [Mayne et al. 2000]). On the con-

trary, with the MPC based on the FHOCP de�ned above, Assumption 2.7

is not a-priori satis�ed. A way to ful�ll it is shown in [Limon et al. 2002a]

by properly restricting the state constraints 2 and 3 in the formulation of

the FHOCP. �
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The main stability result can now be stated.

Theorem 2.2 Under Assumptions 2.1, 2.4-2.8 the closed-loop system

formed by (2.2) and (2.19) subject to constraints (2.3)-(2.5) is ISS with

RPIA set XMPC(N). �

2.4.2 Closed-loop formulation

As underlined in Remark 2.3, the robust invariance of the feasible set

XMPC(N) in a standard open-loop MPC formulation can be achieved

through a wise choice of the state constraints in the FHOCP. However,

this solution can be extremely conservative and can provide a small RPIA

set, so that a less stringent approach explicitly accounting for the intrin-

sic feedback nature of any RH implementation has been proposed, see e.g.

[Magni et al. 2003, Magni et al. 2001b, Chen et al. 1998, Gyurkovics 2002,

Limon et al. 2006a]. In the following, it is shown that the ISS result of

the previous section is also useful to derive the ISS property of min-max

MPC. In this framework, at any time instant the controller chooses the

input u as a function of the current state x, so as to guarantee that the

e�ect of the disturbance w is compensated for any choice made by the �na-

ture�. Hence, instead of optimizing with respect to a control sequence, at

any time t the controller has to choose a vector of feedback control policies

κ[t,t+N−1] , [κ0(xt) κ1(xt+1) . . . κN−1(xt+N−1)] minimizing the cost in the

worst disturbance case. Then, the following optimal min-max problem can

be stated.

De�nition 2.6 (FHCLG) Consider system (2.2) with xt = x̄. Given the

positive integer N , the stage cost l − lw, the terminal penalty Vf and the

terminal set Xf , the Finite Horizon Closed-Loop Game (FHCLG) problem

consists in minimizing, with respect to κ[t,t+N−1] and maximizing with re-

spect to w[t,t+N−1] the cost function

J(x̄,κ[t,t+N−1], w[t,t+N−1],N) ,
t+N−1∑
k=t

{l(xk,uk)− lw(wk)}+ Vf (xt+N )

(2.21)

subject to:

1. the state dynamics (2.2)
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2. the constraints (2.3)-(2.5), k ∈ [t, t+N − 1]

3. the terminal state constraints xt+N ∈ Xf . �

Letting κo[t,t+N−1], wo
[t,t+N−1] be the solution of the FHCLG, according

to the RH paradigm, the feedback control law u = κMPC(x) is obtained by

setting

κMPC(x) = κo0(x) (2.22)

where κo0(x) is the �rst element of κo[t,t+N−1].

Recall that, since κo[t,t+N−1] is the solution of a constrained optimization,

(2.19) could be discontinuous w.r.t. x.

In order to derive the stability and performance properties associated

to the solution of FHCLG, the following assumptions are introduced.

Assumption 2.9 The solution of closed-loop system formed by (2.2),

(2.22) is continuous at x̄ = 0 and w = 0 with respect to disturbances and

initial conditions.

Assumption 2.10 lw(w) is such that αw (|w|) ≤ lw(w) ≤ βw (|w|) , where
αw and βw are K∞-functions.

Assumption 2.11 The design parameters Vf and Xf are such that, given

an auxiliary law κf ,

1. Xf ⊆ X , Xf closed, 0 ∈ Xf

2. κf (x) ∈ U , for all x ∈ Xf

3. f(x,κf (x)) + w ∈ Xf , for all x ∈ Xf , and all w ∈ W

4. there exist a pair of suitable K∞-functions αVf and βVf such that

αVf < βVf and

αVf (|x|) ≤ Vf (x) ≤ βVf (|x|)

for all x ∈ Xf

5. Vf (f(x,κf (x))+w)−Vf (x) ≤ −l(x,κf (x))+lw(w), for all x ∈ Xf ,and
all w ∈ W.
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�

Assumption 2.11 implies that the closed-loop system formed by the

system (2.2) and u = κf (xk) is ISS in Xf (Vf is an ISS-Lyapunov function

in Xf ).

In what follows, the optimal value of the performance index, i.e.

V (x) , J(x,κo[t,t+N−1], w
o
[t,t+N−1],N) (2.23)

is employed as an ISS-Lyapunov function for the closed-loop system formed

by (2.2) and (2.22).

Assumption 2.12 Let

• Ξ = XMPC

• Ω = Xf

• α1 = αl

• α2 = βVf

• α3 = αl

• σ = βw.

The set W is such that the set Θ (depending from Wsup), de�ned in (2.17),

with function V given by (2.23), is contained in IΩ. �

The main result can now be stated.

Theorem 2.3 Under Assumptions 2.1, 2.4, 2.9-2.12 the closed-loop system

formed by (2.2) and (2.22) subject to constraints (2.3)-(2.5) is ISS with

RPIA set XMPC(N). �

Note that, in this case, in order to prove the ISS, f(x,u), l, lw and Vf
are not required to be Lipschitz.
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Remark 2.4 The computation of the auxiliary control law, of the terminal

penalty and of the terminal inequality constraint satisfying Assumption 2.11,

is not trivial at all. In this regard, a solution for a�ne system will be discuss

in Chapter 3, where it will shown how to compute a nonlinear auxiliary

control law based on the solution of a suitable H∞ problem for the linearized

system under control.

2.5 Remarks

Remark 2.5 Following the result in [Scokaert et al. 1999] for standard

NMPC, assuming that an initial feasible solution of the FHOCP (or of the

FHCLG) is available, it is possible to show that it is not necessary to obtain

the global optimum solution of the FHOCP (or of the FHCLG) in order to

guarantee the ISS of the closed-loop system. In fact, the control sequence

ũ[t+1,t+N |t+1] , [ũ[t+1,t+N−1|t] κf (x̂t+N |t+1)] (or the vector of feedback con-
trol policies κ̃[1,N ] , [κ̃[0,N−1] κf ]), where ũ[t+1,t+N−1|t] (or κ̃[0,N−1]) is the

possible sub-optimal solution obtained at the previous step, is an available

feasible solution that guarantees ISS. Indeed this solution is such that the

value function satis�es (2.4). The only requirement on the possible sub-

optimal solution is to be not worst than ũ[t+1,t+N |t+1] (or than κ̃[1,N ]). �

Remark 2.6 The usual way to derive the upper bound for the value func-

tion V in XMPC(N) requires the assumption that the solutions uo[t,t+N−1] of

the FHOCP and κo[t,t+N−1] of the FHCLG are Lipschitz in XMPC(N). On
the contrary, Theorem 2.1 gives the possibility to �nd the upper bound for

the ISS-Lyapunov function only in a subset of the RPIA set. This can be

derived in Xf , without assuming any regularity of the control strategies, by

using the monotonicity properties (2.30) and (2.34) respectively. However,

in order to enlarge the setW that satis�es Assumptions 2.8 and 2.12 for the

FHOCP and FHCLG respectively, it could be useful to �nd an upper bound

ᾱ2 of V in a region Ω1 ⊇ Ω. To this regard, de�ne

ᾱ2 = max
(

V̄

α2(r)
, 1
)
α2

where V̄ = maxx∈Ω1(V (x)) and r is such that Br = {x ∈ Rn : |x| ≤ r} ⊆ Ω,
as suggested in [Limon et al. 2006a]. This idea can either enlarge or restrict

the set W since Ω1 ⊇ Ω but ᾱ2 ≥ α2.
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Remark 2.7 Following the results reported in [Magni et al. 2001a] for the

open-loop and in [Magni et al. 2003] for the closed-loop min-max MPC for-

mulations, it is easy to show that the robust output admissible sets guaran-

teed by the NMPC control law include the terminal region Xf used in the

optimization problem. Moreover the robust output admissible set guaranteed

with a longer optimization horizon includes the one obtained with a shorter

horizon, i.e. XMPC(N + 1) ⊇ XMPC(N) ⊇ Xf .

2.6 Conclusions

Using a suitable, non necessarily continuous, Lyapunov function, regional

Input-to-State Stability for discrete-time nonlinear constrained systems has

been established. Moreover an estimation of the region where the state of

the system converges asymptotically is given. This result has been used to

study the robustness characteristics of Model Predictive Control algorithms

derived according to open-loop and closed-loop min-max formulations. No

continuity assumptions on the optimal Receding Horizon control law have

been required. It is believed that the elements provided here can be used to

improve the analysis of existing MPC algorithms as well as to develop new

synthesis methods with enhanced robustness properties. The next chapters

will be based on the fundamental results here presented.

2.7 Appendix

Proof of Theorem 2.1: the proof will be carried out in three steps.

Step 1: �rst, it is going to be shown that Θw is a RPI set for

system (2.7). To this aim, assume that there exists a �nite time t

such that x(t, x̄, w) ∈ Θw. Then V (x(t, x̄, w)) ≤ b(||w||); this implies

ρ ◦ α4(V (x(t, x̄, w)) ≤ σ(||w||). Using (2.14), (2.15) can be rewritten as

∆V (x) ≤ −α4(V (x)) + σ(|w|), ∀x ∈ Ω, ∀w ∈ W

where α4 = α3 ◦ α−1
2 . Without loss of generality, assume that (id − α4) is
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a K∞-function, otherwise take a bigger α2 so that α3 < α2. Then

V (x(t+ 1, x̄, w)) ≤ (id− α4)(V (x(t, x̄, w))) + σ(|w|)
≤ (id− α4) ◦ b(||w||) + σ(||w||)
= −(id− ρ) ◦ α4 ◦ b(||w||) + b(||w||)
−ρ ◦ α4 ◦ b(||w||) + σ(||w||).

Considering that ρ ◦ α4 ◦ b(||w||) = σ(||w||) and (id− ρ) is a K∞-function,
one has

V (x(t+ 1, x̄, w)) ≤ −(id− ρ) ◦ α4 ◦ b(||w||) + b(||w||) ≤ b(||w||).

By induction one can show that V (x(t+ j, x̄, w)) ≤ b(||w||) for all j ∈ Z≥0,

that is x(k, x̄, w) ∈ Θw for all k ≥ t. Hence Θw is a RPI set for system

(2.7).

Step 2: now it is shown that, starting from Ξ \ Θw, the state tends

asymptotically to Θw. Firstly, since α4 = α3 ◦ α−1
2 , if x ∈ Ω \Θw then

ρ ◦ α3 ◦ α−1
2 (V (x(k, x̄, w))) > σ(||w||).

By the fact that α−1
2 (V (x(k, x̄, w))) ≤ |x(k, x̄, w)|, one has

ρ ◦ α3(|x(k, x̄, w)|) > σ(||w||).

Considering that (id− ρ) is a K∞-function

id(s) > ρ(s), ∀s > 0

then

α3(x(k, x̄, w)) > ρ ◦ α3(|x(k, x̄, w)|) > σ(||w||), ∀x ∈ Ω \Θw

which implies

−α3(|x(k, x̄, w)|) + σ(||w||) < 0, ∀x ∈ Ω \Θw. (2.24)

Moreover, by de�nition of Θw (see point 4 of De�nition 2.4), there exists

c̄ > 0 such that for all x ∈ Ξ \ Ω, there exists x̃ ∈ Ω \ Θw such that
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α3(|x̃|) ≤ α3(|x|)− c̄. Then from (2.24) it follows that

−α3(|x|) + c̄ ≤ −α3(|x̃|) < −σ(||w||), ∀x ∈ Ξ \ Ω.

Then

∆V (x(k, x̄, w)) ≤ −α3(|x(k, x̄, w)|) + σ(||w||) < −c̄, ∀x ∈ Ξ \ Ω

so that, considering that |x| ≤ α−1
1 (V (x)), there exists T1 such that

x(T1, x̄, w) ∈ Ω.

Therefore, starting from Ξ, the state will reach the region Ω in a �nite

time. If in particular x(T1, x̄, w) ∈ Θw, then the previous result states

that the region Θw is achieved in a �nite time. Since Θw is a RPI set, it

is true that limk→∞ |x(k, x̄, w)|Θw = 0. Otherwise, if x(T1, x̄, w) /∈ Θw ,

ρ ◦ α4(V (x(T1, x̄, w))) > σ(||w||) and

∆V (x(T1, x̄, w)) ≤ −α4(V (x(T1, x̄, w))) + σ(||w||) (2.25)

= −(id− ρ) ◦ α4(V (x(T1, x̄, w)))

−ρ ◦ α4(V (x(T1, x̄, w))) + σ(||w||)
≤ −(id− ρ) ◦ α4(V (x(T1, x̄, w)))

≤ −(id− ρ) ◦ α4 ◦ α1(|x(T1, x̄, w)|)

where the last step is obtained using (2.13). Then, ∀ε′ > 0, ∃T2(ε′) ≥ T1

such that

V (x(T2, x̄, w)) ≤ ε′ + b(||w||). (2.26)

Therefore, starting from Ξ, the state will arrive close to Θw in a �nite time

and in Θw asymptotically. Hence limk→∞ |x(k, x̄, w)|Θw = 0.
Note that if ||w|| 6= 0, there exists a c̃ > 0 such that Θsup

w = c̃. Then, for

x(T1, x̄, w) /∈ Θw, there is |x(T1, x̄, w)| > c̃. Hence, there exists a c2 > 0
such that, for x(T1, x̄, w) /∈ Θ, ∆V (x(T1, x̄, w)) < −c2, that means, the

state arrives in Θw in a �nite time.

Step 3: �nally it is shown that system (2.7) is regional ISS in Ξ. By

(2.26) and (2.13) one has

|x(T2, x̄, w)| ≤ α−1
1 (ε′ + b(||w||)).



2.7. Appendix 33

Noting that, given a K∞-function θ1, θ1(s1 + s2) ≤ θ1(2s1) + θ1(2s2), see
[Limon et al. 2006a], it follows that

|x(T2, x̄, w)| ≤ α−1
1 (2ε′) + α−1

1 (2b(||w||)).

Now, letting ε = α−1
1 (2ε′) and γ(||w||) = α−1

1 (2b(||w||)) the UAG property

in Ξ is proven. In view of Assumptions 2.2 and 2.3 and Lemma 2.2, the

system is ISS in Ξ with respect to w. �

Proof of Theorem 2.2: by Theorem 2.1, if system admits an

ISS-Lyapunov function in XMPC(N), then it is ISS in XMPC(N).
In the following, it will be shown that the function V (x) de�ned in (2.20)

is an ISS-Lyapunov function in XMPC(N).

First, the lower bound is easily obtained using Assumption 2.4 and

considering that

V (x,N) ≥ l(x,κMPC(x)) ≥ αl(|x|), ∀x ∈ XMPC(N). (2.27)

Moreover, in view of Assumption 2.6

ū[t,t+N |t] , [uo[t,t+N−1|t] κf (x̂t+N |t)]

is an admissible, possible suboptimal, control sequence for the FHOCP with

horizon N + 1 at time t with cost

J(x, ū[t,t+N |t],N + 1) = V (x,N) + Vf (f(x̂t+N |t,κf (x̂t+N |t)))

−Vf (x̂t+N |t) + l(x̂t+N |t,κf (x̂t+N |t)).

Using point 5 of Assumption 2.6, it follows that

J(x, ū[t,t+N |t],N + 1) ≤ V (x,N).

Since ū[t,t+N |t] is a suboptimal sequence

V (x,N + 1) ≤ J(x, ū[t,t+N |t],N + 1). (2.28)

Then

V (x,N + 1) ≤ V (x,N), ∀x ∈ XMPC(N) (2.29)

with V (x, 0) = Vf (x), ∀x ∈ Xf . Therefore, using point 4 of Assumption
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2.6, the upper bound is obtained

V (x,N) ≤ V (x,N − 1) ≤ V (x, 0) = Vf (x) ≤ βVf (|x|) , ∀x ∈ Xf . (2.30)

Now, let ũ[t+1,t+N |t+1] be as de�ned in Assumption 2.7. Denote x̃k|t+1

the state obtained at time k applying ũ[t+1,t+N |t+1] to the nominal model,

starting from the real state xt+1 at time t+ 1. De�ne ∆J as

∆J , J(xt+1, ũ[t+1,t+N |t+1],N)− J(x(t), ū[t,t+N |t],N + 1)

= −l(xt,uot|t) +
t+N−1∑
k=t+1

{l(x̃k|t+1, ũk|t+1)− l(x̂k|t, ūk|t)}

+l(x̃t+N |t+1,κf (x̃t+N |t+1))− l(x̂t+N |t,κf (x̂t+N |t))

+Vf (f(x̃t+N |t+1,κf (x̃t+N |t+1)))− Vf (f(x̂t+N |t,κf (x̂t+N |t))).

From the de�nition of ũ, ũk|t+1 = ūk|t, for k ∈ [t+ 1, t+N − 1], and hence,

by Assumptions 2.1 and 2.4

|l(x̃k|t+1, ũk|t+1)− l(x̂k|t,uok|t)| ≤ LlL
k−t−1
f |wt|.

Then, by applying also point 5 of Assumption 2.6, at both x̃ and x̂

∆J ≤ −l(xt,uot|t) +
t+N−1∑
k=t+1

LlLk−t−1
f |wt|

+Vf (x̃t+N |t+1)− Vf (x̂t+N |t)

Moreover, by using point 6 of Assumptions 2.1 and 2.6

|Vf (x̃t+N |t+1)− Vf (x̂t+N |t)| ≤ LvLN−1
f |wt|.

Substituting these expressions in ∆J , and by Assumption 2.4, there is

∆J ≤ −l(xt,uot|t) + LJ |wt| ≤ −αl(|xt|) + LJ |wt|

where LJ , LvLN−1
f + Ll

LN−1
f −1

Lf−1 . Finally, by using (2.28) and (2.29) with

sequence ū and (2.29) with sequence ũ, the bound on the decrease of V is

obtained

V (xt+1,N)− V (xt,N) ≤ ∆J ≤ −αl(|xt|) + LJ |wt| (2.31)
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for all x ∈ XMPC(N) and all w ∈ W.

Therefore, by (2.27), (2.30), (2.31) the optimal cost J(x, uo[t,t+N−1|t],N)
is an ISS-Lyapunov function for the closed-loop system in XMPC(N) and

hence, considering also Assumption 2.5, the closed-loop system (2.2), (2.19)

is ISS with RPIA set XMPC(N). �

Proof of Theorem 2.3: by Theorem 2.1, if system admits an

ISS-Lyapunov function in XMPC(N), then it is ISS in XMPC(N). In

the following it will be shown that the function V (x) de�ned in (2.23)

is an ISS-Lyapunov function for the closed-loop system (2.2), (2.22) in

XMPC(N).

First, the robust invariance of XMPC(N) is easily derived from Assumption

2.11 by taking κ̄[t+1,t+N ] , [κo[t+1,t+N−1|t] κf (xt+N )] as admissible policy

vector at time t+ 1 starting from the optimal sequence κo[t,t+N−1] at time t.

Then, the lower bound is easily obtained

V (x,N) = J(x,κo[t,t+N−1], w
o
[t,t+N−1],N)

≥ min
κ[t,t+N−1]

J(x̄,κ[t,t+N−1], 0,N)

≥ l(x,κ0(x))

≥ αl(|x|) (2.32)

for all x ∈ XMPC(N).
In order to derive the upper bound, consider the following policy vector

κ̃[t,t+N ] , [κo[t,t+N−1] κf (xt+N )] as admissible policy vector for the FHCLG

at time t with horizon N + 1. Then

J(x, κ̃[t,t+N ], w[t,t+N ],N + 1) =
t+N−1∑
k=t

{l(xk,uk)− lw(wk)}

+Vf (xt+N )− Vf (xt+N ) + Vf (xt+N+1)

+l(xt+N ,ut+N )− lw(wt+N ).

In view of Assumption 2.11

J(x, κ̃[t,t+N ], w[t,t+N ],N + 1) ≤
t+N−1∑
k=t

{l(xk,uk)− lw(wk)}+ Vf (xt+N )
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which implies

V (x,N + 1) ≤ max
w∈MW

J(x, κ̃[t,t+N ], w[t,t+N ],N + 1)

≤ max
w∈MW

t+N−1∑
k=t

{l(xk,uk)− lw(wk)}+ Vf (xt+N )

= V (x,N) (2.33)

which holds for all x ∈ XMPC(N) and all w ∈MW .

Therefore, using Assumption 2.11, the upper bound is obtained

V (x,N) ≤ V (x,N − 1) ≤ . . . ≤ V (x, 0) = Vf (x) ≤ βVf (|x|) (2.34)

for all x ∈ Xf .
From the monotonicity property (2.33) and by sub-optimality there is

V (f(x,κMPC(x)) + w,N)− V (x,N)

≤ V (f(x,κMPC(x)) + w,N − 1)− V (x,N)

≤ J(f(x,κMPC(x)) + w,κo[t+1,t+N−1|t], w
o
[t+1,t+N−1|t+1],N − 1)

− J(x,κo[t,t+N−1|t], [w wo
[t+1,t+N−1|t+1]],N)

≤ −l(x,κMPC(x)) + lw(w)

so that, by applying Assumptions 2.4 and 2.10, the bound on the decrease

of V is obtained

V (f(x,κMPC(x)) + w,N)− V (x,N) ≤ −αl (|x|) + βw(|w|) (2.35)

for all x ∈ XMPC(N), and all w ∈ W. Therefore, by (2.32), (2.34),

(2.35), the optimal cost V (x) is an ISS-Lyapunov function for the

closed-loop system in XMPC(N) and hence, considering also Assumption

2.9, the closed-loop system (2.2), (2.22) is ISS with RPIA set XMPC(N). �
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3.1 Introduction

Min-Max model predictive control (MPC) is one of the few techniques

suitable for robust stabilization of uncertain nonlinear systems sub-

ject to constraints. Stability issues as well as robustness have been

recently studied and some novel contributions on this topic have ap-

peared in the literature [Scokaert & Mayne 1998, Gyurkovics 2002,

Kerrigan & Mayne 2002, Magni et al. 2003, Gyurkovics & Takacs 2003,

Fontes & Magni 2003, Magni & Scattolini 2005, Lazar 2006,

Lazar et al. 2008, Limon et al. 2006a, Magni et al. 2006a, Löfberg 2003,

Kerrigan & Maciejowski 2004]. In this chapter, a general framework for

synthesizing min-max MPC schemes with an a priori robust stability



38 Chapter 3. Min-Max NMPC: an overview on stability

guarantee is distilled starting from an extensive literature. To this aim, a

general prediction model that covers a wide class of uncertainty modeling

that includes bounded disturbances as well as state (and input) dependent

disturbances (uncertainties) is introduced. This requires that the regional

Input-to-State Stability (ISS) and Input-to-State practical Stability (ISpS)

results are extended in order to cover both state dependent and state

independent uncertainties. Moreover, Lyapunov-type su�cient conditions

for the regional ISS and ISpS are presented for the considered class of

systems; this constitutes the base of the stability analysis of the min-max

MPC for the generalized prediction model.

Using the ISS tool, it is proven that if the auxiliary control law ensures

ISS of the system, with respect to the state independent part of the dis-

turbance (i.e. the state dependent part of the disturbance remains in a

certain stability margin) then the min-max MPC ensures that the closed

loop system is ISpS maintaining the same stability margin. The practical

nature of the stability is a consequence of the worst-case approach of the

control action and causes the system to be ultimately bounded even if the

real disturbances vanish.

In order to avoid this problem, two di�erent possible solutions are

considered: the �rst one is based on an H∞ like cost of the performance

index (see e.g. [Magni et al. 2001b, Magni et al. 2003, Magni et al. 2006a,

Gyurkovics & Takacs 2003]), while the second one is based on a dual-mode

strategy [Michalska & Mayne 1993, Chisci et al. 1996, Scokaert et al. 1999,

Scokaert & Mayne 1998, Kerrigan & Mayne 2002, Lazar et al. 2008].

These solutions are extended to a general prediction model and it is

shown that under fairly mild assumptions both controllers guarantee

Input-to-State Stability.

Moreover, a nonlinear auxiliary control law, based on the one presented

in [Magni et al. 2003], is proposed for the case of nonlinear systems a�ne

in control (which are very usual). It is shown that a nonlinear auxiliary

control law and the terminal penalty can be derived from the solution of

the discrete-time H∞ algebraic Riccati equation for the linearized system.
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3.2 Problem statement

Assume that the plant to be controlled is described by discrete-time non-

linear model

xk+1 = f(xk,uk, d1k , d2k), k ≥ 0 (3.1)

where f : IRn× IRm× IRp× IRq → IRn is a nonlinear, possibly discontinuous

function, xk ∈ IRn is the system state, uk ∈ IRm is the current control vector

and d1k and d2k are disturbances which model the uncertainties present in

the model. This partition on the disturbance signals stems from its nature:

d1k ∈ IRp models a class of uncertainty which depends on the state and the

control input while d2k ∈ IRq models a class of uncertainty that does not

depend neither on the state nor on the input signal. The transient of the

system (3.1) with initial state x0 = x̄ and disturbance sequences d1 and d2

is denoted by x(k, x̄, d1, d2).

Most of the models of nonlinear systems considers the uncertainty as

bounded disturbances, that is, the only knowledge of the model mismatches

is a bounded set where the error lies in. However, this representation may

lead to conservative results when, as usually occurs, there exists a relation-

ship between the model mismatch bounds and the state and input of the

plant. In this case, this conservativeness would be reduced if this informa-

tion were considered in the model of the plant by means of the proposed

partition of the disturbance model.

In the following assumption, the considered structure of such models is

formally presented.

Assumption 3.1

1. The system has an equilibrium point at the origin, that is f(0, 0, 0, 0) =
0.

2. The uncertainty d1 is such that

d1 = d1ηη(|(x,u)|) (3.2)

where η is a known K-function and d1η ∈ IRp is modeled as con�ned

in a compact set

D1η ⊂ IRp (3.3)

not necessarily including the origin with Dinf1η and Dsup1η known.
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3. The uncertainty d2 is such that

d2 ∈ D2 (3.4)

where D2 ⊂ IRq is a compact set containing the origin with Dsup2

known.

4. The state and control of the plant must ful�ll the following constraints

on the state and the input:

x ∈ X (3.5)

u ∈ U (3.6)

where X and U are compact sets, both of them containing the origin

as an interior point.

5. The state of the plant xk can be measured at each sample time.

�

The control objective consists in designing a control law u = κ(x) such

that it steers the system to (a neighborhood of) the origin ful�lling the

constraints on the input and the state along the system evolution for any

possible disturbance and yielding an optimal closed-loop performance ac-

cording to certain performance index.

This control problem is well studied in the literature and there exist

a number of control techniques that could be used. However, among the

existing solutions, one of the most successfully used control technique is the

model predictive control in its min-max approach. This is due to its optimal

formulation, its capability to ensure the robust constraint satisfaction and

its stabilizing design [Mayne et al. 2000].

In the min-max MPC controllers, the control law is based on the solution

of a �nite horizon game, where u is the input of the minimizing player

(the controller), and d1η, d2 are the maximizing player (the `nature'). More

precisely, the controller chooses the input uk as a function of the current

state xk so as to ensure constraint satisfaction along the predicted trajectory

of the plant for any possible uncertainty, minimizing at the same time the

worst case performance index of the predicted evolution of the system.

In the open-loop min-max MPC strategy, the performance index is mini-

mized with respect to a sequence of control action, a sequence which belongs
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to a �nite-dimensional space. It is well known that it is not convenient to

consider open-loop control strategies since open-loop control would not ac-

count for changes in the state due to unpredictable inputs played by `nature'

(see also [Scokaert & Mayne 1998]).

If a control law is considered as decision variable in the optimization

problem (instead of a control action), the solution results to be less conser-

vative since the predicted controlled system reacts to the e�ect of the dis-

turbance. The predictive controllers derived from this approach are called

closed-loop min-max MPC controllers and can provide larger domain of

attraction and a better closed-loop performance index. However, the opti-

mization problem may be di�cult (or even impossible) to be solved even

for linear prediction models.

A practical solution, located between the open-loop and the closed-loop

approach, is the so-called semi-feedback formulation of the problem. In this

case, control policies are considered as decision variables, but forcing a given

structure of the control law. Thus, the decision variable of each control law

is its set of de�ning parameters, yielding to an optimization problem similar

to the open-loop case one.

In this chapter, the considered control law is derived from a closed-loop

min-max MPC formulation κ(x) = κMPC(x). Although, from a practical

point of view, the control law is di�cult to calculate, from a theoretical point

of view makes sense since the closed-loop approach includes the open-loop

and semi-feedback controllers, and these can be considered as particular

cases. Thus, the stability results derived in the following for closed-loop

min-max MPC will be valid for the rest of formulations. It is worth re-

marking that this control law might be a discontinuous function of the

state.

The resulting closed-loop system is given by

xk+1 = f(xk,κMPC(xk), d1k , d2k), k ≥ 0

where the disturbance d1k is such that d1k = d1ηkη(|(xk,κMPC(xk))|) with
d1η ∈ D1η, and the disturbance d2k is such that d2k ∈ D2. The control law

should ensure that if the initial state is in a certain RPIA set, i.e. xt ∈
XMPC , then the resulting evolution of the system ful�lls the constraints,

that is xk ∈ X and κMPC(xk) ∈ U for all k ≥ t, for any possible evolution

of the disturbance signals.
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In the following section it is presented a suitable framework for the

analysis of stability of such class of closed loop systems: the regional ISpS.

3.3 Regional Input-to-State practical Stability

In this section the ISpS framework for discrete-time autonomous nonlinear

systems is presented and Lyapunov-like su�cient conditions are provided.

This will be employed in this chapter to study the behavior of perturbed

nonlinear systems in closed-loop with min-max MPC controllers.

Di�erently from section 2.3 in Chapter 2, this tool copes also with sys-

tems that, even in absence of disturbances, does not converge to the origin

but just to a neighborhood of it. As it will be explained, this is for example

the case of closed-loop systems controlled with a standard min-max MPC

law.

Consider a nonlinear discrete-time system described by

xk+1 = F (xk, d1k , d2k), k ≥ 0 (3.7)

where F : IRn × IRp × IRq → IRn is a nonlinear possibly discontinuous

function, xk ∈ IRn is the state, d1k ∈ IRp is the component of the uncertainty

depending from the state and d2k ∈ Rq is the other component of the

uncertainty. The transient of the system (3.7) with initial state x0 = x̄

and uncertainties d1 and d2 is denoted by x(k, x̄, d1, d2). This system is

supposed to ful�ll the following assumption.

Assumption 3.2

1. The compact set A ⊂ IRn, containing the origin, is a zero-invariant

set for the system (3.7), that is, a positively invariant set for the

associated �undisturbed� system xk+1 = F (xk, 0, 0), that means

F (x, 0, 0) ∈ A, ∀x ∈ A.

2. The uncertainty d1 is such that

d1 ∈ D1(x) ⊆ IRp

where, for each x, D1(x) is closed and contains the origin. Moreover
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there exist a K-function η and a signal d1η ∈ IRp, limited in a compact

set D1η ⊂ IRp (not necessarily including the origin as an interior

point) such that

d1 = d1ηη(|x|)

for all x ∈ Ξ, where Ξ ⊂ IRn is a compact set containing the origin as

an interior point.

3. The uncertainty d2 is such that

d2 ∈ D2 ⊂ IRq

where D2 is a compact set containing the origin. �

A regional version of Input-to-State practical Stability (ISpS)

[Sontag & Wang 1996, Jiang & Wang 2001] is de�ned in the following.

De�nition 3.1 (ISpS in Ξ) Given a compact set Ξ ⊂ IRn, including the

origin as an interior point, the system (3.7) with d1 ∈MD1 and d2 ∈MD2

is said to be ISpS (Input-to-State practical Stable) in Ξ with respect to d2 if

Ξ is a RPI set for (3.7) and if there exist a KL-function β, a K-function
γ2 and a constant c ≥ 0 such that

|x(k, x̄, d1, d2)| ≤ β(|x̄|, k) + γ2(||d2||) + c (3.8)

for all x̄ ∈ Ξ and k ≥ 0. �

Note that, whenever (3.8) is satis�ed with c = 0, and the origin is an

equilibrium point for �undisturbed� system, i.e. F (0, 0, 0) = 0, the system
(3.7) is said to be ISS (Input-to-State Stable) in Ξ with respect to d2 (see

De�nition 2.3).

In many applications it is of interest to study the stability with re-

spect to an invariant set A, where A in general does not consist of

a single point. The �set� version of the ISS property (also known

as �compact-ISS�) was originally proposed in [Sontag & Lin 1992]. A

regional version of the global ISS with respect to A, presented in

[Sontag & Wang 1995a, Gao & Lin 2000], is given in the Appendix of the

Thesis. In Proposition VI.3 of [Sontag & Wang 1996] and in De�nition 2.4

of [Sontag & Wang 1995b], it is shown, for the continuous-time case, that
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concept of ISpS is equivalent to concept of ISS with respect to A. In this

case, the constant c of equation (3.8) is Asup. The same relation holds

for discrete-time case. As for the ISpS property, the concepts of LpS and

UpAG are equivalent to the concepts of LS and UAG with respect to A
(see the Appendix of the Thesis for the de�nitions of the properties). More-

over, as discussed in Chapter 2, by examinating the proof of Lemma 2.7 in

[Sontag & Wang 1995a] carefully, one can see that the equivalence between

ISS in Ξ and the conjunction of UAG and LS (and consequently the equiv-

alence between ISpS in Ξ and the conjunction of UpAG in Ξ and LpS) also

applies to discontinuous systems (both continuous and discrete-time), if a

RPI compact set Ξ is considered.

Summarizing, on the base of the results in [Sontag & Wang 1995a,

Sontag & Wang 1995b, Sontag & Wang 1996, Gao & Lin 2000], it is pos-

sible to give the following equivalence result.

Theorem 3.1 Let Ξ ⊂ IRn be a compact set. Consider system (3.7). Sup-

pose that Assumption 3.2 is satis�ed. The following properties are equivalent

a) ISpS in Ξ

b) ISS in Ξ with respect to A

c) UpAG in Ξ and LpS

d) UAG in Ξ with respect to A and LS with respect to A.

Remark 3.1 The assumption that Ξ is a RPI set could render the de�-

nitions of ISpS and UpAG in Ξ trivials. In fact ISS in Ξ with respect

to Ξ and ISpS in Ξ with A ≡ Ξ are always satis�ed. However, if in the

ISpS property, c is shown to be smaller than Ξsup, and in the ISS the set

A is shown to be smaller than Ξ, then the ISpS in Ξ (or the ISS in Ξ
with respect to A) give more information than the solely robust positively

invariance of Ξ. �

Regional ISpS will be now associated to the existence of a suitable Lya-

punov function (in general, a priori non-smooth) with respect to d2. A

su�cient condition, that extends the ISS results of [Magni et al. 2006a], us-

ing the results of [Limon et al. 2006a], is introduced. In order to clarify the

relation between the sets introduced in the following de�nition see Figure

3.1.
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De�nition 3.2 (ISpS-Lyapunov function in Ξ) A function V : IRn → IR≥0
is called an ISpS-Lyapunov function in Ξ for system (3.7), if

1. Ξ is a compact RPI set including the origin as an interior point

2. there exist a compact set Ω ⊆ Ξ (including the origin as an interior

point), a pair of suitable K∞-functions α1,α2 and a constant c1 ≥ 0
such that

V (x) ≥ α1(|x|),∀x ∈ Ξ (3.9)

V (x) ≤ α2(|x|) + c1, ∀x ∈ Ω (3.10)

3. there exist a suitable K∞-function α3, a K-function λ2 and a constant

c2 ≥ 0 such that

∆V (x) , V (F (x, d1, d2))− V (x)
≤ −α3(|x|) + λ2(|d2|) + c2

(3.11)

for all x ∈ Ξ, all d1 ∈ D1(x), and all d2 ∈ D2

4. there exist suitable K∞-functions ζ and ρ (with ρ such that (id − ρ)
is a K∞-function) and a suitable constant cθ > 0, such that, given

a disturbance sequence d2 ∈ MD2, there exists a nonempty compact

set Θd2 ⊆ IΩ , {x : x ∈ Ω, |x|δΩ > cθ} (including the origin as an

interior point) de�ned as follows:

Θd2 , {x : V (x) ≤ b(λ2(||d2||) + c3)} (3.12)

where b , α−1
4 ◦ ρ−1, with α4 , α3 ◦ α−1

2 ,α3(s) ,
min(α3(s/2), ζ(s/2)),α2 , α2(s) + s, c3 , c2 + ζ(c1). �

Note that, whenever De�nition 3.2 is satis�ed with c1 = c2 = 0, the
function V is an ISS-Lyapunov function in Ξ for system (3.7) (see De�nition

2.4).

Remark 3.2 Note that, as discussed in Chapter 2, in order to verify that

Θd2 ⊆ IΩ for all d2 ∈MD2, one has to verify that

Θ , {x : V (x) ≤ b(λ2(Dsup2 ) + c3)} ⊆ IΩ (3.13)

�
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Figure 3.1: Example of sets satisfying De�nition 3.2

Now, a su�cient condition for regional ISpS of system (3.7), that

extends the ISS results of [Magni et al. 2006a] using the results of

[Limon et al. 2006a], can be stated.

Theorem 3.2 Suppose that Assumption 3.2 holds. If system (3.7) ad-

mits an ISpS-Lyapunov function in Ξ with respect to d2, then it is ISpS

in Ξ with respect to d2 and, for all disturbance sequences d2 ∈ MD2 ,

limk→∞ |x(k, x̄, d1, d2)|Θd2
= 0. �

Remark 3.3 Note that for a generic disturbance d1, condition 3 of De�ni-

tion 3.2 should be

3. there exist a suitable K∞-function α3, a pair of K-functions λ1 and

λ2 and a constant c2 ≥ 0 such that

∆V (x) , V (F (x, d1, d2))− V (x)
≤ −α(|x|) + λ1(|d1|) + λ2(|d2|) + c2

(3.14)

for all x ∈ Ξ, all d1 ∈ D1(x), and all d2 ∈ D2.
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However, in view of Assumption 3.2, since d1 is a function of x, the term

λ1(d1(x)) is incorporated in −α3(|x|). In order to satisfy the condition

that α3 is a K∞-function, it is necessary that the K∞-function α in (3.14)

compensates the e�ect of the disturbance d1. This means that system (3.7)

must have a stability margin: under Assumption 3.2, it is required that

−α(|x|) + λ1(|d1|) = −α(|x|) + λ1(|d1η|η(|x|))
≤ −α(|x|) + λ1(Dsup1η η(x)) , −α3(|x|)

with α3 ∈ K∞-function.

Remark 3.4 Theorem 3.2 gives an estimation of the region Θd2 where the

state of the system converges asymptotically. In some cases, as for example

in the MPC, the function V is not known in explicit form. Hence, in order

to verify that point 4 of De�nition 3.2 is satis�ed, considering also Remark

3.2, one has to verify that

Θ̄ , {x : |x| ≤ α−1
1 ◦ b(D

sup
2 )} ⊆ IΩ (3.15)

In fact, in view of (3.9) and Remark 3.2, Θ̄ ⊇ Θ. In order to clarify the

relation between the sets, see Figure 3.2.

3.4 Min-max model predictive control

This section presents new results that allows the presentation of previous

results in a uni�ed framework. Firstly, the formulation of the closed-loop

min-max control law is presented. Then, the stability of di�erent approaches

of this control technique is studied, deriving su�cient conditions and gen-

eralizing existing results.

As it was claimed in Section 3.2, the control law derived by means of

a closed-loop min-max MPC considers a vector of feedback control policies

κ[t,t+N−1] , [κ0(xt),κ1(xt+1), · · ·,κN−1(xt+N−1)] in the minimization of the

cost in the worst disturbance case. This optimization problem can be posed

as the following Finite Horizon Closed-Loop Game (FHCLG).

De�nition 3.3 (FHCLG) Consider system (3.1) with xt = x̄. Given the

positive integer N , the stage cost l, the terminal penalty Vf and the ter-
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Figure 3.2: Relation between sets

minal set Xf , the FHCLG problem consists in minimizing, with respect to

κ[t,t+N−1] and maximizing with respect to d1[t,t+N−1] and d2[t,t+N−1] the

cost function
J(x̄,κ[t,t+N−1], d1[t,t+N−1], d2[t,t+N−1],N) ,∑t+N−1

k=t l(xk,uk, d1k , d2k) + Vf (xt+N )
(3.16)

subject to

1. the state dynamics (3.1)

2. the constraints (3.2)-(3.6), k ∈ [t, t+N − 1]

3. the terminal constraint xt+N ∈ Xf . �

In the following, let XMPC(N) denote the set of states for which a

solution of the FHCLG problem exists.

Letting κo[t,t+N−1], d
o
1[t,t+N−1], d

o
2[t,t+N−1] be the solution of the FH-

CLG, according to the Receding Horizon (RH) paradigm, the feedback

control law u = κMPC(x) is obtained by setting

κMPC(x) = κo0(x) (3.17)
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where κo0(x) is the �rst element of κo[t,t+N−1].

The parameters of the controller are the prediction horizon, the stage

cost function, the terminal cost function and the terminal region. The

stage cost de�nes the performance index to optimize and must satisfy the

following assumption.

Assumption 3.3 The stage cost l(·) is such that l(0, 0, 0, 0) = 0 and

l(x,u, d1, d2) ≥ αl(|x|)− αd(|d2|) where αl and αd are K∞-functions. �

As it is standard in MPC [Mayne et al. 2000], the terminal ingredients

are added to provide closed-loop stability as it can be seen in the following

section.

3.4.1 Stability

In this section, tools for analyzing stability of closed-loop min-max MPC

systems are provided. Firstly, it will be shown that, when persistent dis-

turbances are present, the standard min-max approach can only guarantee

ISpS. Secondly, two di�erent solutions for overcoming this problem and

guaranteeing ISS of the min-max MPC closed-loop system are given: the

�rst one is derived using a particular design of the stage cost of the perfor-

mance index, while the second one is based on a dual-mode strategy.

In order to derive the main stability and performance properties associ-

ated to the solution of FHCLG, the following assumption is introduced.

Assumption 3.4 The design parameters Vf , Xf are such that, given an

auxiliary control law κf

1. Xf ⊆ X , Xf closed, 0 ∈ Xf

2. κf (x) ∈ U , |κf (x)| ≤ Lκf |x|, for all x ∈ Xf , where Lκf > 0

3. f(x,κf (x), d1, d2) ∈ Xf , for all x ∈ Xf , all d1η ∈ D1η, and all d2 ∈ D2

4. there exist a pair of suitable K∞-functions αVf and βVf such that

αVf < βVf and

αVf (|x|) ≤ Vf (x) ≤ βVf (|x|)

for all x ∈ Xf
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5. Vf (f(x,κf (x), d1, d2)− Vf (x) ≤ −l(x,κf (x), d1, d2) + %(|d2|),
for all x ∈ Xf , all d1η ∈ D1η, and all d2 ∈ D2, where % is a K∞-
function. �

Assumption 3.4 implies that the closed-loop system formed by (3.1) and

u(k) = κf (x), is ISS in Xf (Vf is an ISS-Lyapunov function in Xf ).

Remark 3.5 If the feedback policies κi(x), i = 0, . . . ,N − 1 are restricted

to belong to a particular class of functions then also κf must belong to this

class. This motivates the di�culty to guarantee closed-loop stability if opti-

mization is performed with respect to open-loop strategies [Chen et al. 1997].

In fact, Assumption 3.4 should hold with κf (x) = 0. On the contrary, a

natural choice, when semi-feedback controllers are used, is to include the

auxiliary control law among the regressors (see the example in Section 3.6).

�

In what follows, the optimal value of the performance index, i.e.

V (x,N) , J(x,κo[t,t+N−1], d
o
1[t,t+N−1], d

o
2[t,t+N−1],N) (3.18)

is employed as an ISpS-Lyapunov function.

Assumption 3.5 Let

• Ξ = XMPC

• Ω = Xf

• α1 = αl

• α2 = βVf

• α3 = αl

• λ2 = αd

• c1 = N%(Dsup2 )

• c2 = %(Dsup2 )
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The set D2 is such that the set Θ (depending from Dsup2 ), de�ned in (3.13)

with function V given by (3.18), is contained in IΩ. �

The main result can now be stated.

Theorem 3.3 Under Assumptions 3.1, 3.3-3.5, the closed-loop system

formed by (3.1) and (3.17), subject to constraints (3.2)-(3.6), is ISpS with

respect to d2 with RPIA set XMPC(N). �

Remark 3.6 In the proof of Theorem 3.3, it is shown that, in order to prove

the ISpS, the upper bound (3.10) in a local region is su�cient. However,

this could be a limitation due to (3.13). In fact the uncertainty should be

such that Θ ⊆ Ω. In order to enlarge the set of admissible uncertainty it

could be useful to �nd an upper bound in a region Ω1 ⊇ Ω as suggested

in [Limon et al. 2006a, Lazar et al. 2008]. However this idea can either

enlarge or restrict the set of admissible uncertainty since Ω1 ⊇ Ω but the

upper bound could be more conservative.

Remark 3.7 As discussed in Remark 2.5, it is not necessary to obtain the

global optimum solution of the FHCLG in order to guarantee the ISpS (or

the ISS) of the closed-loop system. In fact the vector of feedback control

policies κ̃[1,N ] , [κ̃[0,N−1] κf ], where κ̃[0,N−1] is the possible sub-optimal

solution obtained at the previous step, is an available feasible solution that

guarantees ISpS or ISS. Indeed this sequence is such that the value function

satis�es (3.11). The only requirement on the possible sub-optimal solution

is to be not worst than κ̃[1,N ]. On the contrary, the applicability of a sub-

optimal solution of the maximization of the FHCLG is still an open issue

[Alamo et al. 2005, Raimondo et al. 2007a]. �

The previous theorem formulated for the general case of standard min-

max MPC states that only ISpS is guaranteed for the resulting closed-loop

system, irrespective of the fact that the disturbances may vanish in reality.

However, when this is the case, it would be preferable that the closed-

loop system is ISS, so that nominal asymptotic stability is recovered when

disturbances are no longer active.

In the following subsections some ingredients are presented, in the form

of assumptions on the type of disturbances or the min-max MPC cost func-

tion, that make possible to establish ISS, instead of ISpS, of closed-loop

min-max MPC systems.
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3.4.1.1 Standard min-max with only state dependent uncer-

tainty

Consider the case system (3.1) is a�ected only by the uncertainty d1 satis-

fying (3.2) (it is known that d2k = 0,∀k ≥ 0). This assumption led to the

result published in [Mayne 2001], which is stated in the following theorem.

Theorem 3.4 [Mayne 2001] Consider that d2 = 0. Under Assumptions

3.1, 3.3-3.5, the origin of the closed-loop system formed by (3.1) and

(3.17), subject to constraints (3.2)-(3.6), is robustly asymptotically stable

with RPIA set XMPC(N).

Remark 3.8 Note that Assumption 3.4 states that control law u = κf (x)
is designed in such a way that the closed-loop system has a stability margin

in Xf . Moreover, note that the robustness of the auxiliary control law is

translated to the MPC, that is, the min-max MPC controller extends to

XMPC(N) the stability margin provided by the auxiliary control law. �

Next, the more challenging case, when both state dependent and state

independent uncertainties are present, will be considered.

3.4.1.2 Standard min-max with state independent uncertainty

Consider the case system (3.1) is a�ected by both uncertainties of the type

d1 and of the type d2.

A new condition on the stage cost (standard min-max stage cost) is

introduced.

Assumption 3.6 The stage cost l(x,u) is disturbance independent and

such that l(0, 0) = 0 and l(x,u) ≥ αl(|x|), where αl is a K∞-function.
�

Under the above assumption, the following ISpS result (which can

be recovered also from Theorem 3.3) for min-max MPC was obtained in

[Limon et al. 2006a].
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Corollary 3.1 [Limon et al. 2006a] Under Assumptions 3.1, 3.4-3.6, the

closed-loop system formed by (3.1) and (3.17), subject to constraints (3.2)-

(3.6), is ISpS with respect to d2 with RPIA set XMPC(N). �

Note that, even if the auxiliary control strategy guarantees ISS, only

ISpS can be established for the min-max MPC closed-loop system. As

already mentioned, this is not a desirable property, as the employed control

design method prevents that closed-loop asymptotic stability is attained

when there are no disturbances active.

In the followings two solutions for solving this problem of standard min-max

MPC will be discussed. The �rst solution, presented previously in Chapter

2, employs a particular design of the stage cost such that Assumption 3.4

can be satis�ed also with % ≡ 0, leading, for example, to the well-known

H∞ strategy. The second solution exploits the ISS property of the auxiliary

control law via a dual-mode strategy to establish ISS of the dual-mode min-

max MPC closed-loop system.

3.4.1.3 H∞ strategy

The proof of Corollary 3.1 clearly illustrates that the di�culty of proving

ISS of min-max MPC, which is attempted in Theorem 3.3, is related to

the terms c1 and c2 that are depending on the K∞-function % de�ned in

Assumption 3.4 and whose necessity is related to the stage cost considered

in the standard min-max MPC optimization problem.

This observation leads to the following new condition on the stage cost,

which will turn out to be su�cient for proving ISS of the corresponding

min-max MPC closed-loop system.

Assumption 3.7 The stage cost is composed by the functions lx : IRn ×
IRm × IRp → IR and ld : IRq → IR as follows

l(x,u, d1, d2) = lx(x,u, d1)− ld(d2)

and satis�es Assumption 3.3. �

If Assumption 3.7 is satis�ed, as it will be shown in Section 3.5, then

Assumption 3.4 can be satis�ed also with % ≡ 0. Then, using the proof of
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Theorem 3.3, ISS of the closed-loop system can be guaranteed, as estab-

lished by the following result.

Corollary 3.2 [Magni et al. 2006a] Under Assumptions 3.1, 3.4, 3.5, 3.7

with % ≡ 0, the closed-loop system formed by (3.1) and (3.17), subject to

constraints (3.2)-(3.6), is ISS with respect to d2 with RPIA set XMPC(N).

�

The above result shows that by adding a new term to the stage cost,

which depends solely on the disturbance signal, ISS of the resulting min-max

MPC closed-loop system can be attained. It remains to be explored how the

modi�ed cost function a�ects the solvability of the min-max optimization

problem and whether standard min-max MPC solvers can still be employed.

Next, a dual-mode strategy for guaranteeing ISS of min-max MPC will

be presented, which relies on the same cost function as the one used in

standard min-max MPC.

3.4.1.4 Dual-mode strategy

Su�cient conditions for input-to-state stability of nonlinear discrete-time

systems in closed-loop with dual-mode min-max MPC controllers were

recently developed in [Lazar et al. 2008]. Therein, only state independent

uncertainties were considered. In this section the results presented in

[Lazar et al. 2008] will be exploited and Theorem 3.2 will be used to

apply the dual-mode approach to the more general class of uncertainties

considered in this chapter.

First, let recall the classical dual-mode strategy. In dual-mode MPC, the

receding horizon controller (3.17) is employed outside Xf and the auxiliary

control law κf is used inside Xf , i.e.

uDM ,

{
κMPC(x) if x ∈ XMPC(N) \ Xf ,
κf (x) if x ∈ Xf .

(3.19)

Next, the ISS result for dual-mode min-max MPC with standard cost func-

tion are presented.
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Theorem 3.5 Under Assumptions 3.1, 3.3-3.5, the closed-loop system

formed by (3.1) and (3.19), subject to constraints (3.2)-(3.6), is ISS with

respect to d2 with RPIA set XMPC(N). �

So far, two methods for establishing ISS of min-max MPC have been

presented. However, both these methods rely on a speci�c cost function that

must satisfy certain assumptions. Therefore, the computation of suitable

cost functions is equally important for synthesizing min-max MPC schemes

with an a priori ISS guarantee. A solution that applies to nonlinear systems

a�ne in control is presented in the next section.

3.5 The auxiliary control law

In this section it is shown that, if nonlinear input a�ne systems are consid-

ered, a nonlinear control law u = κ∗(x) satisfying Assumption 3.4 can be

derived by the solution of the H∞ control problem for the linearized system.

This section extends the results obtained in [Magni et al. 2003]) also to the

presence of state independent disturbances. In this respect, consider the

system

xk+1 = f1(xk) + f2(xk)uk + f3(xk)wk (3.20)

zk =
[
h1(xk)
uk

]
where w = [d>1 d>2 ]>, f1, f2, f3 and h1 are C2 functions with f1(0) = 0 and

h1(0) = 0. For convenience, let represent the corresponding discrete-time

linearized system as

xk+1 = F1xk + F2uk + F3wk

zk =
[
H1xk
uk

]

where F1 = ∂f1

∂x

∣∣∣
x=0

, F2 = f2(0), F3 = f3(0), H1 = ∂h1
∂x

∣∣∣
x=0

. Given a

square n×n matrix P , and a positive constant γ, de�ne also the symmetric

matrix

R = R(P ) =
[
R11 R12

R21 R22

]
(3.21)
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where

R11 = F>2 PF2 + I

R12 = R>21 = F>2 PF3

R22 = F>3 PF3 − γ2I

and the quadratic function

Vf (x) = x>Px.

Proposition 3.1 Suppose that Assumptions 3.1 is satis�ed. Suppose that

(i) |d1|2 = |d1ηη(|(x,u)|)|2 ≤ Kdx|x|2 +Kdu|u|2, with Kdx ≥ 0 and Kdu ≥
0

and that there exists a positive de�nite matrix P such that

(ii) R22 < 0

(iii) −P +F>1 PF1 +H>1 H1−F>1 P
[
F2 F3

]
R−1

[
F2 F3

]>
PF1 < 0.

Then, there exist sets D1(x) and D2 such that for all w ∈ W̄ne = D1(x)×
D2 the control law u = κ∗(x) where[

κ∗(x)
ξ∗(x)

]
= −R(x)−1

[
f2(x) f3(x)

]>
Pf1(x)

with

R(x) =
[
f2(x)>Pf2(x) + I f2(x)>Pf3(x)
f3(x)>Pf2(x) f3(x)>Pf3(x)− γ2I

]
=
[
r11(x) r12(x)
r21(x) r22(x)

]
satis�es Assumption 3.4 with stage cost

(a) l(x,u, d1, d2) = |z|2 − γ2|w|2 and % ≡ 0

or

(b) l(x,u, d1, d2) = |zl|2 with zl =
[
hl(x)
u

]
, where hl is such that

h1(x)>h1(x) ≥ hl(x)>hl(x) + a|x|2 + c|x|2, a , γ2Kdx, b , γ2Kdu,
c , bL2

κf
and %(s) , γ2|s|2
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and

Xf ,
{
x : x>Px ≤ α

}
⊆ X ,

where α is a �nite positive constant.

Remark 3.9 P can be computed by solving a discrete-time H∞ algebraic

Riccati equation.

It is important to underline that the proposed auxiliary control law

satis�es Assumption 3.4 with both the stage cost l(x,u, d1, d2) = |z|2 −
γ2|w|2 and l(x,u, d1, d2) = |zl|2.

3.6 Example

In this section, the MPC law introduced in the chapter is applied to a

cart with mass M moving on a plane (the model is the same of the paper

[Magni et al. 2003]). This carriage (see Figure 3.3) is attached to the wall

via a spring with elastic constant k given by k = k0e
−x1 , where x1 is the

displacement of the carriage from the equilibrium position associated with

the external force u = 0 and the external disturbance force (wind force)

d2 = 0. Finally a damper with damping factor hd a�ects the system in a

resistive way. The model of the system is given by the following continuous-

Figure 3.3: Cart and spring-damper example.

time state space nonlinear model{
ẋ1(t) = x2(t)
ẋ2(t) = − k0

M e
−x1(t)x1(t)− hd

M x2(t) + u(t)
M + d2(t)

M

where x2 is the carriage velocity. The parameters of the system are M = 1
kg, k0 = 0.33 N

m , while the damping factor in not well known and is given
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by hd = h̄d + d1η, where h̄d = 1.1Nsm and |d1η| ≤ 0.1. Wind force is limited:

−0.2 ≤ d2 ≤ 0.4. The system can be rewritten as{
ẋ1(t) = x2(t)
ẋ2(t) = − k0

M e
−x1(t)x1(t)− h̄d

M x2(t) + u(t)
M − d1η(t)

M x2(t) + d2(t)
M

The state and control variables have to satisfy the following constraints

|u| ≤ 4.5 N , |x1| ≤ 2.65 m. An Euler approximation of the system with

sampling time Tc = 0.4 s is given by
x1k+1

= x1k + Tcx2k

x2k+1
= −Tc k0

M e
−x1kx1k + x2k − Tc

h̄d
M x2k

+Tc ukM − Tc
d1ηk
M x2(k) + Tc

d2k
M

which is a discrete-time nonlinear system. The system can be rewritten as[
x1k+1

x2k+1

]
=

[
1 Tc
−Tc k0M e−x1k 1− Tc h̄dM

] [
x1k

x2k

]
︸ ︷︷ ︸

f1(xk)

+
[

0
Tc
M

]
︸ ︷︷ ︸

F2

uk

+
[

0 0
−TcM

Tc
M

]
︸ ︷︷ ︸

F3

[
d1k

d2k

]
︸ ︷︷ ︸

wk

where d1k = d1ηkx2k . Disturbance d1k satis�es point (i) of Proposition 3.1

with Kdx = 0.01 and Kdu = 0. Let choose l(x,u, d1, d2) = |z|2 − γ2|w|2 and

l(x,u) = |zl|2 where

zl =
[
hl(x)
u

]
=


HL︷ ︸︸ ︷[

q1l 0
0 q2l

] [
x1

x2

]
u


with q1l = 1 and q2l = 1 and γ = 3. The auxiliary control law is obtained

as described in Section 3.5 with

z =
[
h1(x)
u

]
=


H1︷ ︸︸ ︷[

q1 0
0 q2

] [
x1

x2

]
u
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with q1 = 1.1 and q2 = 1.1. Note that, as required at point b) of Proposition
3.1, h1(x)>h1(x) ≥ hl(x)>hl(x) + a|x|2 + c|x|2 with a = γ2Kdx = 0.09,
b = γ2Kdu = 0, c = bL2

κf
= 0, where Lκf = 2. In fact

q2
1x

2
1 + q2

2x
2
2 ≥ q2

1lx
2
1 + q2

2lx
2
2 + ax2

1 + ax2
2

1.21x2
1 + 1.21x2

2 ≥ x2
1 + x2

2 + 0.09x2
1 + 0.09x2

2.

The auxiliary control law is given by

κf (x) = −[1 0 0]R−1

[
F2

F3

]
Pf1(x) = −[0.8783 1.1204]f1(x)

where

P =
[

7.0814 3.3708
3.3708 4.2998

]
is computed solving a discrete time H∞ algebraic Riccati equation

P = F>1 PF1 +H>2 H2 − F>1 P
[
F2 F3

]
R−1

[
F2 F3

]>
PF1

with

H>2 H2 = 1.2H>1 H1

in order to satisfy inequality (iii) of Proposition 3.1. Matrix P satis�es

inequality (ii) of Proposition 3.1. The terminal penalty is given by Vf =
x>Px. The auxiliary control law satis�es Assumption 3.4, for the stages

cost chosen, in the region Xf , {x : x>Px ≤ 4.7}. Region Xf has been

obtained numerically. The length of horizon is N = 4. The policies κi(x)
are functions of the form κi(x) = αiκf (x)+βi(x2

1 +x2
2)+γi. Figure 3.4 and

3.5 show the time evolution of position and velocity of the cart, starting

from x1(0) = 0.5m and x2(0) = 0ms . Figure 3.6 shows the control sequence.
Figure 3.7 show the time evolution of d1η and d2. For t ≥ 1.6s the signal
d2 is equal to zero. Note that, H∞ and dual mode strategies guarantee

ISS: cart position goes to zero when the disturbance vanishes. On the

other hand, standard min-max strategy only guarantees ISpS. In fact, when

the disturbance vanishes, cart position does not tend to the origin but to

x1 = 0.1541m. Moreover, note that that H∞ and dual mode performances

are comparable since, in the neighborhood of the origin, the auxiliary control

law is a good approximation of the H∞ strategy.
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Figure 3.4: Time evolution of cart position.
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Figure 3.5: Time evolution of cart velocity.
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Figure 3.6: Time evolution of the control.
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Figure 3.7: Time evolution of uncertainty d1η and disturbance d2.
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3.7 Conclusions

In this chapter a uni�ed framework for the synthesis of min-max MPC

control algorithms has been provided. The ISpS or ISS property of such

algorithms is analyzed with respect to a general class of disturbances that

considers both state dependent and state independent disturbances. The

algorithms based on a standard stage cost, on an H∞ cost and on a dual

mode approach are compared. The relevance of the adopted stage cost to

achieve ISS clari�es the di�erence between some of the results appeared in

the literature.

3.8 Appendix

Proof of Theorem 3.2: The proof will be carried out in four steps.

Step 1: �rst, it is going to be shown that Θd2 de�ned in (3.12) is

a RPI set for system (3.7). From the de�nition of α2(s) it follows that

α2(|x|) + c1 ≤ α2(|x| + c1). Therefore V (x) ≤ α2(|x| + c1) and hence

|x|+ c1 ≥ α−1
2 (V (x)),∀x ∈ Ω. Moreover (see [Limon et al. 2006a]):

α3(|x|) + ζ(c1) ≥ α3(|x|+ c1) ≥ α4(V (x)) (3.22)

where α4 , α3 ◦ α−1
2 is a K∞-function. Then

∆V (x) ≤ −α4(V (x)) + ζ(c1) + c2 + λ2(|d2|)
= −α4(V (x)) + λ2(|d2|) + c3

≤ −α4(V (x)) + λ2(||d2||) + c3,

for all x ∈ Ξ, all d1 ∈ D1(x), and all d2 ∈ D2, where c3 , c2 + ζ(c1).

Assume now that there exists a �nite time t such that xt ∈ Θd2 . Then
V (xt) ≤ b(λ2(||d2||) + c3); this implies ρ◦α4(V (xt)) ≤ λ(||d2||) + c3. With-
out loss of generality, assume that (id− α4) is a K∞-function (see Lemma
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B.1 [Jiang & Wang 2001]). Then

V (F (xt, d1t , d2t)) ≤ (id− α4)(V (xt)) + λ2(||d2||) + c3
≤ (id− α4)(b(λ2(||d2||) + c3)) + λ2(||d2||) + c3
= −(id− ρ) ◦ α4(b(λ2(||d2||) + c3))

+b(λ2(||d2||) + c3)− ρ ◦ α4(b(λ2(||d2||) + c3))
+λ2(||d2||) + c3.

From the de�nition of b, it follows that ρ ◦ α4(b(s)) = s and, owing to the

fact that (id− ρ) is a K∞-function, it follows that

V (F (xk0 , d1k0
, d2k0

)) ≤ −(id− ρ) ◦ α4(b(λ2(||d2||) + c3))
+b(λ2(||d2||) + c3)

≤ b(λ2(||d2||) + c3).

By induction one can show that V (x(t + j, x̄, d1, d2)) ≤ b(λ2(||d2||) + c3)
for all j ∈ Z≥0, that is x(t+ j, x̄, d1, d2) ∈ Θd2 for all k ≥ t. Hence Θd2 is

a RPI set for system (3.7).

Step 2: now, it is shown that, starting from Ξ \ Θd2 , the state

tends asymptotically to Θd2 . Firstly, if x ∈ Ω \Θd2 , then

ρ ◦ α4(V (x)) > λ2(||d2||) + c3.

From the inequality (3.22), one has

ρ(α3(|x|) + ζ(c1)) > λ2(||d2||) + c3.

On the other hand, (id− ρ) is a K∞-function, hence

id(s) > ρ(s),∀s > 0

then

α3(|x|) + ζ(c1) > ρ(α3(|x|) + ζ(c1)) > λ2(||d2||) + ζ(c1) + c2.

Hence

α3(|x|) > λ2(||d2||) + c2 (3.23)

that means

∆V (x) < 0, ∀x ∈ Ω \Θd2 .
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Moreover, by de�nition of Θd2 (see point 4 of De�nition 3.2), there exists

c̄θ > 0 such that for all x1 ∈ Ξ \ Ω, there exists x2 ∈ Ω \ Θd2 such that

α3(|x2|) ≤ α3(|x1|)− c̄θ. Then from (3.23) it follows that

−α3(|x1|) + c̄θ ≤ −α3(|x2|) < −λ2(|d2|)− c2, ∀x1 ∈ Ξ \ Ω.

Then

∆V (x) < −c̄θ, ∀x ∈ Ξ \ Ω

so that, considering that |x| ≤ α−1
1 (V (x)), there exists T1 such that

x(T1, x̄,d1,d2) ∈ Ω.

Therefore, starting from Ξ, the state will reach the region Ω in a �nite time.
If in particular x(T1, x̄,d1,d2) ∈ Θd2 , the region Θd2 is achieved in a �nite
time. Since Θd2 is a RPI set, it is true that limk→∞ |x(k, x̄,d1,d2)|Θd2

= 0.
Otherwise, if x(T1, x̄,d1,d2) /∈ Θd2 , ρ◦α4(V (x(T1, x̄,d1,d2)) > λ2(||d2||)+
c3 and

∆V (x(T1, x̄,d1,d2)) ≤ −α4(V (x(T1, x̄,d1,d2))) + λ2(||d2||) + c3
= −(id− ρ) ◦ α4(V (x(T1, x̄,d1,d2)))
−ρ ◦ α4(V (x(T1, x̄,d1,d2))) + λ2(||d2||) + c3

≤ −(id− ρ) ◦ α4(V (x(T1, x̄,d1,d2)))
≤ −(id− ρ) ◦ α4 ◦ α1(|x(T1, x̄,d1,d2)|)

where the last step is obtained using (3.9). Then, ∀ε′ > 0, ∃T2(ε′) ≥ T1

such that

V (x(T2, x̄,d1,d2)) ≤ ε′ + b(λ2(||d2||) + c3). (3.24)

Therefore, starting from Ξ, the state will arrive close to Θd2 in a �nite

time and to Θd2 asymptotically. Hence limk→∞ |x(k, x̄,d1,d2)|Θd2
= 0.

Note that if ||d2|| 6= 0 or c3 > 0, there exists a c̃ > 0 such that

Θsup
d2

= c̃. Then, for x(T1, x̄, d1, d2) /∈ Θd2 , there is |x(T1, x̄, d1, d2)| > c̃.

Hence, there exists a c2 > 0 such that, for x(T1, x̄, d1, d2) /∈ Θd2 ,

∆V (x(T1, x̄, d1, d2)) < −c2, that means, the state arrives in Θd2 in a �nite

time.

Step 3: given e ∈ IR≥0, let R(e) , {x : V (x) ≤ e}. Let

Ψ , {x : V (x) ≤ ē = maxR(e)⊆Ω e}. It is clear that Ψ ⊇ Θd2 and that

Ψ is a RPI set. Since the upper bound of V (x) is known in Ψ ⊆ Ω then,

using the same steps of the proof of Lemma 3.5 in [Jiang & Wang 2001],
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that also hold for discontinuous systems, the regional ISpS in Ψ is obtained.

Step 4: �nally it is shown that system (3.7) is regional ISpS in Ξ.
Using (3.24) and (3.9) there is

α1(|x(T2, x̄,d1,d2)|) ≤ V (x(T2, x̄,d1,d2)) ≤ ε′ + b(λ2(||d2||) + c3)

hence

|x(T2, x̄,d1,d2)| ≤ α−1
1 (ε′ + b(λ2(||d2||) + c3)).

Noting that, given a K∞-function θ1, θ1(s1 + s2) ≤ θ1(2s1) + θ1(2s2), see
[Limon et al. 2006a], it follows that

|x(T2, x̄,d1,d2)| ≤ α−1
1 (2ε′) + α−1

1 (2b(2λ2(||d2||))) + α−1
1 (2b(2c3)).

Now, letting ε , α−1
1 (2ε′) and γ(||d2||) , α−1

1 (2b(2λ2(||d2||))) and c ,
α−1

1 (2b(2c3)), the UpAG property in Ξ is proven. In view of Theorem 3.1,

since the system is regional ISpS in Ψ, it is LpS and UpAG in Ψ. Finally,

LpS with UpAG in Ξ imply that the system is ISpS in Ξ with respect to

d2. �

Proof of Theorem 3.3: by Theorem 3.2, if system admits an ISpS-

Lyapunov function in XMPC(N), then it is ISpS in XMPC(N).
In the following it will be shown that the function V (x,N), de�ned in 3.18,

is an ISpS-Lyapunov function for the closed-loop system (3.1) and (3.17) in

XMPC(N).

First, the robust invariance of XMPC(N) is easily derived from Assump-

tion 3.4 by taking κ̄[t+1,t+N ] , [κo[t+1,t+N−1|t] κf (xt+N )] as admissible policy

vector at time t+ 1 starting from the optimal sequence κo[t,t+N−1] at time t.

Then, using Assumption 3.3, the lower bound is easily obtained

V (x,N) = J(x,κo[t,t+N−1], d
o
1[t,t+N−1]

, do2[t,t+N−1],N)

≥ min
κ[t,t+N−1]

J(x,κ[t,t+N−1], 0, 0,N)

≥ l(x,κ0(x), 0, 0)

≥ αl(|x|) (3.25)

for all x ∈ XMPC(N).
In order to derive the upper bound, consider the following policy vector
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κ̃[t,t+N ] , [κo[t,t+N−1] κf (xt+N )] as admissible policy vector for the FHCLG

at time t with horizon N + 1. Then

J(x, κ̃[t,t+N ], d1[t,t+N ]
, d2[t,t+N ]

,N + 1) =
t+N−1∑
k=t

l(xk,uk, d1k , d2k) + Vf (xt+N )− Vf (xt+N ) + Vf (xt+N+1)

+l(xt+N ,ut+N , d1t+N , d2t+N ).

In view of Assumption 3.4

J(x, κ̃[t,t+N ], d1[t,t+N ]
, d2[t,t+N ]

,N + 1) ≤
t+N−1∑
k=t

l(xk,uk, d1k , d2k) + Vf (xt+N ) + %(|d2|)

which implies

V (x,N + 1) ≤ max
d1η∈MD1η

,d2∈MD2

J(x, κ̃[t,t+N ], d1[t,t+N ]
, d2[t,t+N ]

,N + 1)

≤ max
d1η∈MD1η

,d2∈MD2

t+N−1∑
k=t

l(xk,uk, d1k , d2k) + Vf (xt+N )

+%(|d2|)
= V (x,N) + %(Dsup2 ) (3.26)

which holds for all x ∈ XMPC(N), all d1η ∈MD1η , and all d2 ∈MD2 .

Therefore, using Assumption 3.4, the upper bound is obtained

V (x,N) ≤ V (x,N − 1) + %(Dsup2 ) ≤ . . . ≤ V (x, 0) +N%(Dsup2 )

= Vf (x) +N%(Dsup2 ) ≤ βVf (|x|) +N%(Dsup2 ) (3.27)

for all x ∈ Xf .
From the monotonicity property (3.26) and by sub-optimality there is

V (f(x,κMPC(x), d1, d2),N)− V (x,N)

≤ V (f(x,κMPC(x), d1, d2),N − 1)− V (x,N)

≤ −l(x,κMPC(x), d1, d2) + %(Dsup2 ).

For details, see the analogous proof of Theorem 2.3. Hence, by applying
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Assumptions 3.3, the bound on the decrease of V is obtained

V (f(x,κMPC(x), d1, d2),N)− V (x,N) ≤ −αl (|x|) + αd (|d2|) + %(Dsup2 )
(3.28)

for all x ∈ XMPC(N), all d1η ∈MD1η , and all d2 ∈MD2 .

Therefore, by (3.25), (3.27), (3.28), V (x) is an ISpS-Lyapunov function

for the closed-loop system (3.1) and (3.17) in XMPC(N) and hence, by

Theorem 3.2, the closed-loop system formed by (3.1) and (3.17), subject to

constraints (3.2)-(3.6), is ISpS with respect to d2 with RPIA set XMPC(N).

�

Proof of Corollory 3.1: Proof of Corollary 3.1 is derived by proof of

Theorem 3.3. One of the key steps in the proof of Theorem 3.3 is to show

that condition 3 in De�nition 3.2 is satis�ed. In particular, using Assump-

tion 3.3, point 5 of Assumption 3.4 and monotonicity property (3.26), it is

shown that condition 3 in De�nition 3.2 is satis�ed by the inequality (3.28).

Only ISpS can be proven because of term %(Dsup2 ) derived by term %(|d2|)
in point 5 of Assumption 3.4. The necessity of this term is related to the

particular stage cost considered in the optimization problem. In Corallary

3.1, a standard stage cost l(x,u) is considered. In order to guarantee the

satisfaction of Assumption 3.4 for a disturbance d2 di�erent from zero, term

%(|d2|) must be di�erent from zero. However, note that in this case, by As-

sumption 3.6, αd ≡ 0. This fact, considering Assumption 3.5, leads to a

less conservative estimation of the region Θ de�ned in (3.13). �

Proof of Theorem 3.5: As shown in the proof of Theorem 3.3, As-

sumptions 3.1, 3.3-3.5 guarantee that the closed-loop system (3.1)-(3.17)

is ISpS in XMPC(N). Following the steps of the proof of Theorem 3.2,

it can be proven that region Xf is achieved in a �nite time. The auxil-

iary control law is used when the state reaches the region Xf or when it

starts in Xf . By Assumption 3.4, Vf (x) is an ISS-Lyapunov function in Xf .
Hence the closed-loop system with the auxiliary control law is ISS in Xf .
ISS in Xf is equivalent to UAG in Xf and LS. Since Xf is achieved in a

�nite time and system satis�es UAG property in Xf , UAG in XMPC(N)
is obtained. Finally, by Theorem 3.1, the closed-loop system (3.1)-(3.19) is

ISS in XMPC(N) since UAG in XMPC(N) and LS are equivalent to ISS in

XMPC(N). �

Proof of Proposition 3.1: In the following, it will be shown that the
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proposed auxiliary control law satis�es Assumption 3.4. First, note that

there exists a positive constant r0 such that point 2 of Assumption 3.4 is

satis�ed for all x belonging to

Ω0 = {x : |x| ≤ r0} ⊂ X .

De�ne

H(x,u,w) = Vf (f1(x) + f2(x)u+ f3(x)w)− Vf (x) + |z|2 − γ2|w|2. (3.29)

Then

H(x,u,w) = (f1(x) + f2(x)u+ f3(x)w)>P (f1(x) + f2(x)u+ f3(x)w)

−x>Px+ h1(x)>h1(x) + u>u− γ2w>w

=
(
f1(x)>Pf1(x)− x>Px+ h1(x)>h1(x)

)
+u>

(
f2(x)>Pf2(x) + I

)
u+ w>

(
f3(x)>Pf3(x)− γ2

)
w

+2
[
u> w>

] [ f2(x)>Pf1(x)
f3(x)>Pf1(x)

]
+ 2u>F2(x)>PF3(x)w

=
(
f1(x)>Pf1(x)− x>Px+ h1(x)>h1(x)

)
+
[
u> w>

]
R(x)

[
u

w

]
+ 2

[
u> w>

] [ f2(x)>Pf1(x)
f3(x)>Pf1(x)

]
and, computing H(x,u,w) for u = κ∗(x) and w = ξ∗(x),

H(x,κ∗(x), ξ∗(x)) =(
f1(x)>Pf1(x)− x>Px+ h1(x)>h1(x)

)
+
[
κ∗(x)> ξ∗(x)>

]
R(x) ·

·
[
κ∗(x)
ξ∗(x)

]
− 2

[
κ∗(x)> ξ∗(x)>

]
R(x)

[
κ∗(x)
ξ∗(x)

]
=
(
f1(x)>Pf1(x)− x>Px+ h1(x)>h1(x)

)
−
[
f1(x)>Pf2(x) f1(x)>Pf3(x)

]
R(x)−1

[
f2(x)>Pf1(x)
f3(x)>Pf1(x)

]
From (iii) it follows that there exist positive constants ε, r such that

H(x,κ∗(x), ξ∗(x)) ≤ −ε|x|2, for all x ∈ Ω1 = {x : |x| ≤ r} ⊂ Ω0. (3.30)

By the Taylor expansion Theorem (note that the �rst order term is evalu-
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ated in (u,w) = (κ∗(x), ξ∗(x)) and terms of order > 2 are null)

H(x,u,w) = H(x,κ∗(x),w∗) +
1
2

[
u− κ∗(x)
w − ξ∗(x)

]>
R(x)

[
u− κ∗(x)
w − ξ∗(x)

]
Assumption (ii) implies that there exists a neighborhood Xne of x = 0 such
that for all x ∈ Xne, r22(x) < 0. If the system is controlled by u = κ∗(x)
then

H(x,κ∗(x),w) = H(x,κ∗(x), ξ∗(x)) +
1
2

(w − ξ∗(x))> r22(x) (w − ξ∗(x)) .

Since r22(x) < 0, it follows that, given Xne, there exist an open neighbor-

hoods Wne of w = 0 such that

H(x,κ∗(x),w) ≤ H(x,κ∗(x), ξ∗(x)), ∀x ∈ Xne, ∀w ∈ Wne.

In view of (3.30), there exists a positive constant r2 such that

H(x,κ∗(x),w) ≤ H(x,κ∗(x), ξ∗(x)) ≤ −ε|x|2 (3.31)

for all x ∈ Ω2 = {x : |x| ≤ r2} ⊂ Ω1 and for all w ∈ Wne. Let choose some

β > 0 such that

Ωβ = {x : Vf (x) ≤ β} ⊂ Ω2. (3.32)

From (3.29), (3.31), (3.32) follows that

Vf (f1(x) + f2(x)κ∗(x) + f3(x)w) ≤ Vf (x)− |z|2 + γ2|w|2 − ε|x|2

≤ Vf (x)− |z|2 + γ2|w|2

for all x ∈ Ωβ and all w ∈ Wne. Hence, if H∞ strategy is used with

l(x,u, d1, d2) = |z|2 − γ2|w|2 and % ≡ 0, point 5 of Assumption 3.4 is

satis�ed. Consider now the case of l(x,u, d1, d2) = |zl|2 as de�ned in point

b) of Proposition 3.1 (standard min-max stage cost)

Vf (f1(x) + f2(x)κ∗(x) + f3(x)w) ≤ Vf (x)− |z|2 + γ2|w|2

= Vf (x)− h1(x)>h1(x)− u>u
+γ2d>1 (x)d1(x) + γ2d>2 d2.
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Using point (i) of Proposition 3.1

Vf (f1(x) + f2(x)κ∗(x) + f3(x)w) ≤ Vf (x)− h1(x)>h1(x)− u>u
+γ2(Kdx|x|2 +Kdu|u|2) + γ2d>2 d2

≤ Vf (x)− h1(x)>h1(x)− u>u+ a|x|2

+b|u|2 + γ2d>2 d2

with a , γ2Kdx and b , γ2Kdu. Considering that point 2 of Assumption

3.4 is locally satis�ed

Vf (f1(x) + f2(x)κ∗(x) + f3(x)w) ≤ Vf (x)− h1(x)>h1(x)− u>u
+a|x|2 + c|x|2 + γ2d>2 d2

with c , bL2
κf
. Then, using point b) of Proposition 3.1

Vf (f1(x) + f2(x)κ∗(x) + f3(x)w)≤ Vf (x)− hl(x)>hl(x)− u>u+ γ2|d2|2

≤ Vf (x)− hl(x)>hl(x)− u>u+ %(|d2|)
= Vf (x)− l(x,u) + %(|d2|)

for all x ∈ Ωβ , and all w ∈ Wne where %(s) , γ2|s|2. Hence point 5 of

Assumption 3.4 is satis�ed for the standard min-max stage cost too.

In order to verify that Assumption 3.4 is satis�ed, it remains to prove

points 1, 3, 4. Point 1 is obtained if Xf ⊆ Ωβ ⊂ X . Point 4 is obviously

satis�ed since Vf (x) = x>Px, with P positive de�nite matrix, is such that

αVf (|x|) , λmin(P )||x||2 ≤ x>Px ≤ λmax(P )||x||2 , βVf (|x|)

where λmin(P ) and λmax(P ) are minimum and maximum eigenvalues of P .

In order to prove point 3, the robust invariance of Xf , let consider the
proof of Theorem 3.2. By step 1, Θ(Dsup2 ) is a RPI set. Since Θ(Dsup2 ) ∝
Dsup2 , there exists a set W̄ne = D1(x) × D2 ⊂ Wne and a positive constant

α such that, de�ning Xf as

Xf , {x : Vf (x) ≤ α},

there is Θ ⊂ Xf ⊂ Ωβ . It is clear that Xf is a RPI set.

The invariance of the closed-loop system (with the auxiliary control law)

in Xf ends the proof that Assumption 3.4 is satis�ed. �
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4.1 Introduction

As discussed in Chapter 3, min-max model predictive control is based on

the solution of a �nite-horizon game, where u is the input of the minimizing

player (the controller) and w is the input of the maximizing player (the

nature). The controller chooses the input uk as a function of the current

state xk so as to ensure constraint satisfaction along the predicted trajec-

tory of the plant for any possible uncertainty, minimizing at the same time

the worst case performance index of the predicted evolution of the system.
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The calculation of the solution of the optimization problem results to be

an NP-hard problem [Blondel & Tsitsiklis 2000], even in the case that the

cost is a convex function [Scokaert & Mayne 1998] with respect to the fu-

ture sequence of disturbances. This fact has limited its applications to a

narrow �eld in spite of its bene�ts. This has motivated an increasing e�ort

to �nd novel approaches to the min-max MPC which maintain its desirable

properties with a more tractable optimization problem associated. This

is typically done by using an upper bound function of the min-max cost

function [Kothare et al. 1996, Lee & Yu 1997, Lu & Arkun 2000] or by us-

ing a relaxed maximization problem aimed to make the problem tractable

[Alamo et al. 2005, Alamo et al. 2007]. The goal of this chapter is to pro-

pose a relaxed min-max predictive controller for constrained nonlinear sys-

tems. To this aim, the max stage is replaced by a simple suitable choice

of an uncertain realization. This choice produces a solution that does not

di�er much from the original min-max problem. Moreover, the proposed

predictive control is shown to inherit the convergence and the domain of

attraction of the standard min-max strategy. The computational burden of

this solution is much lower but at the expense of a potential minor loss of

performance.

4.2 Problem statement

Assume that the plant to be controlled is described by discrete-time non-

linear dynamic model

xk+1 = f(xk,uk,wk), k ≥ 0 (4.1)

where xk ∈ IRn is the state, uk ∈ IRm is the current control vector, wk ∈ IRp

is the disturbance term.

The system is supposed to ful�ll the following assumption.

Assumption 4.1

1. For simplicity of notation, it is assumed that the origin is an equilib-

rium point, i.e. f(0, 0, 0) = 0.
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2. The disturbance w is such that

w ∈ W = {w ∈ IRp : |w|∞ ≤ ε} (4.2)

where ε > 0.

3. The state and the control variables are restricted to ful�ll the following

constraints

x ∈ X (4.3)

u ∈ U (4.4)

where X and U are compact sets, both containing the origin as an

interior point.

4. The state of the plant xk can be measured at each sample time.

4.3 Min-Max Nonlinear Model Predictive Control

As discussed in Chapter 3, a practical solution, compromise between the

simplicity of the open-loop min-max strategy and the performance advan-

tages of the closed-loop one, is the so-called semi-feedback min-max formu-

lation. In this case, control policies are considered as decision variables,

but forcing a given structure of the control law. Thus, the decision vari-

able of each control law is its set of de�ning parameters, yielding to an

optimization problem similar to the open-loop case one. In the follow-

ing, di�erent control and prediction horizon, Nc and Np respectively with

Nc ≤ Np, will be considered. Hence, functions of x and parameters z ∈ IRq,

κ(xt+j , zt+j), j ∈ [0,Nc − 1], will be used as feedback control strategies

[Fontes & Magni 2003]. This means that, at each instant t, the controller

will have only to choose z[t,t+Nc−1] , [zt, . . . , zt+Nc−1], a sequence belonging
to a �nite-dimensional space. Moreover, at the end of the control horizon,

i.e. in the interval [t+Nc, t+Np−1], an auxiliary state-feedback control law
u = κf (x) will be used. The functions κ should be such that the auxiliary

control law is a particular case of the possible feedback control strategies,

that is, there exists zf such that κ(x, zf ) = κf (x).

In the following, the optimal min-max problem can be stated.
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De�nition 4.1 (FHCLG) Consider system (4.1) with xt = x̄. Given

the positive integers Nc and Np, the stage cost l, the terminal penalty Vf
the terminal set Xf , and the auxiliary control law κf , the Finite Horizon

Closed-Loop Game (FHCLG) problem consists in minimizing, with respect

to z[t,t+Nc−1] and maximizing with respect to w[t,t+Np−1] the cost function

J(x̄, z[t,t+Nc−1], w[t,t+Np−1]) ,
t+Np−1∑
k=t

l(xk,uk) + Vf (xt+Np) (4.5)

subject to:

1. the state dynamics (4.1)

2. the control signal

uk =
{
κ(xk, zk), k ∈ [t, t+Nc − 1]
κf (xk), k ∈ [t+Nc, t+Np − 1]

3. the constraints (4.2)-(4.4), k ∈ [t, t+Np − 1]

4. the terminal state constraints xt+Np ∈ Xf . �

Note that the parameters z[t,t+Nc−1] have to be such that, for each pos-

sible sequence w[t,t+Nc−1] ∈MW

κ(xk, zk) ∈ U , k ∈ [t, t+Nc − 1].

Moreover, the same constraint has to be satis�ed between the end of the

control horizon and the end of the prediction horizon, that means, for all

w[t,t+Np−1] ∈MW

κf (xk) , κ(xk, zf ) ∈ U , k ∈ [t+Nc, t+Np − 1].

Letting zo[t,t+Nc−1], wo
[t,t+Np−1] be a solution of the FHCLG, according to

the RH paradigm, the feedback control law u = κMPC(x) is obtained by

setting

κMPC(x) = κ(x, zo0) (4.6)

where zo0 is the �rst element of zo[t,t+Nc−1].

The stage cost de�nes the performance index to optimize and must

satisfy the following assumption.
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Assumption 4.2 The stage cost l(·, ·) is such that l(0, 0) = 0 and l(x,u) ≥
l(x, 0), for all x ∈ X , and all u ∈ U . �

In order to derive the main stability and performance properties associ-

ated to the solution of FHCLG, the following assumption is introduced.

Assumption 4.3 The design parameters Vf , Xf are such that, given an

auxiliary control law κf

1. Xf ⊆ X , Xf closed, 0 ∈ Xf

2. κf (x) ∈ U , for all x ∈ Xf

3. f(x,κf (x),w) ∈ Xf , for all x ∈ Xf , all w ∈ W

4. there exist a pair of suitable K∞-functions αVf and βVf such that

αVf < βVf and

αVf (|x|) ≤ Vf (x) ≤ βVf (|x|)

for all x ∈ Xf

5. Vf (f(x,κf (x),w)− Vf (x) ≤ −l(x,κf (x)) + %(|w|),
for all x ∈ Xf and all w ∈ W, where % is a K∞-function.

Remark 4.1 The computation of the auxiliary control law, the termi-

nal penalty and the terminal inequality constraint satisfying Assumption

4.3, could be obtained by, for example, LDIs (Linear Di�erential In-

clusions) around the origin and by using standard linear robust strategy

[Alamo et al. 2005]. A solution for a�ne systems has been proposed in

Chapter 3 and [Magni et al. 2003], where it is shown how to compute a

nonlinear auxiliary control law based on the solution of a suitable H∞ prob-

lem for the linearized system under control. �

In order to simplify the notation, let denote z , z[t,t+Nc−1], w , w[t,t+Np−1]

and zo , zo[t,t+Nc−1]. In the following let denote

J̄(x, z) , maxw∈MW J(x, z, w).

Moreover, let denote with V (x) the cost associated with the solution of the

FHCLG problem V (x) , minz J̄(x, z), where the minimization with respect

to z is carried out under the robust constraints of the FHCLG problem.
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4.4 Guaranteed bound of the max function

In this section a new cost function that avoids to evaluate the maximum of

FHCLG, will be proposed. For this aim, the following assumption has to

be introduced.

Assumption 4.4 Let assume J(x, z, w) be C2 with respect to w.

Remark 4.2 Note that Assumption 4.4 can be ensured, for example, if the

functions f(·, ·, ·), l(·, ·), Vf (·) and κ(·, ·) are C2 with respect to the variables

x, u, z and w. It is worth to note that Assumption 4.4 is di�erent from

requiring V (x) is C2, that, a priori is not guaranteed. Moreover, note that

the requirement κ(·, ·) is C2 is very di�erent from requiring κMPC(x) is C2,

control law that, as discussed in Chapter 1, could be discontinuous. �

Since sets X , U , andW are compact, under Assumption 4.4, there exists

a constant λ ∈ [0,∞) such that

σ̄(∇2
wJ(x, z, w)) ≤ λ

for all x ∈ X , all u ∈MU , and all w ∈MW .
Note that the results of this chapter rely only on the existence of the

constant λ, which means that the proposed MPC formulation can be im-

plemented without requiring an estimation of its value. Let introduce now

the following lemma.

Lemma 4.1 Suppose that Assumptions 4.1 and 4.4 hold. Let de�ne

EL(x, z, w) , J(x, z, w)− J(x, z, 0)− [∇wJ(x, z, 0)]Tw

as the error between the cost function J(x, z, w) and its linearization at

w = 0. Then
|EL(x, z, w)| ≤ σ

2 ε
2, (4.7)

for all x ∈ X , all u ∈MU , and all w ∈MW , where σ = pNpλ. �

Let denote

wg(x, z) , argmax [∇wJ(x, z, 0)]Tw (4.8)

= sign (∇wJ(x, z, 0)) ε
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the uncertainty sequence maximizing the �rst order approximation of the

cost function J(x, z, 0) (remember that by constraint (4.2), |w|∞ ≤ ε).

De�ne J̃(x, z) , J(x, z, wg(x, z)).
Now it is possible to state the following result.

Lemma 4.2 Consider the FHCLG given in De�nition 4.5. Under Assump-

tions 4.1 and 4.4

J̄(x, z)− σε2 ≤ J̃(x, z) ≤ J̄(x, z) (4.9)

where σ = pNpλ. �

4.5 Proposed Min formulation: stability

A new formulation of the min-max model predictive control is presented in

this section. The objective is to circumvent the computation of the worst-

case disturbance realization, which requires the solution of a maximization

problem. The idea is to evaluate the cost function only for an appropriately

calculated sequence of disturbances so reducing dramatically the computa-

tional burden of the maximization problem.

Consider the proposed cost function J̃(x, z). The new min-max problem

is stated in the following de�nition.

De�nition 4.2 (FHACLG) Consider system (4.1) with xt = x̄. Given

the positive integers Nc and Np, the stage cost l, the terminal penalty

Vf the terminal set Xf , and the auxiliary control law κf , the uncertainty

sequence wg(x, z) as de�ned in (4.8), the Finite Horizon Approximated

Closed-Loop Game (FHACLG) problem consists in minimizing, with respect

to z[t,t+Nc−1], the cost function J̃(x, z) subject to:

1. the state dynamics (4.1)

2. the control signal

uk =
{
κ(xk, zk), k ∈ [t, t+Nc − 1]
κf (xk), k ∈ [t+Nc, t+Np − 1]

3. the constraints (4.3)-(4.4), for all w[t,t+Np−1] ∈ MW and all k ∈
[t, t+Np − 1]
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4. the terminal state constraints xt+Np ∈ Xf , for all w[t,t+Np−1] ∈MW .

�

Letting z̃o , z̃o[t,t+Nc−1], be a solution of the FHACG, according to the

RH paradigm, the feedback control law u = κ̃MPC(x) is obtained by setting

u = κ̃MPC(x) = κ(x, z̃o0) (4.10)

where z̃o0 is the �rst element of z̃o[t,t+Nc−1].

Remark 4.3 Even if, by solving the FHACLG instead of the FHCLG prob-

lem, the computational burden of the maximization problem is dramatically

reduced, the constraints satisfaction must be checked for all possible distur-

bances. In order to guarantee this, a tube-based formulation for the robust

constraint satisfaction could be used (see for example [Limon et al. 2008]).

�

In the following, let X̃MPC denote the set of states for which a solution

of the FHACLG problem exists.

It is clear that, since the constraints of the FHCLG and the FHACLG

problems are the same, the optimal solution z̃o of the FHACLG is a sub-

optimal feasible solution for the FHCLG. As it is claimed in the following

lemma, the di�erence between the optimal value of the original objective

function and the value obtained with z̃o is bounded by σε2.

Lemma 4.3 Denote with V (x) and Ṽ (x) , J̃(x, z̃o) the optimal solution

of the FHCLG and the FHACLG problem respectively. Under Assumption

4.1 and 4.4 it results that

1. J̄(x, z̃o)− σε2 ≤ V (x) ≤ J̄(x, z̃o)

2. Ṽ (x) ≤ V (x) ≤ Ṽ (x) + σε2. �

In what follows, the optimal value of the performance index, i.e. V (x)
is employed as an ISpS-Lyapunov function for the closed-loop system (4.1),

(4.10).

Assumption 4.5 Let
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• Ξ = X̃MPC

• Ω = Xf

• α1 = αl

• α2 = βVf

• α3 = αl

• λ2 = %

• c1 = Np%(ε)

• c2 = σε2

The set W is such that the set Θ (depending from ε), de�ned in (3.13) (in

the de�nition replace d2 with w) with function V (x) = J̄(x, zo), is contained
in IΩ. �

The main result can now be stated.

Theorem 4.1 Under Assumptions 4.1-4.5, the closed-loop system formed

by (4.1), (4.10), subject to constraints (4.2)-(4.4), is ISpS with respect to w

with RPIA set X̃MPC . �

Remark 4.4 The control applied at time t is κ̃MPC(x) and not κMPC(x).
In spite of this, the proposed controller guarantees that the optimal original

cost function is an ISpS Lyapunov function for the resulting closed-loop

system.

4.6 Example

In this section, the MPC law introduced in the chapter is applied to a cart

with a mass M moving on a plane (the model is the same of the paper

[Magni et al. 2003]). This carriage (see Figure 4.1) is attached to the wall

via a spring with elastic k given by k = k0e
−x1 , where x1 is the displacement

of the carriage from the equilibrium position associated with the external

force u = 0 and the external disturbance force (wind force) w = 0. Finally
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a damper with damping factor hd a�ects the system in a resistive way. The

model of the system is given by the following continuous-time state space

nonlinear model{
ẋ1(t) = x2(t)
ẋ2(t) = − k0

M e
−x1(t)x1(t)− hd

M x2(t) + u(t)
M + w(t)

M

where x2 is the carriage velocity. The parameters of the system are M = 1
kg, k0 = 0.33 N

m , hd = 1.1 Ns
m . The wind force is assumed to be bounded,

|w| ≤ 0.4 N . The state and control variables have to satisfy the following

constraints |u| ≤ 4.5 N , |x1| ≤ 2.65 m. An Euler approximation of the

system with sampling time Tc = 0.4 s is given by{
x1k+1

= x1k + Tcx2k

x2k+1
= −Tc k0

M e
−x1kx1k + x2k − Tc

hd
M x2k + Tc

uk
M + Tc

wk
M

which is a discrete-time nonlinear system. For this system the MPC control

law is computed according to the algorithm presented in the paper. The

auxiliary control law κf = −Kx, with K = [0.5332 0.7159], is the LQR
obtained for the system linearized in xeq = 0, ueq = 0, using Q = I2×2,

identity matrix of dimension 2×2 and R = 1 Let Q̃ , β(Q+K>RK), with
β = 1.2, and denote with P the unique symmetric positive de�nite solution

of the Lyapunov equation (A−BK)>P (A−BK)− P + Q̃ = 0

P =
[

5.9091 2.8639
2.8639 3.6616

]
Using as terminal penalty Vf (x) = x>Px, the Assumption 4.3 is satis�ed

in the terminal set Xf = {x : x>Px ≤ 6.1} with %(s) = 10s. The stage

cost adopted in the cost function is quadratic, x>Qx+ u>Ru, with Q and

R the same used for the LQR. The lengths of the control and prediction

horizon in the MPC implementation are respectively Nc = 6 and Np = 10.
The feedback control strategies are assumed to have the following structure

k(x, z) = −z1κf (x) + z2. This means that the minimization problem, at

each time, has to choose the value of the parameters z1 and z2. The pro-

posed strategy, as described in Section 4.4, at each instant time, �nds the

maximum of the linear approximation of the cost function. The problem of

solving the maximization of the FHCLG in exact manner is unrealistic, so

that only an approximated solution is possible in real-time. However, con-



4.7. Conclusions 81

sidering the case of a cost function convex in w, the exact solution of the

max requires the evaluation, at each time instant, of all the vertexes of the

disturbance, which in this case are 2Np = 210 = 1024. Instead, the solution
presented in the paper requires only one evaluation. A tube-based formu-

lation for the robust constraint satisfaction could be used to check that, for

all possible sequence of disturbances, constraints are never violated. The

following Figure 4.2 shows the evolution of the system for the initial state

x1 = −2.61m, x2 = 0ms , with a particular realization of the disturbance.

The dashed lines show the minimum and maximum values corresponding

to all possible disturbances along the evolution of the system.

Figure 4.1: Cart and spring example.

4.7 Conclusions

A new formulation of the min-max model predictive control has been pre-

sented in this chapter. Its objective is to make a�ordable the computation

of the worst-case disturbance realization, which requires the solution of a

maximization problem. The proposed controller is based on the simple

evaluation of the cost function for an appropriately calculated sequence of

future disturbances. The controller derived from the minimization of the

relaxed maximization problem ensures the same domain of attraction of

the min-max one and guarantees ISpS under the same conditions. In or-

der to illustrate the proposed controller, this has been tested on a model.

The implementation of the MPC for the illustrative example demonstrates

the di�culty to implement a real min-max MPC compared with the pro-

posed one. The obtained results show the stability and admissibility of the

proposed controller.
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Figure 4.2: Evolution of the system for initial state x1 = −2.61m, x2 = 0ms

4.8 Appendix

Proof of Lemma 4.1: using the Maclaurin series of the function J(x, z, w),
for every w ∈MW there exists a ŵ ∈MW such that

J(x, z, w) = J(x, z, 0) + [∇wJ(x, z, 0)]Tw + 1
2wT [∇2

wJ(x, z, ŵ)]w.

This means that

EL(x, z, w) =
1
2
wT [∇2

wJ(x, z, ŵ)]w

|EL(x, z, w)| ≤ 1
2
σ̄(∇2

wJ(x, z, ŵ))wTw.
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Assumptions 4.1 and 4.4 guarantee that σ̄(∇2
wV (x, z, ŵ)) ≤ λ, for all x ∈ X ,

all u ∈MU and all ŵ ∈MW .
By this, remembering that w ∈ IRp and w ∈ IRpNp , one has

|EL(x, z, w)| ≤ λ

2
wTw ≤ λpNp

2
|w|2∞ ≤

λpNp

2
ε2 =

σ

2
ε2.

�

Proof of Lemma 4.2: by de�nition,

J(x, z, w) = EL(x, z, w) + J(x, z, 0) + [∇wJ(x, z, 0)]Tw.

Adding and subtracting the term EL(x, z, wg(x, z)) one obtains

J(x, z, w) = EL(x, z, w) + J(x, z, 0) + [∇wJ(x, z, 0)]Tw
+EL(x, z, wg(x, z))− EL(x, z, wg(x, z)).

Using Lemma 4.1, equation (4.7)

EL(x, z, w)− EL(x, z, wg(x, z)) ≤ |EL(x, z, w)|+ |EL(x, z, wg(x, z))|
≤ σ

2 ε
2 + σ

2 ε
2 = σε2.

Then

J(x, z, w) ≤ J(x, z, 0) + [∇wJ(x, z, 0)]Tw + EL(x, z, wg(x, z)) + σε2.

Now, maximizing the cost with respect to w, and considering (4.8), one has

J̄(x, z) = max
w∈MW

J(x, z, w)

≤ max
w∈MW

J(x, z, 0) + [∇wJ(x, z, 0)]Tw + EL(x, z, wg(x, z)) + σε2

= J(x, z, 0) + [∇wJ(x, z, 0)]Twg(x, z) + EL(x, z, wg(x, z)) + σε2

= J̃(x, z) + σε2

and hence

J̄(x, z)− σε2 ≤ J̃(x, z). (4.11)

In order to conclude the proof, note that J̃(x, z) ≤ J̄(x, z), since

J̄(x, z) = max
w∈MW

J(x, z, w) ≥ J(x, z, wg(x, z)) = J̃(x, z)
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�

Proof of Lemma 4.3

First claim: denoting zo the optimal solution of the FHCLG and z̃o the
optimal solution of the FHACLG, the �rst inequality is obtained by Lemma

4.2, equation (4.9)

V (x) = J̄(x, zo) ≥ J̃(x, zo) ≥ J̃(x, z̃o) ≥ J̄(x, z̃o)− σε2.

The second inequality stems directly from the suboptimality of z̃o: V (x) ≤
J̄(x, z̃o).

Second claim: again, from (4.9) the �rst inequality

V (x) = J̄(x, zo) ≥ J̃(x, zo) ≥ J̃(x, z̃o) = Ṽ (x)

and the second one

Ṽ (x) = J̃(x, z̃o) ≥ J̄(x, z̃o)− σε2 ≥ J̄(x, zo)− σε2 = V (x)− σε2

and hence V (x) ≤ Ṽ (x) + σε2. �

Proof of Theorem 4.1: by Theorem 3.2, if system admits an ISpS-

Lyapunov function in X̃MPC , then it is ISpS in X̃MPC .

In the following it will be shown that the function V (x,Nc,Np) =
J̄(x, zo,Nc,Np), is an ISpS-Lyapunov function for the closed-loop system

(4.1), (4.10) in X̃MPC(Nc,Np). For brevity, when not strictly necessary,

the arguments Nc and Np will be omitted.

The robust invariance of X̃MPC(Nc,Np) is easily derived from Assump-

tion 4.3 by taking

zs =
{
zk, k ∈ [t+ 1, t+Nc − 1]
zf , k ∈ [t+Nc, t+Np]

as policy parameter vector at time t + 1 starting from the sequence

z̃o[t,t+Nc−1] = arg minz J̃(x, z,Nc,Np) at time t. By the optimal solution

of the FHACLG at time t, there is xt+Np ∈ Xf , for all w ∈ MW . By As-

sumption 4.3, applying κf (x) at time t+Np, xt+Np+1 ∈ Xf , for all w ∈MW
and hence, the policy parameters zs is admissible; therefore X̃MPC(Nc,Np)
is a RPIA set for the closed-loop system.
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Then, using Assumption 4.2, the lower bound is easily obtained

V (x) = J(x, zo, wo) ≥ min
z
J(x, z, 0)

≥ l(x,κ(x, z0)) ≥ αl(|x|) (4.12)

for all x ∈ X̃MPC .

In order to derive the upper bound, consider the following policy vector

ẑ[t,t+Nc] , [zo[t,t+Nc−1] zf ] as admissible policy vector for the FHCLG at

time t with horizons Nc + 1 and Np + 1. Then

J(x, ẑ[t,t+Nc], w[t,t+Np],Nc + 1,Np + 1) =
t+Np−1∑
k=t

l(xk,uk) + Vf (xt+Np)− Vf (xt+Np) + Vf (xt+Np+1)

+l(xt+Np ,κf (xt+Np)).

In view of Assumption 4.3

J(x, ẑ[t,t+Nc], w[t,t+Np],Nc + 1,Np + 1) ≤
t+Np−1∑
k=t

l(xk,uk) + Vf (xt+Np) + %(|w|)

which implies

V (x,Nc + 1,Np + 1) ≤ max
w∈MW

J(x, ẑ[t,t+Nc], w[t,t+Np],Nc + 1,Np + 1)

≤ max
w∈MW

t+Np−1∑
k=t

l(xk,uk) + Vf (xt+Np) + %(|w|)

= V (x,Nc,Np) + %(ε)

which holds for all x ∈ X̃MPC(Nc,Np), and all w ∈MW .

Therefore, using Assumption 4.3, the upper bound is obtained

V (x,Nc,Np) ≤ V (x,Nc − 1,Np − 1) + %(ε) ≤ . . . ≤ V (x, 0) +Np%(ε)

= Vf (x) +Np%(ε) ≤ βVf (|x|) +Np%(ε) (4.13)

for all x ∈ Xf .
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Now, in order to �nd the bound on ∆V , de�ne

w̃ = arg max
w

J(xt+1, zs, w,Nc,Np)

with zs de�ned as previously, and take w̄ = (wt, w̃t+1, · · · , w̃t+Np−2). From
the feasibility of z̃o, it is easy to derive that

J(xt+1, zs, w̃)− J(xt, z̃o, w̄) ≤ Vf (xt+Np+1)− Vf (xt+Np)
+l(xt+Np ,κf (xt+Np))
−l(xt, κ̃MPC(xt)).

Then, by Assumption 4.3

J(xt+1, zs, w̃)− J(xt, z̃o, w̄) ≤ −l(xt, κ̃MPC(xt)) + %(|wt|).

By optimality of w̃

J(xt+1, zs, w̃) = J̄(xt+1, zs) ≥ V (xt+1).

In virtue of Lemma 4.3 and by the optimality of z̃o

J(xt, z̃o, w̄) ≤ J̄(xt, z̃o) ≤ J̃(xt, z̃o) + σε2

= Ṽ (xt) + σε2 ≤ V (xt) + σε2.

Therefore, it is possible to derive that

V (xt+1)− V (xt) ≤ −l(xt, κ̃MPC(xt)) + %(|wt|) + σε2. (4.14)

for all x ∈ X̃MPC , and all w ∈MW .
Therefore, by (4.12), (4.13), (4.14), in view also of Assumption 4.5, V (x)

is an ISpS-Lyapunov function for the closed-loop system (4.1), (4.10) in

X̃MPC(Nc,Np) and hence, by Theorem 3.2, the closed-loop system formed

by (4.1) and (4.10), subject to constraints (4.2)-(4.4), is ISpS with respect

to w with RPIA set X̃MPC(Nc,Np). �
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5.1 Introduction

Nominal MPC, even if it has important inherent robustness properties in

the unconstrained case, cannot guarantee the robust satisfaction of state

constraints. In order to achieve this goal, it is necessary to introduce

some knowledge on the uncertainty in the optimization problem. Min-

max model predictive control, is very computational demanding and the

range of processes to which it can be applied is limited to those that are

small-size and with very slow dynamics (see for example [Lee & Yu 1997,

Scokaert & Mayne 1998, Bemporad et al. 2003, Magni et al. 2003]). A
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more e�cient technique is based on solving the nominal open-loop optimiza-

tion problem using tightened state constraints in order to guarantee that the

original constraints are ful�lled from the real system for any possible real-

ization of the uncertainties. The idea was introduced in [Chisci et al. 2001]

for linear systems and applied to nonlinear systems in [Limon et al. 2002a]

and [Raimondo & Magni 2006]. The main drawback of this open-loop strat-

egy is the large spread of trajectories along the optimization horizon due

to the e�ect of the disturbances. In order to reduce this, a closed-loop

term was considered for nonlinear systems in [Rakovi¢ et al. 2006b], where

the concept of tube is explored. All this works consider additive distur-

bance. If the system is a�ected by state dependent disturbances, and the

state is limited in a compact set, it is always possible to �nd the max-

imum value of the disturbance and to apply the algorithms described in

[Limon et al. 2002a, Raimondo & Magni 2006, Rakovi¢ et al. 2006b]. How-

ever, if the particular structure of the disturbance is considered, signi�cative

advantages can be clearly obtained.

The goal of this chapter is to modify the algorithm presented in

[Limon et al. 2002a] in order to e�ciently consider state dependent distur-

bances. The restricted sets are computed on-line iteratively by exploiting

the state sequence obtained by the open-loop optimization, thus accounting

for a possible reduction of the state dependent component of the uncer-

tainty due to the control action. In this regard, it is possible to show that

the devised technique yields to an enlarged feasible region compared to the

one obtainable if just an additive disturbance approximation is considered.

Moreover, in the proposed algorithm, in order to limit the spread of the

trajectories, 1) the horizon, along which the propagation of the uncertainty

must be taken into account, is reduced by using a control horizon shorter

than the prediction one, 2) the terminal constraint is imposed at the end of

the control horizon. On the contrary, a long prediction horizon, is useful to

better approximate the performance of the In�nite Horizon control law (see

e.g. [Magni et al. 2001a]). In order to analyze the stability properties in the

presence of bounded persistent disturbances, the concept of regional ISS is

used in order to show that the obtained closed-loop system is regional ISS

with respect to the bounded persistent disturbance. The robustness with re-

spect to state dependent disturbance is analyzed using the stability margin

concept.
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5.2 Problem formulation

Assume that the plant to be controlled is described by discrete-time non-

linear dynamic model

xk+1 = f(xk,uk, υk), k ≥ 0 , (5.1)

where xk ∈ IRn denotes the system state, uk ∈ IRm the control vector

and υk ∈ Υ ⊆ IRr an exogenous input which models the disturbance, with

Υ compact set containing the origin. Given the system (5.1), let f̂(xk,uk),
with f̂(0, 0) = 0, denote the nominalmodel used for control design purposes,

such that

xk+1 = f̂(xk,uk) + dk, k ≥ 0 , (5.2)

where dk = dk(xk,uk, υk) , f(xk,uk, υk) − f̂(xk,uk) ∈ IRn denotes the

discrete-time state transition uncertainty. In the sequel, for the sake of

brevity, we will not point out the functional dependence of dk(xk,uk, υk) on
its arguments except where strictly needed.

The system is supposed to ful�ll the following assumptions.

Assumption 5.1

1. For simplicity of notation, it is assumed that the origin is an equilib-

rium point, i.e. f̂(0, 0) = 0.

2. The state and control variables are restricted to ful�ll the following

constraints

x ∈ X (5.3)

u ∈ U (5.4)

where X and U are compact subsets of IRn and IRm, respectively, con-

taining the origin as an interior point.

3. The map f̂ : IRn × IRm → IRn is Lipschitz in x in the domain X ×U ,
i.e. there exists a positive constant Lfx such that

|f̂(a,u)− f̂(b,u)| ≤ Lfx |a− b| (5.5)

for all a, b ∈ X and all u ∈ U .
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4. The state of the plant xk can be measured at each sample time.

Assumption 5.2 The additive transition uncertainty dk is limited in a

time varying compact ball Dk, that is

dk(xk,uk, υk) ∈ Dk , B(δ(|xk|) + µ(Υsup))

for all xk ∈ X , all uk ∈ U , and all υk ∈ Υ, where δ and µ are two K-
functions. The K-function δ is such that Lδ , min{L ∈ IR>0 : δ(|x|) ≤
L|x|,∀x∈X} exists �nite. It follows that dk is bounded by the sum of two

contributions: a state-dependent component and a non-state dependent one.

�

The control objective consists in designing a state-feedback control law

capable to achieve ISS closed-loop stability and to satisfy state and con-

trol constraints in presence of state dependent uncertainties and persistent

disturbances.

In order to introduce the MPC algorithm formulated according to an

open-loop strategy, �rst let u[t2,t3|t1] , [ut2|t1 ut2+1|t1 . . . ut3|t1 ], with t1 ≤
t2 ≤ t3, be a control sequence. Moreover, given k ≥ 0, j ≥ 1, let x̂k+j|k
be the predicted state at k+ j obtained with the nominal model f̂(xk,uk),
with initial condition xk and input u[k,k+j−1|k]. Then, the following Finite-

Horizon Optimal Control Problem (FHOCP) can be stated.

De�nition 5.1 (FHOCP) Consider system (5.1) with xt = x̄. Given the

positive integer Nc,Np, with Nc ≤ Np, the stage cost l, the terminal penalty

Vf , an auxiliary control lawκf , the terminal setXNc and a sequence of con-

straint sets X̂k|t ⊆ X , k ∈ [t, . . . , t+Nc − 1] (to be described later on) the

Finite Horizon Optimal Control Problem (FHOCP) consists in minimizing,

with respect to u[t,t+Nc−1|t], the performance index

J (x̄, u[t,t+Nc−1|t],Nc,Np) ,
t+Nc−1∑
k=t

l(x̂k|t,uk|t) +
t+Np−1∑
k=t+Nc

l(x̂k|t,κf (xk|t)) + Vf (x̂t+Np|t)
(5.6)

subject to

1. the nominal state dynamics x̂k+1 = f̂(x̂k,uk), with x̂t = x̄
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2. the control constraint (5.4) for all k ∈ [0, . . . ,Np − 1]

3. the state constraints x̂t+j|t ∈ X̂k|t, for all k ∈ [t, . . . , t+Nc − 1]

4. the terminal state constraints x̂t+Nc|t ∈ XNc

5. the auxiliary control law uk|t = κf (x̂k|t), for all k ∈
[t+Nc, . . . , t+Np − 1]. �

The stage cost de�nes the performance index to optimize and satis�es

the following assumption.

Assumption 5.3 The stage cost function l(x,u) is such that l(0, 0) = 0,
and l(|x|) ≤ l(x,u), for all x ∈ X , all u ∈ U , where l is a K∞-function.
Moreover, l(x,u) is Lipschitz with respect to x and u in X×U , with Lipschitz
constants Ll ∈ IR≥0 and Llu ∈ IR≥0 respectively. �

The usual RH control technique can now be stated as follows: at every

time instants t, given xt = x̄, �nd the optimal control sequence uo[t,t+Nc−1|t]
by solving the FHOCP. Then, according to the Receding Horizon (RH)

strategy, de�ne

κMPC(x̄) , uot|t(x̄)

where uot|t(x̄) is the �rst column of uo[t,t+Nc−1|t], and apply the control law

u = κMPC(x). (5.7)

With particular reference to the underlined de�nition of the FHOCP,

note that, with respect to the usual formulation, in this case the constraint

sets are de�ned only within the control horizon and the terminal constraint

is stated at the end of the control horizon. Another peculiarity is the use of

a state constraint that changes along the horizon. In the following, it will

be shown how to choose accurately the stage cost l, the terminal cost func-

tion Vf , the control and prediction horizon Nc and Np, the constraint sets

X̂k|t, k ∈ [t, . . . , t+Nc − 1], the terminal constraint XNc and the auxiliary

control law κf in order to guarantee closed-loop ISS. In particular the set

XNc will be chosen such that, starting from any x ∈ XNc in Np −Nc steps

the auxiliary control law can steer the state of the nominal system into a

set Xf which satis�es the assumption asked for the terminal set of standard
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stabilizing MPC control algorithm [Mayne et al. 2000]. In the following,

XMPC will denote the set containing all the state vectors for which a fea-

sible control sequence exists, i.e. a control sequence u[t,t+Nc−1|t] satisfying

all the constraints of the FHOCP.

5.3 Robust MPC strategy

In order to formulate the robust MPC algorithm, let introduce the following

further assumptions.

Assumption 5.4 Given an auxiliary control law κf , and a set Xf , the

design parameters Vf is such that

1. Xf ⊆ X , Xf closed, 0 ∈ Xf

2. κf (x) ∈ U , for all x ∈ Xf ; κf (x) is Lipschitz in Xf , with constant

Lκf ∈ IR>0

3. the closed loop map f̂(x,κf (x)), is Lipschitz in Xf with constant Lfc ∈
IR>0

4. f̂(x,κf (x)) ∈ Xf , for all x ∈ Xf

5. Vf (x) is Lipschitz in Xf , with constant LVf ∈ IR>0

6. Vf (f̂(x,κf (x)))−Vf (x)≤−l(x,κf (x)), for all x∈Xf

7. ũ[t,t+Np−1|t] , [κf (x̂t|t), κf (x̂t+1|t), . . . , κf (x̂t+Np−1|t)] , with x̂t|t=xt,
is a feasible control sequence for the FHOCP, for all xt∈Xf .

Assumption 5.5 The robust terminal constraint set of the FHOCP, XNc,
is chosen such that

1. XNc ⊇ Xf

2. for all x ∈ XNc the state can be steered to Xf in Np −Nc steps under

the nominal dynamics in closed-loop with the auxiliary control law κf

3. there exists a positive scalar ε ∈ IR>0 such that f̂(x,κf (x)) ∈
XNc v B(ε), for all x ∈ XNc
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4. ũ[t,t+Np−1|t] , [κf (x̂t|t), κf (x̂t+1|t), . . . , κf (x̂t+Np−1|t)] , with x̂t|t=xt,
is a feasible control sequence for the FHOCP, for all xt ∈ XNc . �

5.3.1 Shrunk State Constraints

In the following, under Assumption 5.2, given xt, a norm-bound on the

state prediction error will be derived. Subsequently, it is shown that the

satisfaction of the original state constraints is ensured, for any admissible

disturbance sequence, by imposing restricted constraints to the predicted

open-loop trajectories.

Throughout this section, the following notation will be used: given

an optimal sequence u◦[t,t+Nc−1|t] of control actions obtained by solv-

ing the FHOCP at time t, let de�ne the sequence ū[t+1,t+Nc|t+1] ,
[u◦t+1|t, . . . ,u

◦
t+Nc−1|t, ū], where ū ∈ U is a suitably de�ned feasible con-

trol action implicitly depending on x̂t+Nc|t+1 . The following result will be

instrumental for the subsequent analysis.

Lemma 5.1 Under Assumptions 5.1 and 5.2, given the state vector xt at

time t, let a control sequence, ū[t,t+Nc−1|t], be feasible with respect to the

restricted state constraints of the FHOCP, X̂k|t, computed as follows

X̂k|t , X v B(ρ̂k|t), (5.8)

where{
ρ̂t+1|t , µ̄+ Lδ|xt|,
ρ̂k|t = (Lδ + Lfx)ρ̂k−1|t + µ̄+ Lδ|x̂k−1|t|, j ∈ [t+ 2, . . . , t+Nc − 1]

(5.9)

with µ̄ , µ(Υsup). Then, the sequence ū[t,t+Nc−1|t], applied to the perturbed

system (5.1), guarantees xk ∈ X , for all k ∈ [t+ 1, . . . , t+Nc − 1], all
xt ∈ XMPC , and all υ ∈MΥ. �

Remark 5.1 The constraint tightening (5.8), compared to previous ap-

proaches [Limon et al. 2002a, Raimondo & Magni 2006], may lead to less

conservative computations. In fact, rather then using only the state in-

formation xt at time t, it relies on the whole predicted state sequence

x̂k|t, k ∈ [t + 1, . . . , t + Nc − 1], thus accounting for a possible reduction

of the state-dependent component of the uncertainty along the horizon. The
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e�ectiveness of the proposed approach in enlarging the feasible region of the

FHOCP will be shown in Section 5.4 by a simulation example.

5.3.2 Feasibility

In order to show that XMPC is a RPIA set, under the closed loop dynamics

given by (5.1) and (5.7), an upper norm bound for the maximal admissible

uncertainty will be stated in Assumption 5.6, motivated by the following

De�nition 5.2 and Lemma 5.2.

De�nition 5.2 (P(Ξ)) Given a set Ξ ⊂ X , the (one-step) predecessor set,
P(Ξ), is de�ned as P(Ξ) ,

{
x ∈ IRn ∃u ∈ U : f̂(x,u) ∈ Ξ

}
, i.e., P(Ξ) is

the set of states which can be steered to Ξ by a control action under f̂(xt,ut),
subject to (5.4).

Lemma 5.2 Consider that Assumptions 5.1 and 5.5 hold. Given a set XNc
and a positive constant ε as in Assumption 5.5, let de�ne d̄κf , ε/Lfx and

d̄ , dist(IRn\P(XNc),XNc). Then, it holds that

1. XNc ⊂ XNc ⊕ B(d̄κf ) ⊆ P(XNc);

2. d̄ ≥ d̄κf . �

It must be remarked that, for nonlinear systems, the numerical com-

putation of P(XNc) is a very di�cult task, although the underlying

theory is well established and many di�erent methods have been pro-

posed since the seminal paper [Bertsekas & Rhodes 1971]. In this re-

gard, for some classes of nonlinear systems, there exist e�cient numeri-

cal procedures for the computation of pre-images and predecessor sets (see

[Bravo et al. 2005, Kerrigan et al. 2002, Rakovi¢ et al. 2006a]).

Assumption 5.6 The K-functions δ and µ are such that δ(|xt|)+µ(Υsup)≤
L1−Nc
fx

d̄, for all xt ∈ X . �

Now it will be stated and proved that XMPC , is a RPIA set under the

closed-loop dynamics.
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Theorem 5.1 Let a system be described by equation (5.1) and subject to

(5.3) and (5.4). Under Assumptions 5.1-5.6, the set in which the FHOCP

is feasible, XMPC , is also RPI for the closed-loop system under the action

of the control law given by (5.7). �

Remark 5.2 With respect to previous literature [Limon et al. 2002a,

Raimondo & Magni 2006], the possibility to compute d̄ relying on P(XNc)
and the use of XNc instead of Xf as stabilizing constraint set, allow to en-

large the bound on admissible uncertainties which the controller can cope

with. In fact, considering that the restricted constraints are based on Lips-

chitz constants that are conservative since globals (or just regionals due to

the presence of constraints), the use of them along a longer horizon (the

entire prediction horizon) could reduce the feasible set of the FHOCP.

5.3.3 Regional Input-to-State Stability

In the following, the stability properties of system (5.1) in closed-loop with

(5.7) are analyzed.

Assumption 5.7 The solution of closed-loop system formed by (5.2), (5.7)

is continuous at x̄ = 0 and w = 0 with respect to disturbances and initial

conditions.

In what follows, the optimal value of the performance index, i.e.

V (x) , J(x, uo[t,t+Nc−1|t],Nc,Np) (5.10)

is employed as an ISS-Lyapunov function for the closed-loop system formed

by (5.1) and (5.7).

Assumption 5.8 The stage transition cost l(x,u), is such that α3(|xt|),
l(|xt|)−ϕx(|xt|) is a K∞-function for all xt ∈ XMPC , with ϕx(|xt|) ,[
Ll
LNcfx −1

Lfx−1 + LVfL
Np−(Nc+1)
fc

LNcfx + (Ll + LluLκf )
LNp−(Nc+1)

fc
−1

Lfc−1 LNcfx
]
δ(|xt|).

Assumption 5.9 The K-functions δ and µ are such that δ(|xt|)+µ(|υt|)≤
L1−Nc
fx

d̄κf , for all xt ∈ X and all υt ∈ Υ.
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Assumption 5.10 Let

• Ξ = XMPC

• Ω = Xf

• α1(s) = l(s)

• α2(s) = LVf s

• α3(s) = l(s)− ϕx(s), with ϕx(s) as in Assumption 5.8

• σ(s) =
[
Ll
LNcfx −1

Lfx−1 + (Ll + LluLκf )
LNp−Nc−1
fc

Lfc−1 L
Nc
fx

+ LVfL
Np−(Nc+1)
fc

LNcfx
]
µ(s)

The set Υ is such that the set Θ (depending from Υsup), de�ned in (2.17),

with function V given by (5.10), is contained in IΩ.

Theorem 5.2 Under Assumptions 5.1-5.10, the system (5.1) under the ac-

tion of the MPC control law (5.7) is regional ISS in XMPC with respect to

v ∈ Υ. �

5.4 Simulation Results

Consider the following discrete-time model of an undamped nonlinear os-

cillator {
x1k+1=x1k+0.05 [−x2k+ 0.5 (1+ x1k)uk] + d1k

x2k+1=x2k+0.05 [x1k+ 0.5 (1− 4x2k)uk] + d2k
(5.11)

where the subscript (i) denotes the i-th component of a vector. The uncer-

tainty vector is given by dk=1·10−3xk+υk, with |υ| ≤ 1·10−4. System (5.11)

is subject to state and input constraints (5.3) and (5.4), where the set X

is depicted in Figure 5.1, while U , {u ∈ IR : |u| ≤ 2}. The Lipschitz con-

stant of the system is Lfx=1.1390. Since a�ordable algorithms exist for the

numerical computation of the Pontryagin di�erence set of polytopes, for im-

plementation purposes the balls to be �subtracted� (in the Potryagin sense)

from the constraint set X to obtain X̂k|t, for all k ∈ [t + 1, . . . , t + Nc − 1]

are outer approximated by convex parallelotopes.
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A linear state feedback control law u = κf (x) = k>x, with k ∈ IR2,

stabilizing (5.11) in a neighborhood of the origin, can be designed as de-

scribed in [Parisini et al. 1998]. Choosing k = [0.5955 0.9764]> and Nc=8,

the following ellipsoidal sets, Xf and XNc , satisfy Assumption 5.4 and 5.5

respectively

Xf,

x∈IRn: x>

 167.21 −43.12

−43.12 305.50

x≤1



XNc,

x∈IRn: x>

 114.21 −29.45

−29.45 208.67

x≤1


with Lκf=1.1437, Lfc =1.0504 and Np=50. Let the stage cost l be given

by l(x,u) , x>Qx+ u>Ru, and the �nal cost Vf by Vf (x) , x>Px, with

Q =

 0.1 0

0 0.1

, R = 1, P =

 91.56 −23.61

−23.61 167.28

,

then Assumption 5.4 is satis�ed. The following values for d̄κf and d̄ can

be computed: d̄κf =2.3311 · 10−4 and d̄=1.2554 · 10−3. It follows that the

admissible uncertainties, for which the feasibility set XMPC is RPI under

the closed-loop dynamics, are bounded by

δ(|xt|) + µ(Υsup) ≤ 5.0479 · 10−4,

for all xt ∈ X . Figure 5.2 shows the closed-loop trajectories of the system

under nominal conditions (dashed) and with uncertainties (solid).
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Figure 5.1: Three examples of closed-loop trajectories with initial points:
(a)=(−0.11, 0.04)T , (b)=(0,−0.2)T , (c)=(0.2,−0.06)T . The state con-
straint set X , the robust constraint set XNc and the set Xf are emphasized

−0.1 −0.05 0 0.05 0.1
−0,08

−0,04

0

0,04

0,08

XNc

Xf

x(1 )

x(2 )

(a)

(b)

(c)

Figure 5.2: Confrontation of closed-loop trajectories without model uncer-
tainty (solid) and with state-dependent uncertainty (dashed)
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5.5 Conclusions

In this chapter, a robust MPC controller for constrained discrete-time non-

linear systems with state-dependent uncertainty and persistent disturbance

is presented. In particular, under suitable assumptions, the robust con-

straints satisfaction is guaranteed for the considered class of uncertainties,

employing a constraint tightening technique. Furthermore, the closed-loop

system under the action of the MPC control law is shown to be ISS under

the considered class of uncertainties. Finally, a nonlinear stability margin

with respect to state dependent uncertainties is given. Future research ef-

forts will be devoted to further increase the degree of robustness of the MPC

control law, to enlarge the class of uncertainties, to allow for less conser-

vative results and �nally to address the unavoidable approximation errors

involved in the computation of the optimal control actions.

5.6 Appendix

Proof of Lemma 5.1: Given xt, consider the state xk obtained applying

the �rst k− t− 1 elements of a feasible control sequence ū[t,t+Nc−1|t] to the

uncertain system (5.1). Then, by Assumptions 5.1 and 5.2, the prediction

error êk|t,xk−x̂k|t, with k∈[t+ 1, . . . , t+Nc − 1], is upper bounded by

|êk|t| = |f̂(xk−1,uk−1|t) + dk−1 − f̂(x̂k−1|t,uk−1|t)|

≤ Lfx |êk−1|t|+ |dk−1| ≤ Lfx |êk−1|t|+ µ̄+ Lδ|xt+j−1|

≤ (Lfx + Lδ)|êk−1|t|+ µ̄+ Lδ|x̂k−1|t|.

(5.12)

Finally, comparing (5.12) with (5.9), it follows that |êk|t| ≤ ρ̂k|t, which in

turn proves the statement. �

Proof of Lemma 5.2: Notice that, given a vector x ∈ XNc ⊕ B(d̄κf ),
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there exists at least one vector x
′ ∈ XNc such that |x− x′ | ≤ ε/Lfx . Since

f̂(x
′
,κf (x

′
)) ∈ XNc v B(ε), with κf (x

′
) ∈ U , then, by Assumption 5.1,

it follows that f̂(x,κf (x
′
)) ∈ B(f̂(x

′
,κf (x

′
)), ε) ⊆ XNc , and hence x ∈

P(XNc), for all x ∈ XNc ⊕ B(d̄κf ), thus proving the statement. �

Let introduce the following lemma that will be used in the proof of

Theorem 5.1.

Lemma 5.3 Suppose that Assumptions 5.1,5.2,5.4-5.6 hold. Given xt and

xt+1 = f̂(xt,κMPC(xt)) + dt, with dt ∈ Dt, consider the predictions x̂t+Nc|t
and x̂t+Nc+1|t+1, obtained respectively using the input sequences u◦[t,t+Nc−1|t]

and ū[t+1,t+Nc−1|t+1] = [u◦t+1|t, . . . ,u
◦
t+Nc−1|t], and initialized with x̂t|t = xt

and x̂t+1|t+1 = xt+1. Then x̂t+Nc|t+1 ∈ P(XNc). Moreover, if δ(|xt|) +

µ(Υsup)≤L1−Nc
fx

d̄κf , x̂t+Nc|t+1 ∈ XNc ⊕ B(d̄κf ).

Proof: Given xt ∈ XMPC , let ξ , x̂t+Nc|t+1−x̂t+Nc|t; then, by Assumptions

5.1 and 5.2, |ξ| ≤ |x̂t+Nc|t+1 − x̂t+Nc|t| ≤ L
Nc−1
fx

(δ(|xt|) + µ̄). Hence, ξ ∈

B
(
LNc−1
fx

(δ(|xt|) + µ̄)
)
. Since u◦[t,t+Nc−1|t] is the solution of the FHOCP,

x̂t+Nc|t ∈ XNc . Using also Lemma 5.2 and Assumption 5.6, it follows that

x̂t+Nc|t + ξ = x̂t+Nc|t+1 ∈ P(XNc). Moreover, by Lemma 5.2, if δ(|xt|) +

µ(Υsup)≤L1−Nc
fx

d̄κf , x̂t+Nc|t+1 ∈ XNc ⊕ B(d̄κf ). �

Proof of Theorem 5.1: It will be shown that the region XMPC is a

RPI set for the closed-loop system, proving that, for allxt ∈ XMPC , there

exists a feasible solution of the FHOCP at time instant t + 1, based on

the optimal solution in t, u◦[t,t+Nc−1|t]. In particular, a possible feasible

control sequence is given by ū[t+1,t+Nc|t+1] =
[
u◦t+1|t, . . . ,u

◦
t+Nc−1|t, ū

]
,

where ū = ū(x̂t+Nc|t+1) ∈ U is a feasible control action, suitably chosen to

satisfy the robust constraint x̂t+Nc+1|t+1 ∈ XNc . Now, the proof will be

divided in two steps.
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Step 1: x̂t+j|t+1 ∈ X̂t+j|t+1: First, in view of Assumptions 5.1, 5.2

and (5.9), it follows that

ρ̂t+1|t − ρ̂t+1|t+1 = Lδ|xt|+ µ̄,

and

ρ̂k|t − ρ̂k|t+1 = (Lfx + Lδ)
(
ρ̂k−1|t − ρ̂k−1|t+1

)
+ Lδ(|x̂k|t| − |x̂k|t+1|)

≥ (Lfx + Lδ)
(
ρ̂k−1|t − ρ̂k−1|t+1

)
− LδLk−t−2

fx
(Lδ|xt|+ µ̄),

for all k ∈ [t+ 2, . . . , t+Nc − 1]. Proceeding by induction, it follows that,

for all k ∈ [t+ 2, . . . , t+Nc − 1]

ρ̂k|t − ρ̂k|t+1

≥

[
(Lfx + Lδ)

k−t−1 − Lδ (Lfx + Lδ)
k−t−2

k−t−2∑
j=0

(
Lfx
Lfx+Lδ

)j]
(Lδ|xt|+ µ̄)

which yields

ρ̂k|t − ρ̂k|t+1≥Lk−t−1
fx

(Lδ|xt|+ µ̄), (5.13)

for all k ∈ [t + 2, . . . , t + Nc − 1]. Now, consider the predictions x̂k|t and

x̂k|t+1, with k ∈ [t + 2, . . . , t + Nc − 1], made respectively using the input

sequences u◦[t,t+Nc−1|t] and ū[t+1,t+Nc−1|t+1], and initialized with x̂t|t = xt

and x̂t+1|t+1 = f̂(xt,κMPC(xt)). Assuming that x̂k|t ∈ X̂k|t,X v B(ρ̂k|t),

with ρ̂k|t given by (5.9), let introduce η ∈ B(ρ̂k|t+1). Furthermore, let

ξ , x̂k|t+1 − x̂k|t + η. Then, under Assumption 5.1, it follows that

|ξ| ≤ |x̂k|t+1 − x̂k|t|+ ρ̂k|t+1 ≤ L
j−1
fx

(Lδ|xt|+ µ̄) + ρ̂k|t+1. In view of (5.13),

it turns out that |ξ| ≤ ρ̂k|t, and hence, ξ ∈ B(ρ̂k|t). Since x̂k|t ∈ X̂k|t, it

follows that x̂k|t+ξ = x̂k|t+1+η ∈ X , ∀η ∈ B(ρ̂k|t+1), which �nally yields

x̂k|t+1 ∈ X̂k|t+1.

Step 2: x̂t+Nc+1|t+1 ∈ XNc : if LNc−1
fx

(δ(|xt|) + µ̄) ≤ d̄κf , in view of
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Lemma 5.2 there exists a feasible control action such that the statement

holds. If d̄κf <L
Nc−1
fx

(δ(|xt|)+µ̄)≤ d̄, thanks to Lemma 5.3, it follows that

x̂t+Nc|t+1 ∈ P(XNc). Hence, there exists a feasible control action, namely

ū∈U , such that x̂t+Nc+1|t+1 = f̂(x̂t+Nc|t+1, ū)∈XNc , thus ending the proof.

�

Proof of Theorem 5.2: In view of Assumptions 5.1-5.6 it follows from

Theorem 5.1 that XMPC is a RPI set for system (5.1) under the action of the

control law (5.7). So, the proof consists in showing that function V de�ned

in 5.10 is an ISS-Lyapunov function in XMPC . First, by Assumption 5.5,

the set XMPC is not empty. In fact, for any xt ∈ XNc , a feasible control

sequence for the FHOCP is given by ũ[t,t+Nc−1|t] ,
[
κf (x̂t|t), κf (x̂t+1|t), . . . ,

κf (x̂t+Nc−1|t)
]
. Then XMPC ⊇ XNc ⊇ Xf . Then, in view of Assumption

5.4 it holds that

V (xt) ≤J (xt, ũ[t,t+Nc−1|t],Nc,Np) =
t+Np−1∑
k=t

l(x̂k|t,κf (x̂k|t)) + Vf (x̂t+Np|t)

≤
t+Np−1∑
k=t

[
Vf (x̂k|t)− Vf (x̂k+1|t)

]
+ Vf (x̂t+Np|t)

≤ Vf (x̂t|t) ≤ LVf |xt|
(5.14)

for all xt ∈ Xf . The lower bound on V (xt) can be easily obtained using

Assumption 5.3:

V (xt) ≥ l(|xt|) (5.15)

for all xt ∈ XMPC . Suppose1 that Lfc and Lfx 6= 1. Now, in view of

Theorem 5.1, given the optimal control sequence at time t, u◦[t,t+Nc−1|t], the

1The very special case Lfc ,Lfx = 1 can be trivially addressed by a few suitable
modi�cations to the proof of Theorem 5.2.
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sequence ū[t+1,t+Nc|t] ,
[
u◦t+1|t, . . . ,u

◦
t+Nc−1|t, ū

]
with

ū=

κf (x̂t+Nc|t), if δ(|xt|) + µ(|υt|) ≤ L1−Nc
fx

d̄κf

ū ∈ U : f̂(x̂t+Nc|t+1, ū) ∈ XNc , if L1−Nc
fx

d̄κf < δ(|xt|) + µ(|υt|) ≤ L1−Nc
fx

d̄

is a feasible (in general, suboptimal) control sequence for the FHOCP at

time t+ 1, with cost

J (xt+1, ū[t+1,t+Nc|t+1],Nc,Np) =

V (xt)− l(xt,u◦t,t) +
t+Nc−1∑
k=t+1

[
l(x̂k|t+1,u◦k|t)− l(x̂k|t,u

◦
k|t)
]

+ l(x̂t+Nc|t+1, ū)

−l(x̂t+Nc|t,κf (x̂t+Nc|t)) +
t+Np−1∑

k=t+(Nc+1)

[
l(x̂k|t+1,κf (x̂k|t+1))− l(x̂k|t,κf (x̂k|t))

]
+l(x̂t+Np|t+1,κf (x̂t+Np|t+1)) + Vf (f̂(x̂t+Np|t+1,κf (x̂t+Np|t+1)))

−Vf (x̂t+Np|t).

Using Assumptions 5.1 and 5.3, it follows that

∣∣∣l(x̂k|t+1,u◦k|t)− l(x̂k|t,u
◦
k|t)
∣∣∣ ≤ LlLk−t−1

fx
(δ(|xt|) + µ(|υt|)), (5.16)

for all k ∈ [t+ 1, . . . , t+Nc − 1]. Moreover, for k = t+Nc,∣∣∣l(x̂t+Nc|t+1, ū)− l(x̂t+Nc|t,κf (x̂t+Nc|t))
∣∣∣ ≤ LlLNc−1

fx
(δ(|xt|)+ µ(|υt|))

+Llu∆u(δ(|xt|) + µ(|υt|))
(5.17)

where

∆u(s),

 0, if s ≤ L1−Nc
fx

d̄κf

max{|u− w|, (u,w) ∈ U × U}, if L1−Nc
fx

d̄κf < s ≤ L1−Nc
fx

d̄.
(5.18)

Finally, under Assumptions 5.1, 5.3 and 5.4, for all k ∈
[t+Nc + 1, . . . , t+Np − 1], the following intermediate results hold
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∣∣∣l(x̂k|t+1,κf (x̂k|t+1))− l(x̂k|t,κf (x̂k|t))
∣∣∣ ≤

(Ll + LluLκf )Lk−t−(Nc+1)
fc

[
∆x(δ(|xt|) + µ(|υt|)) + LNcfx (δ(|xt|) + µ(|υt|))

]
(5.19)

and ∣∣Vf (x̂t+Np|t+1)− Vf (x̂t+Np|t)
∣∣

≤ LVfL
Np−(Nc+1)
fc

[
∆x(δ(|xt|)+µ(|υt|))+LNcfx (δ(|xt|)+µ(|υt|))

]
(5.20)

where ∆x(s) = 0 if s ≤ L1−Nc
fx

d̄κf and

∆x(s) = max {|x−ξ|, (x, ξ) ∈ XNc×(XNc ⊕ B(d̄))} − LNcfx s (5.21)

if L1−Nc
fx

d̄κf < s ≤ L1−Nc
fx

d̄. Consider now the case δ(|xt|) + µ(|υt|) ≤ d̄κf ,

for all xt ∈ X , and all υ ∈ MΥ. Then, using (5.16)-(5.21), Assumptions

5.4, 5.5 and 5.9, if δ(|xt|) + µ(|υt|) ≤ L1−Nc
fx

d̄κf , the following inequalities

hold

J (xt+1, ū[t+1,t+Nc|t],Nc,Np)

≤ V (xt)− l(xt,u◦t,t) +
Nc∑
j=1
LlLj−1

fx
(δ(|xt|) + µ(|υt|))

+
Np−1∑
j=Nc+1

(Ll + LluLκf )Lj−(Nc+1)
fc

LNcfx (δ(|xt|) + µ(|υt|))

+ l(x̂t+Np|t+1,κf (x̂t+Np|t+1)) + Vf (x̂t+Np+1|t+1)− Vf (x̂t+Np|t+1)

+LVfL
Np−(Nc+1)
fc

LNcfx (δ(|xt|) + µ(|υt|))

≤ V (xt)− l(xt,u◦t,t) + ϕx(|xt|) + ϕυ (|υt|) ,

for all xt ∈ XMPC , and all υ ∈ MΥ, where ϕυ (|υt|),
[
Ll
LNcfx −1

Lfx−1 + (Ll +

LluLκf )
LNp−Nc−1

fc
−1

Lfc−1 LNcfx +LVfL
Np−(Nc+1)
fc

LNcfx
]
µ(|υt|) is a K-function. Now,

from inequality V (xt+1)≤J (xt+1, ū[t+1,t+Nc|t],Nc,Np) it follows that

V (xt+1)− V (xt) ≤ −α3(|xt|) + σ(|υt|), (5.22)
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where α3(|xt|), l(|xt|)−ϕx(|xt|) and σ(|υt|),ϕυ (|υt|), for all xt∈XMPC ,

with υ ∈MΥ, Nc and Np �xed. By (5.14), (5.15) and (5.22), if δ(|xt|) is

such that α3(|xt|) is a K∞-function, then it is a stability margin for the

closed-loop system [Jiang & Wang 2001]. Therefore, if Assumption 5.9

hold, the optimal cost J (xt,u
◦
t,t+Nc−1|t,Nc,Np) is an ISS-Lyapunov function

for the closed-loop system in XMPC . Since Assumption 5.7 hold, in view

of Theorem 2.1, it is possible to conclude that the closed-loop system is

regional ISS in XMPC with respect to v ∈ Υ.

Conversely, if L1−Nc
fx

d̄κf < δ(|xt|) + µ(|υt|) ≤ L1−Nc
fx

d̄, the following

inequality can be straightforwardly obtained

V (xt+1)− V (xt) ≤ −α̃3(|xt|) + σ̃(|υt|) + σ̄, (5.23)

where

α̃3(|xt|),α3(|xt|)−
[
(Ll +LluLκf )

LNp−(Nc+1)
fc

− 1
Lfc − 1

+LVfL
Np−(Nc+1)
fc

]
LNcfx δ(|xt|)

σ̃(|υt|) , σ(|υt|)−
[
(Ll +LluLκf )

LNp−(Nc+1)
fc

− 1
Lfc − 1

+LVfL
Np−(Nc+1)
fc

]
LNcfx µ(|υt|)

and σ̄ ,
[
(Ll+LluLκf )

LNp−(Nc+1)

fc
−1

Lfc−1 +LhfL
Np−(Nc+1)
fc

]
) max{|x−ξ|, (x, ξ) ∈

XNc×(XNc⊕B(d̄))}+Llu max{|u−w|, (u,w) ∈ U×U}. Hence, in the latter

case, only ISpS can be guaranteed, although the invariance of XMPC and

the ful�llment of constraints are preserved thanks to Theorem 5.1. �
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6.1 Introduction

The design and analysis of decentralized control systems have been under

investigation for more than thirty years. Many problems falling into this

category have been addressed with various mathematical tools, while new

theoretical and application issues are arising as a result of current trends
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in distributed systems, such as the increasing size and complexity of feed-

back control systems, the availability of spatially distributed sensors and

actuators, and the need to come up with more autonomous systems.

When dealing with large scale systems, one of the key objectives

is to �nd conditions guaranteeing closed-loop stability, while reducing

the computational load stemming from a centralized approach. Starting

with the notion of ��xed modes� introduced in the 1970s for linear large

scale systems [Wang & Davidson 1973], other investigations focused on the

structure and size of interconnections [Siljak 1978]. Speci�c emphasis on

the structural properties of decentralized controlled large-scale systems is

given in the research work of D'Andrea and co-workers (see, for instance,

[D'Andrea & Dullerud 2003]), which is used in several applications, such

as �ight formation and distributed sensors. Studies on topology indepen-

dent control have also been recently reported [Cogill & Lall 2004]. Works

on the size of interconnections have been proposed in adaptive control

[Ioannou 1986], and more recently in model predictive control.

In this chapter, decentralized MPC techniques are considered. Decen-

tralized MPC is of paramount interest in the process industry; in fact a de-

centralized control structure is often the most appropriate one due to topo-

logical constraints and limited exchange of information between subsystems,

while the MPC approach allows one to include in the problem formulation

both performance requirements and state and control constraints. For these

reasons, decentralized MPC has already been studied for discrete time linear

systems in e.g. [Dunbar & Murray 2006], [Camponogara et al. 2002] and in

a number of papers quoted there. In [Magni & Scattolini 2006] a decentral-

ized MPC algorithm for nonlinear systems has been proposed, where closed

loop stability of the origin is achieved through the inclusion of a contractive

constraint (see also [de Oliveira Kothare & Morari 2000]).
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Distributed MPC algorithms can be developed either by assuming that

there is a partial exchange of information between the subsystems, as in

[Dunbar & Murray 2006], [Venkat et al. 2005], or by considering a fully de-

centralized control structure, as in [Magni & Scattolini 2006]. This second

possibility is obviously more critical than the previous and requires a more

conservative solution, since the amount of information available to any lo-

cal controller is less. However this setting more closely resembles most of

real world cases, where complex control structures are built according to

fully decentralized schemes. In this chapter, stabilizing fully decentralized

MPC algorithms for nonlinear, discrete-time systems are derived under the

assumption that no information is exchanged between subsystems. Rely-

ing on the concept of regional ISS, the approach taken in the following

to derive decentralized MPC implementations consists in considering the

overall system as composed by a number of interconnected subsystems,

each one of them controlled by a robust (open-loop or closed-loop) MPC

algorithm guaranteeing ISS, and by considering the e�ect of interconnec-

tions as a perturbation term. A similar approach has also been taken in

[Dashkovskiy et al. 2007], [Dashkovskiy et al. 2005] where global results are

given for interconnected systems. Then, by suitably combining and extend-

ing the results reported in [Magni et al. 2006a], [Dashkovskiy et al. 2007]

and [Dashkovskiy et al. 2005], it is shown that under suitable assumptions

the ISS property of the controlled subsystems guarantees the ISS of the

overall (controlled) system.

6.2 Problem statement

Assume that the plant to be controlled is composed by the interconnection

of S local subsystems described by the following nonlinear, discrete-time
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models

xik+1
= fi(xik ,uik) + gi(xk) + dik , k ≥ 0 (6.1)

where xik ∈ IRni is the state of the i-th subsystem, uik ∈ IRmi is the

current control vector, dik ∈ IRni is an unknown disturbance, and gi : IRn →

IRni , which depends on the overall state

xk , [x>1k x
>
2k

. . . x>Sk ]> ∈ IRn, n ,
S∑
i=1

ni

describes the in�uence of the S subsystems on the i-th subsystem. De�ning

f(x,u) , [f>1 (x1,u1), . . . , f>S (xS ,uS)]>, g(x) , [g>1 (x), . . . , g>S (x)]> and

d , [d>1 , . . . , d>S ]>, the whole system can be written as

xk+1 = f(xk,uk) + g(xk) + dk, k ≥ 0. (6.2)

Each subsystem is supposed to ful�ll the following assumptions.

Assumption 6.1

1. For simplicity of notation, it is assumed that the origin is an equilib-

rium point, i.e. fi(0, 0) = 0.

2. The disturbance di is such that

di ∈ Di (6.3)

where Di is a compact set containing the origin as an interior point,

with Dsupi known.

3. The state and the control variables are restricted to ful�ll the following
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constraints

xi ∈ Xi (6.4)

ui ∈ Ui (6.5)

where Xi and Ui are compact sets, both containing the origin as an in-

terior point. Let denote X , [X>1 X>2 . . . X>S ]> the overall constraint

set on the state.

4. The map fi : IRni × IRmi → IRni is Lipschitz in xi in the domain

Xi × Ui, i.e. there exists a positive constant Lif such that

|fi(a,u)− fi(b,u)| ≤ Lif |a− b| (6.6)

for all a, b ∈ Xi and all u ∈ Ui.

5. The map gi : IRn → IRni is such that gi(0) = 0.

6. There exist positive constants Lij, i, j ∈ [1, 2, . . . ,S] such that

|gi(x)| ≤
S∑
j=1

Lij |xj |

for all xi ∈ Xi.

7. The state of the plant xik can be measured at each sample time.

�

In the following, let denote a generic interaction sequence as gi ,

{gi(x1), gi(x2), . . .}. Note that, by point 6 of Assumption 6.1, the inter-

action sequence gi is bounded, i.e. gi ∈MGi with Gi , gi(X sup).
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The control objective consists in designing, for each subsystem, a con-

trol law ui = κ(xi), without taking into account explicitly the interaction

with the other subsystems, such that the overall system is steered to (a

neighborhood of) the origin ful�lling the constraints on the input and the

state along the system evolution for any possible disturbance and yielding,

for each local subsystem, an optimal closed-loop performance according to

certain performance index.

In the following section it is presented a suitable framework for the

analysis of stability of such class of closed loop systems: the regional ISS

for nonlinear interconnected subsystems.

6.3 Regional Input-to-State Stability for nonlinear

interconnected subsystems

Consider a system composed by the interconnection of S local subsystems

described by the following nonlinear, discrete-time models

xik+1
= Fi(xik) + gi(xk) + dik , k ≥ 0 (6.7)

where the map Fi : IRni → IRni is nonlinear possibly discontinuous, xik ∈

IRni is the state of the i-th subsystem, dik ∈ IRni is an unknown disturbance,

and gi : IRn → IRni , which depends on the overall state

xk , [x>1k x
>
2k

. . . x>Sk ]> ∈ IRn, n ,
S∑
i=1

ni

describes the in�uence of the S subsystems on the i-th subsystem. De�n-

ing F (x) , [F>1 (x1), . . . ,F>S (xS)]>, g(x) , [g>1 (x), . . . , g>S (x)]> and d ,
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[d>1 , . . . , d>S ]>, the whole system can be written as

xk+1 = F (xk) + g(xk) + dk, k ≥ 0. (6.8)

The transient of the system (6.7) with initial state xi0 = x̄i, disturbance

sequence di and interaction sequence gi , {gi(x1), gi(x2), . . .} is denoted

by xi(k, x̄i, di, gi). Each subsystem is supposed to ful�ll the following as-

sumptions.

Assumption 6.2

1. The origin of the system is an equilibrium point, i.e. Fi(0) = 0.

2. The map gi : IRn → IRni is such that gi(0) = 0.

3. The state variables xi ful�ll the constraint

xi ∈ Xi (6.9)

where Xi is a compact set containing the origin as an interior point.

Let denote X , [X>1 X>2 . . . X>S ]> the overall constraint set on the

state.

4. The disturbance di is such that

di ∈ Di (6.10)

for all k ≥ 0, where Di is a compact set containing the origin as an

interior point, with Dsupi known.
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5. There exist positive constants Lij, i, j ∈ [1, 2, . . . ,S] such that

|gi(x)| ≤
S∑
j=1

Lij |xj |

for all xi ∈ Xi.

6. The solution of (6.7) is continuous at x̄i = 0, gi = 0 and di = 0 with

respect to initial conditions, interactions and disturbances.

Assumption 6.3 Each subsystem (6.7), satisfying Assumption 6.2, admits

an ISS-Lyapunov function Vi in Ξi ⊆ Xi, with gi(x) + di as disturbance

terms, that means

1. Ξi is a compact RPI set including the origin as an interior point

2. there exist a compact set Ωi ⊆ Ξi (including the origin as an interior

point), and a pair of suitable K∞-functions αi1,αi2 such that

Vi(xi) ≥ αi1(|xi|), ∀xi ∈ Ξi (6.11)

Vi(xi) ≤ αi2(|xi|), ∀xi ∈ Ωi (6.12)

3. there exist a suitable K∞-function αi3 and some suitable K-functions

σxij, σ
d
i such that

∆Vi(xi) ≤ −αi3(|xi|) +
∑S

j=1 σ
x
ij(|xj |) + σdi (|di|), (6.13)

for all xi ∈ Ξi, all xj ∈ Xj, and all di ∈ Di

4. there exist a suitable K∞-function ρi (with ρi such that (id − ρi) is

a K∞-function) and a suitable constant cθi > 0, such that, given a

disturbance sequence di ∈ MDi and an interaction sequence gi ∈
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MGi , there exists a nonempty compact set Θi(di, gi) ⊆ IΩi{xi : xi ∈

Ωi, |xi|δΩi > cθi} (including the origin as an interior point) de�ned as

follows

Θi(di, gi) ,
{
xi : V (xi) ≤ bi

(∑S
j=1 σ

x
ij(||xj ||) + σdi (||di||))

)}
(6.14)

where bi , α
−1
i4 ◦ ρ

−1
i , with αi4 , αi3 ◦ α−1

i2 . �

Note that, by (6.11) and (6.12), function Vi is continuous at the origin.

Remark 6.1 Note that, in order to verify that Θi(di, gi) ⊆ IΩ for all

sequences di ∈MDi and all gi ∈MGi, one has to verify that

Θi , {x : Vi(x) ≤ bi
(∑S

j=1 σ
x
ij(X

sup
j ) + σdi (Dsupi ))

)
} ⊆ IΩ (6.15)

�

Let introduce now an intermediate result useful in the following.

Lemma 6.1 Given any K∞-function ρi such that (id−ρi) is a K∞-function

too, there exist some K∞-functions ai1, ai2, . . . , aid such that

ρ−1
i (θ1 + . . .+ θS + θd) ≤max{(id+ ai1)(θ1), (id+ ai2)(θ2), . . .

. . . , (id+ aiS)(θS), (id+ aid)(θd)}. �

In order to introduce the next theorem, �rst, let de�ne Ξ , Ξ1× . . .×ΞS

the composition of RPI sets of all the subsystems. Moreover, let de�ne the

maps ∆ : IRS
≥0 → IRS

≥0 as

∆(s1, . . . , sS)> , ((id+ α1)(s1), . . . , (id+ αS)(sS))> (6.16)



116 Chapter 6. Decentralized NMPC: an ISS approach

with αi ∈ K∞, i = 1, . . . ,S and Γ : IRS
≥0 → IRS

≥0 as

Γ(s1, . . . , sS)> ,(∑S
j=1 α

−1
14 ◦ (id+ a1j) ◦ ηx1j(sj), . . . ,

∑S
j=1 α

−1
S4 ◦ (id+ aSj) ◦ ηxSj(sj)

)>
(6.17)

where αi4 = αi3 ◦α−1
i2 , ηxij = σxij ◦α

−1
i1 , while (id+aij) are obtained starting

from ρi in (6.14) using Lemma 6.1.

Theorem 6.1 Consider systems (6.7) and suppose that Assumptions 6.2

and 6.3 are satis�ed. Let Γ be given by (6.17). If there exists a mapping ∆

as in (6.16), such that

(Γ ◦∆)(s) � s, ∀s ∈ IRS
≥0 \ {0} (6.18)

then the overall system (6.8) is ISS in Ξ from d to x. �

Remark 6.2 As discussed in [Dashkovskiy et al. 2005], condition (6.18)

is the generalization to nonlinear interconnected systems of the well known

small gain theorem, which, in the case of only two interconnected systems

was previously given in [Jiang et al. 1994]. Many interesting interpretations

of this conditions are given in [Dashkovskiy et al. 2005]. Note also that

condition (6.18) together with point 6 of Assumption 6.2 is necessary to

guarantee that the interconnections between the subsystems do not cause

instability.

6.4 Nonlinear Model Predictive Control

In this section, the results derived in Theorems 2.1 and 6.1 are used to an-

alyze the ISS property of open-loop and closed-loop min-max formulations

of stabilizing MPC for nonlinear systems. Notably, in the following it is not
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necessary to assume the regularity of the value function and of the resulting

control law.

6.4.1 Open-loop formulation

In order to introduce the MPC algorithm formulated according to an open-

loop strategy, �rst let ui[t2,t3|t1] , [uit2|t1 uit2+1|t1
. . . uit3|t1 ], with t1 ≤ t2 ≤

t3 a control sequence. Moreover, given k ≥ 0, j ≥ 1, let x̂ik+j|k be the

predicted state at k + j obtained with the nominal model fi(xik ,uik) with

initial condition xk and input ui[k,k+j−1|k].

Then, the following �nite-horizon optimization problem can be stated.

De�nition 6.1 (FHOCP) Consider system (6.1) with xit = x̄i. Given

the positive integer Ni, the stage cost li, the terminal penalty Vif and the

terminal set Xif , the Finite Horizon Optimal Control Problem (FHOCP)

consists in minimizing, with respect to ui[t,t+N−1|t], the performance index

Ji(x̄i, ui[t,t+Ni−1|t],Ni) ,
t+Ni−1∑
k=t

li(x̂ik|t ,uik|t) + Vif (x̂it+Ni|t)

subject to

1. the nominal state dynamics x̂ik+1
= fi(x̂ik ,uik), with x̂it = x̄i

2. the constraints (6.4), (6.5), k ∈ [t, t+Ni − 1]

3. the terminal state constraints x̂t+Ni|t ∈ Xif . �

The stage cost de�nes the performance index to optimize and satis�es

the following assumption.
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Assumption 6.4 The stage cost li(x,u) is such that li(0, 0) = 0 and

li(xi,ui) ≥ αil(|xi|) where αil is a K∞-function. Moreover, li(xi,ui) is

Lipschitz in xi, in the domain Xi × Ui, i.e. there exists a positive constant

Lil such that

|li(a,u)− li(b,u)| ≤ Lil|a− b|

for all a, b ∈ Xi and all u ∈ Ui. �

It is now possible to de�ne a �prototype� of a nonlinear MPC algorithm:

at every time instants t, given xit = x̄i, �nd the optimal control sequence

uoi[t,t+Ni−1|t] by solving the FHOCP. Then, according to the Receding Hori-

zon (RH) strategy, de�ne

κMPC
i (x̄i) , uoit|t(x̄)

where uoit|t(x̄) is the �rst column of uoi[t,t+N−1|t], and apply the control law

ui = κMPC
i (x). (6.19)

De�ne the overall control law

u ,
[
κMPC

1 (x1)>,κMPC
2 (x2)>, . . . ,κMPC

S (xS)>
]>

(6.20)

Although the FHOCP has been stated for nominal conditions, under

suitable assumptions and by choosing accurately the terminal cost function

Vif and the terminal constraint Xif , it is possible to guarantee the ISS

property of the closed-loop system formed by (6.1) and (6.19), subject to

constraints (6.3)-(6.5).

Assumption 6.5 The solution of closed-loop system formed by (6.1),
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(6.19) is continuous at x̄i = 0, gi = 0 and di = 0 with respect to initial

conditions, interactions and disturbances.

Assumption 6.6 The design parameters Vif and Xif are such that, given

an auxiliary control law κif ,

1. Xif ⊆ Xi, Xif closed, 0 ∈ Xif

2. κif (xi) ∈ Ui, for all xi ∈ Xif

3. fi(xi,κif (xi)) ∈ Xif , for all xi ∈ Xif

4. there exist a pair of suitable K∞-functions αVif and βVif such that

αVif < βVif and

αVif (|xi|) ≤ Vif (xi) ≤ βVif (|xi|)

5. Vif (fi(xi,κif (xi)))− Vif (xi) ≤ −li(xi,κif (xi)), for all xi ∈ Xif

6. Vif is Lipschitz in Xif with a Lipschitz constant LVif . �

Assumption 6.6 implies that the closed-loop system formed by the

nominal system fi(xik ,κif (xik)) is asymptotically stable Xif (Vif is a

Lyapunov function in Xif for the nominal system).

In the following, let XMPC
i (Ni) denote the set of states for which a

solution of the FHOCP problem exists.

Assumption 6.7 Consider closed-loop system (6.1) and (6.19). For each

xit ∈ XMPC
i (Ni), ũi[t+1,t+Ni|t+1] , [uoi[t+1,t+Ni−1|t] κif (x̂it+Ni|t+1

)] is an

admissible, possible suboptimal, control sequence for the FHOCP at time

t+ 1, for all possible di ∈ Di and all possible gi ∈ Gi. �
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Note that Assumption 6.7 implies that XMPC
i (Ni) is a RPIA set for the

closed-loop system (6.1) and (6.19).

In what follows, the optimal value of the performance index, i.e.

Vi(x) , Ji(x̄i, uoi[t,t+Ni−1|t],Ni) (6.21)

is employed as an ISS-Lyapunov function for the closed-loop system formed

by (6.1) and (6.19).

Assumption 6.8 Let

• Ξi = XMPC
i

• Ωi = Xif

• αi1 = αil

• αi2 = βVif

• αi3 = αil

• σxij = LiJLij

• σdi = LiJ , where LiJ , LVifL
Ni−1
if + Lil

LNi−1

if −1

Lif−1 .

The sets Di and Xj are such that the set Θi (depending from Dsupi and

X supj ), de�ned in (6.15), with function Vi given by (6.21), is contained in

IΩi.

Remark 6.3 The assumptions above can appear quite di�cult to

be satis�ed, but they are standard in the development of nonlinear

stabilizing MPC algorithms. Moreover, many methods have been pro-

posed in the literature to compute Vif , Xif satisfying Assumption 6.6
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(see for example [Keerthi & Gilbert 1988, Mayne & Michalska 1990,

Chen & Allgöwer 1998, De Nicolao et al. 1998c, Magni et al. 2001a]).

However, with the MPC based on the FHOCP de�ned above, As-

sumption 6.7 is not a-priori satis�ed. A way to ful�ll it is shown in

[Limon et al. 2002a] by properly restricting the state constraints 2 and 3 in

the formulation of the FHOCP. �

Theorem 6.2 Under Assumptions 6.1, 6.4-6.8, Vi is an ISS-Lyapunov

function in Ξi for the closed-loop system formed by (6.1) and (6.19) sub-

ject to constraints (6.3)-(6.5), that means, system (6.1), (6.19) is ISS from

gi(x) + di to xi with RPIA set XMPC
i (Ni). �

Assumption 6.9 Given the systems (6.1), (6.19), i = 1, . . . ,S, there ex-

ists a mapping ∆ as in (6.16), such that condition (6.18) is satis�ed.

�

De�ne XMPC(N) , XMPC
1 (N1)× . . .×XMPC

S (NS) as the vector of RPI

sets of all the subsystems.

The main result can now be stated.

Theorem 6.3 Under Assumptions 6.1, 6.4-6.9 the overall system (6.2),

(6.20) is ISS in XMPC(N) from d to x. �

6.4.2 Closed-loop formulation

In the following, it is shown that the ISS result of the previous section is

also useful to derive the ISS property of min-max MPC. In this framework,

at any time instant the controller for the i-th subsystem chooses the input

ui as a function of the current state xi, so as to guarantee that the in�uence
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of the disturbance of the S subsystems are compensated. Hence, instead of

optimizing with respect to a control sequence, at any time t the controller

has to choose a vector of feedback control policies κi[t,t+Ni−1] = [κi0(xit)

κi1(xit+1) . . . κiNi−1(xit+Ni−1)] minimizing the cost in the worst case.

Assumption 6.10 For each subsystem, the sum of the interaction with

the other subsystems and the disturbance is restricted to ful�ll the following

constraint

wi , {gi(x) + di} ∈ Wi, ∀x ∈ X , ∀di ∈ Di (6.22)

whereWi is a compact set of IRni , containing the origin as an interior point.

�

Note that, in view of Assumption 6.10, the sets Wi can be derived in view

of the knowledge of X and Di.

The following optimal min-max problem can be stated for the i-th sub-

system.

De�nition 6.2 (FHCLG) Consider system (6.1) with xit = x̄i. Given

the positive integer Ni, the stage cost li − liw, the terminal penalty Vif

and the terminal set Xif , the Finite Horizon Closed-loop Game (FHCLG)

problem consists in minimizing, with respect to κi[t,t+Ni−1] and maximizing

with respect to wi[t,t+Ni−1] the cost function

Ji(x̄i,κi[t,t+Ni−1],wi[t,t+Ni−1],Ni) ,
t+Ni−1∑
k=t

{li(xik ,uik)− liw(wik)}+ Vif (xit+Ni )
(6.23)

subject to:

1. the state dynamics (6.1)
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2. the constraints (6.3)-(6.5) k ∈ [t, t+Ni − 1];

3. the terminal state constraint xit+Ni ∈ Xif . �

Letting κoi[t,t+Ni−1], wo
i[t,t+Ni−1] be the solution of the FHCLG, accord-

ing to the RH paradigm, the feedback control law

ui = κMPC
i (xi) (6.24)

is obtained by setting κMPC
i (xi) = κoi0(xi) where κoi0(xi) is the �rst element

of κoi[t,t+Ni−1].

De�ne the overall control law

u , [κMPC
1 (x1)>,κMPC

2 (x2)>, . . . ,κMPC
S (xS)>]>. (6.25)

In order to derive the main stability and performance properties associ-

ated to the solution of FHCLG, the following assumptions are introduced.

Assumption 6.11 The solution of each closed-loop subsystem (6.1), (6.24)

is continuous at x̄i, gi = 0 and di = 0 with respect to initial conditions,

interactions and disturbances.

Assumption 6.12 The function liw(wi) is such that αiw (|wi|) ≤ liw(wi) ≤

βiw (|wi|) , where αiw and βiw are K∞-functions. �

Observe that, in view of Assumptions 6.1, 6.10 and 6.12,

βiw(|wi|) = βiw(|gi(x) + di|) ≤ βiw

 S∑
j=1

Lij |xj |+ |di|





124 Chapter 6. Decentralized NMPC: an ISS approach

and, in view of Lemma 6.1 there exist some K∞-functions τi1, τi2, . . . , τid
such that

βiw(|wi|) ≤ βiw

 S∑
j=1

Lij |xj |+ |di|

 (6.26)

≤ βiw ◦ (id+ τi1) ◦ Li1(|x1|) + βiw ◦ (id+ τi2) ◦ Li2(|x2|) + . . .

. . .+ βiw ◦ (id+ τiN ) ◦ LiS(|xS |) + βiw ◦ (id+ τid)(|di|).

Assumption 6.13 The design parameters Vif and Xif are such that, given

an auxiliary law κif ,

1. Xif ⊆ Xi, Xif closed, 0 ∈ Xif

2. κif (xi) ∈ Ui, for all xi ∈ Xif

3. fi(xi,κif (xi)) + wi ∈ Xif , for all xi ∈ Xif , and all wi ∈ Wi

4. there exist a pair of suitable K∞-functions αVif and βVif such that

αVif < βVif and

αVif (|xi|) ≤ Vif (xi) ≤ βVif (|xi|)

for all xi ∈ Xif

5. Vif (fi(xi,κif (xi)) + wi) − Vif (xi) ≤ −li(xi,κif (xi)) + liw(wi), for all

xi ∈ Xif and all wi ∈ Wi. �

Assumption 6.13 implies that the closed-loop system formed by the sys-

tem (6.1) and ui = κif (xik) is ISS in Xf (Vf is an ISS-Lyapunov function

in Xf ).

Remark 6.4 The computation of the auxiliary control law, of the terminal

penalty and of the terminal inequality constraint satisfying Assumption 6.13,
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is not trivial at all. In this regard, a solution for a�ne system is discuss in

Chapter 3, where it is shown how to compute a nonlinear auxiliary control

law based on the solution of a suitable H∞ problem for the linearized system

under control. �

In what follows, the optimal value of the performance index, i.e.

V (x) , Ji(x̄i,κoi[t,t+Ni−1], w
o
i[t,t+Ni−1],Ni) (6.27)

is employed as an ISS-Lyapunov function for the closed-loop system formed

by (6.1) and (6.24).

Assumption 6.14 Let

• Ξi = XMPC
i

• Ωi = Xif

• α1 = αl

• α2 = βVf

• α3 = αl

• σxij = βiw ◦ (id+ τij) ◦ Lij

• σdi = βiw ◦ (id+ τid).

The sets Di and Xj are such that the set Θi (depending from Dsupi and

X supj ), de�ned in (6.15), with function Vi given by (6.27), is contained in

IΩi.

Theorem 6.4 Under Assumptions 6.1, 6.4, 6.10-6.14, Vi is an ISS-

Lyapunov function in XMPC
i (Ni) for the closed-loop system formed by (6.1)
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and (6.24) subject to constraints (6.3)-(6.5), that means, system (6.1),

(6.24) is ISS from gi(x) + di to xi with RPIA set XMPC
i (Ni). �

Assumption 6.15 Given the systems (6.1), (6.24), i = 1, . . . ,S, there

exists a mapping ∆ as in (6.16), such that condition (6.18) is satis�ed. �

The main result can now be stated.

Theorem 6.5 Under Assumptions 6.1, 6.4, 6.10-6.15 the overall system

(6.2), (6.25) is ISS in XMPC(N) from d to x. �

Remark 6.5 Note that the term liw(wi(k)) is included in the performance

index (6.23) in order to obtain the ISS. In fact, without this term only ISpS

can be proven, see Chapter 3.

6.5 Conclusions

Regional Input-to-State Stability have been used in this paper to study the

properties of two classes of decentralized MPC algorithms applied for control

of nonlinear discrete time systems. Speci�cally, the stability analysis has

been performed by considering the interconnections between the subsystems

composing the overall system under control like perturbation terms and by

using local MPC control laws with robustness properties. Both open-loop

and closed-loop MPC formulations have been studied. Further research is

required to establish the e�ect of partial exchange of information between

subsystems on the stability conditions to be ful�lled.
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6.6 Appendix

Proof of Lemma 6.1: As it is proven in [Jiang & Wang 2001], observe

that given ρi, there exists a K∞-function ζi such that ρ−1
i = (id + ζi) and

for any K-function γ

γ

(
S∑
i=1

ri

)
≤ max{γ(Sr1), γ(Sr2), . . . , γ(SrS)}. (6.28)

Using these observations, it is obtained that

ρ−1
i (θ1 + . . .+ θS + θd) = (id+ ζi) ◦ (θ1 + . . .+ θS + θd)

≤ max{(id+ ζi)((S + 1)θ1), (id+ ζi)((S + 1)θ2),

(id+ ζi)((S + 1)θ3), . . . , (id+ ζi)((S + 1)θd)}.

Finally, it is obtained that there exist some K∞-functions ai1, ai2, . . . , aid
such that

ρ−1
i (θ1 + . . .+ θS + θd) ≤ max {(id+ ai1)(θ1), (id+ ai2)(θ2), . . .

. . . , (id+ aiS)(θS), (id+ aid)(θd)}.

�

Proof of Theorem 6.1: From equation (6.13) it follows

∆Vi(xi) ≤ −αi4(Vi(xi)) +
∑N

j=1 σ
x
ij(|xj |) + σdi (|di|), (6.29)

for all xi ∈ Ωi, all xj ∈ Ξj , and all di ∈ Di, where αi4 = αi3 ◦α−1
i2 . Without

loss of generality, assume that (id − αi4) is a K-function. Using (6.11),

equation (6.29) implies

∆Vi(xi) ≤ −αi4(Vi(xi)) +
∑N

j=1 η
x
ij(Vj(xj)) + σdi (|di|), (6.30)
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for all xi ∈ Ωi, all xj ∈ Ξj , and all di ∈ Di, where ηxij = σxij ◦ α
−1
i1 . Given

ei ∈ IR≥0, let Ri(ei) , {xi : Vi(xi) ≤ ei}. De�ne Ψi , {xi : Vi(xi) ≤ ēi =

maxRi⊆Ωi ei}. Note that ēi > bi and Θi ⊂ Ψi. By Theorem 2.1, the region

Θi is reached asymptotically. This means that the state will arrive in Ψi in

a �nite time, that is there exists Tψi such that Vi(xi(k)) ≤ ēi, ∀k ≥ Tψi .

Hence, the region Ψi is a RPI set for the subsystem (6.7). By Remark 3.6

[Jiang & Wang 2001], there exist βi ∈ KL such that

Vi(xik) ≤ max{βi(Vi(xit), k),α−1
i4 ◦ ρ

−1
i (

S∑
j=1

ηxij(||Vj(xj)||) + σdi (||di||))},

for all xi ∈ Ψi, all xj ∈ Ξj , and all di ∈ Di.

Now, using Lemma 6.1, one has

Vi(xik) ≤ max{βi(Vi(xit), k),α−1
i4 ◦ (id+ ai1) ◦ ηxi1(||V1(x1)||), . . . ,

α−1
i4 ◦ (id+ aiS) ◦ ηxiS(||VS(xS)||),α−1

i4 ◦ (id+ aid) ◦ σdi (||di||)}
(6.31)

where ai1, ai2, . . . , aiS and aid are K∞-functions. Then

Vi(xik) ≤ βi(Vi(xit), k) +
∑S
j=1 α

−1
i4 ◦ (id+ aij) ◦ ηxij(||Vj(xj)||)

+α−1
i4 ◦ (id+ aid) ◦ σdi (||di||),

(6.32)

for all xi ∈ Ψi, all xj ∈ Ξj , and all di ∈ Di. Moreover, us-

ing (6.16) and (6.17), and following the same steps of the Proof of

Theorem 4 in [Dashkovskiy et al. 2007], using (6.32) instead of (2.4) in

[Dashkovskiy et al. 2007], it can be shown that (6.32) satis�es AG prop-

erty and is 0-AS in Ψi and hence, by using point 7 of Assumption 6.2 and

the compactness of Ψi, there exist a KL-function β̃i and a K-function γ̃i

such that

Vi(xik) ≤ β̃i(Vi(xit), k) + γ̃i(||di||), (6.33)

for all xi ∈ Ψi, and all di ∈ Di. In fact, by using point 7 of Assumption 6.2
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and the compactness of Ψi, AG in Ψi + 0-AS in Ψi is equivalent to ISS in Ψi

(see [Sontag & Wang 1996] for the continuous time and [Gao & Lin 2000]

for the discrete time case). Now, using the properties (6.11) and (6.12),

considering that, from (6.28), for any K∞-function γ, γ(r + s) ≤ γ(2r) +

γ(2s), one has

|xik | ≤ β̄i(|xit |, k) + γ̄i(||di||), (6.34)

for all xi ∈ Ψi, and all di ∈ Di, where β̄i(|xit |, k) = α−1
i1 ◦ 2β̃i(αi2(|xit |), k)

and γ̄i(||di||) = α−1
i1 ◦ 2γ̃i(||di||). Hence the system (6.7) is ISS in Ψi

from di to xi. Then, by Lemma 2.1, ISS in Ψi implies UAG in Ψi and

LS (see Chapter... for the de�nitions). Considering that starting from

Ξi, the state will reach the region Ψi in a �nite time, UAG in Ψi implies

UAG in Ξi. Hence, using again Lemma 2.1, the system (6.7) is ISS in

Ξi from di to xi and hence the overall system (6.8) is ISS in Ξ from d to x. �

Proof of Theorem 6.2: the proof of Theorem 6.2 can be derived from the

proof of Theorem 2.1 by substituting at |w|, the term
∑S

j=1 Lij |xj |+ |di|.

�

Proof of Theorem 6.3: by Theorem 6.2, each subsystem (6.1),

(6.19) admits an ISS-Lyapunov function satisfying Assumption 6.3. To-

gether with Assumption 6.9, and using Theorem 6.1, this proves that

Theorem 6.3 holds. �

Proof of Theorem 6.4: the proof of Theorem 6.4 can be derived from

the proof of Theorem 2.3 by substituting at |w|, the term
∑S

j=1 Lij |xj |+ |di|

and by using (6.26). �

Proof of Theorem 6.5: by Theorem 6.4, each subsystem (6.1),
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(6.24) admits an ISS-Lyapunov function satisfying Assumption 6.3. To-

gether with Assumption 6.15, and using Theorem 6.1, this proves that

Theorem 6.5 holds. �
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7.1 Introduction

Another research direction in decentralized control considers the prob-

lem of controlling a team of dynamically decoupled cooperating sys-

tems. For instance, there have been some important theoretical re-

sults on the stability of swarms [Liu et al. 2003], but a considerable num-

ber of publications in this area focus on speci�c issues related to Unin-
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habited Autonomous/Air Vehicles (UAVs) applications (see, for instance,

[Chandler et al. 2000, Polycarpou et al. 2001, Y. Jin et al. 2006]).

One of the approaches used in this area is based on the selection of a suit-

able cost function and its optimization in a model-predictive control (MPC)

framework. The cost function used for MPC framework can take into ac-

count several issues, such as collision avoidance and formation constraints,

and may reward the tracking of a certain path. In [Li & Cassandras 2002],

[Li & Cassandras 2003] and [Li & Cassandras 2004], the authors consider a

two-degrees of freedom team of UAVs assigned to visit a certain number of

points. The team of UAVs is controlled in a centralized receding�horizon

(RH) framework and by exploiting global potential functions, the authors

prove certain stationarity properties of the generated trajectories in the

case of two agents searching for multiple targets. A RH control scheme

has also been proposed in [Kevicky et al. 2004a], [Kevicky et al. 2004b],

where a centralized problem is decomposed to allow local computations

and feasibility issues are thoroughly examined; stability is obtained in

[Kevicky et al. 2004a] exploiting a hierarchical decomposition of the team

in suitable subgraphs with assigned priorities.

Coordination of a large group of cooperating nonlinear vehicles is con-

sidered in [Dunbar & Murray 2004] and related works, where a centralized

RH problem is decomposed and solved locally. Convergence to the forma-

tion equilibrium point is assured by guaranteeing frequent updates and a

bounded error between the assumed and the predicted trajectories, which

every agent computes for itself and its neighbors in the model predictive

control process.

Towards a broad analysis of the structural properties of cooperative

systems, an ISS analysis has recently been proposed by several authors.

In [Tanner et al. 2002], [Tanner et al. 2004] the concept of Leader to For-
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mation Stability is developed. A discussion of some of the issues aris-

ing in the study of non-holonomic vehicles using ISS can be found in

[Chen & Serrani 2004]. ISS tools have been successfully applied to the spe-

ci�c case of networked systems with serial communication, where Nesic and

Teel propose a new uni�ed framework for modelling and analyzing net-

worked control systems [Nesic & Teel 2004b], [Nesic & Teel 2004c].

In this chapter, a cooperative control problem for a team of distributed

agents with nonlinear discrete-time dynamics is considered. The problem

formulation is based on a completely decentralized MPC control algorithm,

which is analyzed using an ISS approach. The proposed scheme generalizes

the approach presented in [Franco et al. 2004] to a nonlinear framework.

Each agent is assumed to evolve in discrete-time by means of locally com-

puted control laws, which takes into consideration delayed state information

from a subset of neighboring cooperating agents. The cooperative control

problem is �rst formulated in a MPC framework, where the control laws

depend on the local state variables (feedback action) and on delayed infor-

mation gathered from cooperating neighboring agents (feedforward action).

A rigorous stability analysis is carried out, exploiting the regional ISS prop-

erties of the MPC local control laws. The asymptotic stability of the team

of agents is then proved by utilizing small�gain theorem results. The in-

formation �ow among the agents is considered as a set of interconnections

whose size is measured by the weight this information has in the compu-

tation of the control action. Hence, the derived result con�rms that, in

this framework, a suitable �interconnection� boundedness is necessary to

guarantee stability.
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7.2 Problem statement

In this section, the cooperative control problem addressed in the chapter

will be formulated in general terms, whereas, in Section 7.3, the stability

properties of the distributed controlled system will be analyzed and the

main results will be proved.

A distributed dynamic system made of a set of M agents denoted as

A , {Ai : i = 1, ...,M} is considered. Each agent Ai is described by the

nonlinear time-invariant state equation:

xik+1
= fi(xik ,uik), k ≥ 0, xi0 = x̄i (7.1)

where, for each i = 1, ...,M , xik ∈ IRni denotes the local state vector and

uik ∈ IRmi denotes the local control vector of agent Ai at time k, and where

it is assumed that fi(0, 0) = 0, i = 1, ...,M . Let also suppose that the

dynamics of all M agents evolve on the same discrete-time space (that is,

the agents are synchronized).

The state vector xi of each agent Ai : i = 1, ...,M is constrained to

belong to a compact set Xi, that is,

xi ∈ Xi ⊂ IRni . (7.2)

Analogously, the control vector ui is constrained to take values in a compact

set Ui, that is,

ui ∈ Ui ⊂ IRmi . (7.3)

In open�loop mode, each agent is dynamically decoupled from the remaining

agents and the dynamics of the other agents are not assumed to be known.

The coupling between agents arises due to the fact that they operate in the
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same environment and due to the �cooperative� objective imposed on each

agent by a cost function de�ned later on.

To achieve some degree of cooperation, each agent Ai exchanges an

information vector wi with a given set of neighboring agents Gi ,

{Aj : j ∈ Gi}, where Gi denotes the set of indexes identifying the agents

belonging to the set Gi. More precisely, the information exchange pattern

is de�ned as follows. Let us consider a generic time�instant t; then for each

i = 1, ...,M , the agent Ai receives from each neighboring cooperating agent

Aj ∈ Gi the value of its local state vector with a delay of ∆ij time steps,

that is, agent Ai receives the vector xjt−∆ij
from agent Aj ∈ Gi. To gain

some more insight into the information exchange pattern, refer to Fig. 7.1,

where a simple three�agent example is shown pictorially. In this speci�c ex-

ample, each agent receives information from all remaining agents. At each

time�instant t, let group all inputs to agent Ai into a vector w̄it de�ned as

w̄it , col (xit−∆ij
, j ∈ Gi) . The size of vector w̄i is equal to nwi =

∑
j∈Gi

nj

and clearly

w̄i ∈ Wi (7.4)

where Wi denotes the cartesian product of all sets Xj , j ∈ Gi , that is,

Wi , Π
j∈Gi
Xj .

It is worth noting that the above setting allows the investigation of quite

a large class of distributed cooperating dynamic systems like teams of mobile

vehicles, cooperating robotic arms, routing nodes in communications and/or

transportation networks where agents cooperate to minimize the total tra�c

delay, networks of reservoirs in water-distribution networks, etc..

For each i = 1, . . . ,M and for given values of the state vector xit ∈ Xi
and of the information vector w̄it ∈ Wi at time�instant t, let now introduce
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Figure 7.1: Three agents exchanging delayed state information.

the following �nite�horizon (FH) cost function (in general, nonquadratic):

Ji(xit ,wit , dli[t,t+Nip], dqi[t,t+Nip−1], ui[t,t+Nic−1],Nic,Nip) =
t+Nip−1∑
k=t

[
li

(
xik ,uik , dlik

)
+ qi

(
xik ,wik , dqik

) ]
+ Vif

(
xit+Nip , dlit+Nip

)
The positive integers Nic and Nip , i = 1, . . . ,M denote the lengths of

the so-called control and prediction horizons, respectively, according to the

framework proposed in [Magni et al. 2001a]. The local cost function is com-

posed of two terms: a partial cost term given by

t+Nip−1∑
k=t

li

(
xik ,uik , dlik

)
+ Vif

(
xit+Nip , dlit+Nip

)
where li is a transition cost function and Vif is a terminal cost function,

and a �cooperation� cost term given by

t+Nip−1∑
k=t

qi

(
xik ,wik , dqik

)
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The quantities dli , dqi , i = 1, . . . ,M , denote some given vectors of

appropriate dimensions. In general, the vectors dli are useful to specify

some reference value for some or all components of the local state variables,

whereas the vectors dqi can be used to parametrize the cooperation be-

tween the agents. For example (see also Section 7.4), if the agents represent

UAV vehicles, then vectors dli , dqi could be de�ned so as to specify given

trajectories to be followed by each agent and also given �formation struc-

tures� for the agents. As will be subsequently clari�ed, the control variables

uik , k = t, . . . , t + Nic − 1 will be the argument of a suitable optimization

problem, whereas the control variables uik , k = t+Nic, . . . , t+Nip−1 will

be obtained through some auxiliary control law uik = κif (xik) . The vector

wi denotes the state of the dynamic system

wik+1
= Awiwik , k = t, . . . , t+Nip − 2 ; wit , w̄i (7.5)

where Awi , αwi Inwi with αwi < 1 and with Inwi denoting the identity

matrix of dimension nwi . The dynamic system (7.5) is introduced in or-

der to decrease the �importance� of the information vector in the FH cost

function along the prediction horizon (e.g., a �forward-forgetting-factor� is

introduced in the cost function as regards the information vector exchanged

at time-instant t). It is worth noting that, at time�instant t, vectors wit

can be considered as known external inputs in the cost function.

In the following, for the sake of simplicity, let suppose that, by a suit-

able change of state coordinates, it is possible to consider an equivalent

formulation where the cost function (with straightforward re-de�nitions of
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the symbols) can be re-written in the simpler form

Ji(xit ,wit , ui[t,t+Nic−1],Nic,Nip) =
t+Nip−1∑
k=t

[li (xik ,uik) + qi (xik ,wik) ] + Vif

(
xit+Nip

)
(7.6)

where li(0, 0) = 0 , qi(0, 0) = 0 , and Vif (0) = 0 . Moreover, the origin is

an interior point of the sets Xi and Ui.

Remark 7.1 Beyond allowing for a simpler problem formulation, the re-

duction of the original FH cost function to the form (7.6) will allow for the

design of time-invariant control laws; after a change of coordinates it will

also be possible to carry on the stability analysis with reference to the origin

as equilibrium state of the time-invariant system (see Section 7.4 for some

details about the above change of coordinates in a practical simple case).

However, considering the general case would not involve major conceptual

di�culties. �

The local control law is designed according to a RH strategy. In the

literature several di�erent problem formulations can be found depending on

the particular setting. In this chapter, the MPC control problem has been

stated according to [Magni et al. 2001a] (see also the well�known survey

paper [Mayne et al. 2000]).

Problem 7.2.1 (FHOCP) Consider, for every agent Ai, with i =

1, . . . ,M , systems (7.1) and (7.5) with xit , x̄i ∈ Xi and wit , w̄i ∈ Wi

as initial conditions. Given the positive integers Nic, Nip, the transition,

cooperation and terminal cost functions li, qi,Vif , the terminal set Xif , and

the auxiliary control law κif , the Finite Horizon Optimal Control Problem
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(FHOCP) consists in minimizing with respect to ui[t,t+Nic−1] the perfor-

mance index (7.6) subject to:

1. the agent's dynamics (7.1)

2. the system's dynamics (7.5)

3. the auxiliary control law

uik = κif (xik), k = t+Nic, . . . , t+Nip − 1

4. the constraints (7.2) and (7.3)

5. the terminal state constraint xit+Nip ∈ Xif . �

Clearly, by de�nition, the optimal FH control sequence uoi[t,t+Nic−1] solv-

ing Problem 7.2.1 is such that, when applied to (7.1), the constraints (7.2),

(7.3), and the terminal constraint xit+Nip ∈ Xif are simultaneously satis-

�ed. Indeed, the following de�nition regarding a generic control sequence

ui[t,t+Nic−1] will be useful in the analysis reported in Section 7.3.

De�nition 7.1 (Admissible control sequence) Given an initial state

xit, the sequence ui[t,t+Nic−1] is said to be an admissible control sequence

for the FHOCP if its application to (7.1) under the action of the auxiliary

control law uik = κif (xik), k = t+Nic, . . . , t+Nip− 1 allows simultaneous

satisfaction of (7.2), (7.3) and of the terminal constraint xit+Nip ∈ Xif . �

Now, the RH procedure can be described in the usual way as fol-

lows. When the controlled agent Ai is in the state xit at stage t, the

FHOCP is solved, thus obtaining the sequence of optimal control vectors,

uoi[t,t+Nic−1]. Then, according to the Receding Horizon (RH) strategy, de-

�ne κMPC
i (x̄i, w̄i) , uoit(x̄i, w̄i) where uoit(x̄i, w̄i) is the �rst element of
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uoi[t,t+Nic−1]. This procedure is repeated stage after stage and a feedback�

feedforward control law

uit = κMPC
i (xit ,wit) (7.7)

is obtained, that depends on the local current state xit and on the vector

of delayed states wit communicated to the agent Ai by the cooperating

agents Gi = {Aj , j ∈ Gi}.

The system (7.1) under the action of the RH optimal control law can

thus be rewritten as

xik+1
= f̃i(xik ,wik) , fi(xik ,κMPC

i (xik ,wik)) , k ≥ t, xit = x̄i (7.8)

It is worth noting that, from well-known results on RH control (see, for

instance, [Mayne et al. 2000] and the references cited therein), there is

κMPC(0, 0) = 0 and hence f̃i(0, 0) = 0 , that is, the origin is an equilibrium

state for agent Ai when wik = 0, k ≥ t .

Assumption 7.1 The solution of closed-loop (7.8) is continuous at x̄i = 0

and wi = 0 with respect to disturbances and initial conditions.

7.3 Stability of the team of cooperating agents

The stability analysis of the team of cooperating agents will be carried out

in three main steps. In Subsection 7.3.1 some basic results concerning the

regional input�to�state stability properties of discrete�time systems will be

stated and proved, extending the approach presented in Chapter 2 to this

particular case. In Subsection 7.3.2, the regional stability results will be ex-

ploited referring to speci�c dynamic models (7.8) of Ai . It will be indeed
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proven that each agent is regionally ISS with respect to the input repre-

sented by the delayed incoming information from its neighbors. Finally the

team of cooperating agents will be considered in Subsection 7.3.3 as a sin-

gle dynamic system resulting from a feedback interconnection of regionally

ISS systems. Showing that both the elements of this interconnection are

endowed with ISS-Lyapunov functions, will result in proving the asymp-

totic stability of the team of cooperating agents by resorting to appropriate

small�gain conditions.

7.3.1 Regional ISS results

The regional ISS stability analysis will now be associated to the existence of

a suitable Lyapunov function (in general, a-priori non smooth). Note that,

di�erently from what stated in Chapter 2, in this case, in order to �t the

considered problem, the ISS-Lyapunov function will be a function of both

variables x and w.

Consider a discrete-time autonomous nonlinear dynamic system de-

scribed by

xk+1 = f̃(xk,wk), k ≥ 0, (7.9)

where the map f̃ : IRn × IRq → IRn is nonlinear possibly discontinuous,

xk ∈ IRn is the state, wk ∈ IRq is an unknown disturbance. The transient

of the system (7.9) with initial state x0 = x̄ and disturbance sequence w

is denoted by x(k, x̄, w). This system is supposed to ful�ll the following

assumptions.

Assumption 7.2

1. The origin of the system is an equilibrium point, i.e. f̃(0, 0) = 0.
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2. The disturbance w is such that

w ∈ W (7.10)

where W is a compact set containing the origin, with Wsup known.

Assumption 7.3 The solution of (7.9) is continuous at x̄ = 0 and w = 0

with respect to disturbances and initial conditions.

De�nition 7.2 (ISS-Lyapunov function in Ξ) A function V : IRn ×

IRq → IR≥0 is called an ISS-Lyapunov function in Ξ for system (7.9), if

1. Ξ is a compact RPI set including the origin as an interior point

2. there exist a compact set Ω ⊆ Ξ (including the origin as an interior

point), and a pair of suitable K∞-functions α1,α2 such that

V (x,w) ≥ α1(|x|), ∀x ∈ Ξ, ∀w ∈ W (7.11)

V (x,w) ≤ α2(|x|) + σ1(|w|), ∀x ∈ Ω, ∀w ∈ W (7.12)

3. there exist a suitable K∞-function α3 and some suitable K-function

σ2 and σ3 such that

V (f̃(x,w1),w2)− V (x,w1) ≤ −α3(|x|) + σ2(|w1|) + σ3(|w2|)
(7.13)

for all x ∈ Ξ, and all w1,w2 ∈ W

4. there exist some suitable K∞-function ζ and ρ (with ρ such that (id−ρ)

is a K∞-function) and a suitable constant cθ > 0, such that, given a

disturbance sequence w ∈ MW , there exists a nonempty compact set
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Θw ⊆ IΩ , {x : x ∈ Ω, |x|δΩ > cθ} (including the origin as an

interior point) de�ned as follows

Θw , {x : V (x) ≤ b(||w||)} (7.14)

where b , α−1
4 ◦ ρ−1 ◦ σ4, with α4 , α3 ◦ α−1

2 ,α3(s) ,

min(α3(s/2), ζ(s/2)), α2(s) , α2(s) + σ1(s), σ4(s) , ζ(s) + σ2(s) +

σ3(s). �

Remark 7.2 Note that, in order to verify that Θw ⊆ IΩ for all w ∈MW ,

one has to verify that

Θ , {x : V (x) ≤ b(Wsup)} ⊆ IΩ (7.15)

�

A su�cient condition for regional ISS of system (7.9) can now be stated.

Theorem 7.1 Suppose that Assumption 7.2 and 7.3 hold. If system (7.9)

admits an ISS-Lyapunov function in Ξ, then it is ISS in Ξ and, for all

disturbance sequences w ∈MW , limk→∞ |x(k, x̄, w)|Θw = 0. �

To sum up, in this subsection an important su�cient condition for re-

gional ISS of constrained systems of the form (7.9) has been stated and

proved. In the next subsection, Theorem 7.1 will be exploited with refer-

ence to each agent Ai under the action of the local MPC control law.

7.3.2 Stability properties of the single agents

Consider a generic agent Ai whose dynamics is described by (7.1). By

exploiting the results proved in Subsection 7.3.1, it will now shown that
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each agent Ai , with i = 1, 2, . . . ,M is regionally ISS with respect to

the inputs represented by the information vectors wit received from its

cooperating agents at each time�step t. Clearly, in this context, each agent

is considered as a �separate� dynamic system in the team, in the sense

that the input vectors wit are �external� variables that are assumed not to

depend on the behavior of the other cooperating agents (i.e., at the present

stage, the coupling between the agents is not directly taken into account).

Let now introduce some further useful assumptions and de�nitions.

Assumption 7.4 The design parameters Vif and Xif are such that, given

an auxiliary control law κif ,

1. Xif ⊆ Xi, Xif closed, 0 ∈ Xif

2. κif (x) ∈ Ui, |κif (xi)| ≤ Lκif |xi|, Lκif > 0, for all x ∈ Xif

3. |fi(xi,κif (xi))| ≤ Lfic |xi|, Lfic > 0, for all xi ∈ Xif

4. f(xi,κif (xi)) ∈ Xif , for all xi ∈ Xif

5. there exist a pair of suitable K∞-functions αVif and βVif such that

αVf < βVif and

αVif (|xi|) ≤ Vif (xi) ≤ βVif (|xi|)

6. Vif (fi(xi,κif (xi)))−Vif (xi)≤−li(xi,κif (xi))− qi(xi, w̃i) +ψi(|w̃i|) for

all xi ∈ Xif , and all wi ∈ Wi, where ψi is a K-function and w̃i ,

(Awi)
Nip−1wi.

Assumption 7.5 The partial cost function li is such that ri(|xi|) ≤

li(xi,ui), for all xi ∈ Xi, and all ui ∈ Ui where ri is a K∞-function. More-

over, li is Lipschitz with respect to xi and ui in Xi × Ui, with Lipschitz

constants denoted as Lli and Lliu, respectively.
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Assumption 7.6 The cooperation cost function qi is such that 0 ≤

qi(xi,wi), for all xi ∈ Xi, and all wi ∈ Wi. Moreover qi is Lipschitz with

respect to xi and wi in Xi×Wi, with Lipschitz constants denoted as Lqi and

Lqiw , respectively. �

In the following, let XMPC
i denote the set of states for which a solution

of the FHOCP problem exists.

Assumption 7.7 Consider system (7.1). Let denote Xiκif the set of states

xit for which

ũi[t,t+Nic−1] , col [κif (xit),κif (xit+1), . . . ,κif (xit+Nic−1)]

is an admissible control sequence for the FHOCP and for which points 2

and 3 of Assumption 7.4 are satis�ed. �

In what follows, the optimal value of the performance index, i.e.

Vi(xit ,wit) , Ji(xit ,wit , u
o
i[t,t+Nic−1],Nic,Nip) (7.16)

is employed as an ISS-Lyapunov function for the closed-loop system formed

by (7.1) and (7.7).

Assumption 7.8 Suppose1 that Lfic 6= 1 and let

• Ξ = XMPC
i

• Ω = Xiκif

• α1(s) = ri(s)
1The very special case Lfic = 1 can be trivially addressed by a few suitable modi�-

cations to the proof of Theorem 7.2.
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• α2(s) = (Lli + LliuLκif + Lqi)
(Lfic )Nip−1

Lfic−1
s+ βVif (LNipfic

s)

• α3(s) = ri(s)

• σ1(s) = Lqiw
(αwi)

Nip − 1
αwi − 1

s

• σ2(s) = αwiLqiw
(αwi)

Nip − 1
αwi − 1

s+ ψi((αwi)
Nip−1s)

• σ3(s) = Lqiw
(αwi)

Nip − 1
αwi − 1

s

The set W is such that the set Θ (depending from Wsup), de�ned in (7.15),

with function V given by (7.2), is contained in IΩ. �

The main result can now be stated.

Theorem 7.2 Under Assumptions 7.1, 7.4-7.8, the locally�controlled agent

Ai, i = 1, . . . ,M , whose closed�loop dynamics are described by (7.8), sub-

ject to constraints (7.2), (7.3), and (7.4), is ISS with RPIA set XMPC
i .

�

It is worth noting that, from the perspective of determining regionally

ISS stabilizing control laws, a key aspect is the design of an auxiliary control

law κif (xi) such that Assumption 7.4 holds. In this respect, under slightly

more restrictive hypotheses on the agents' dynamic models and on the FH

cost function, the following useful result is given.

Lemma 7.1 Assume that fi ∈ C2, and

li(xi,ui) = x>i Qixi + u>i Riui

qi(xi,wi) ≤ x>i S̃ix>i + ψi(|wi|)



7.3. Stability of the team of cooperating agents 147

with Qi, Ri, and S̃i being positive de�nite matrices and ψi being a K-

function. Furthermore, suppose that there exists a matrix Ki such that

Aicl = Ai +BiKi is stable with

Ai ,
∂fi
∂xi

∣∣∣∣
xi=0;ui=0

, Bi ,
∂fi
∂ui

∣∣∣∣
xi=0;ui=0

Let Q̃i , βi(Qi +K>i RiKi + S̃i) with βi > 1, and denote by Πi the unique

symmetric positive de�nite solution of the following Lyapunov equation:

A>iclΠiAicl −Πi + Q̃i = 0. (7.17)

Then, there exist a constant Υi ∈ IR>0 and a �nite integer N̄p such that

for all Np ≥ N̄p the �nal set Xif , {xi ∈ IRni : xi>Πixi ≤ Υi} satis�es

Assumption 7.4 with κif (xi) = Kixi , Vif = x>i Πixi . �

In the next subsection, the stability analysis of the whole team of agents

will be addressed.

7.3.3 Stability properties of the team of agents

In this subsection, the coupling e�ects due to the exchange of the delayed

state information between the cooperating agents will be taken into account

in the context of the stability analysis of the whole team of agents. In this

respect, let consider the team A = {Ai, i = 1, ...,M} where each cooper-

ating agent Ai is controlled by the regionally ISS�stabilizing MPC control

local law solving Problem 7.2.1 for each i = 1, . . . ,M . Therefore, one can
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write

x1t+1 = f̃1(x1t ,w1t) , f1(x1t ,κ
MPC
1 (x1t ,w1t)) ,

x2t+1 = f̃2(x2t ,w2t) , f2(x2t ,κ
MPC
2 (x2t ,w2t)) ,

...

xMt+1 = f̃M (xMt ,wMt) , fM (xMt ,κ
MPC
M (xMt ,wMt)).

First of all, let rewrite the team of dynamical systems as a suitable

interconnection of two composite systems. To this end, let

xt , col [ x1t , · · · ,xMt ] , wt , col [ w1t , · · · ,wMt ] .

Hence the following state equation can be written:

xt+1 = f̃(xt,wt) (7.18)

where

f̃(xt,wt) , col
[
f̃1(x1t ,w1t), f̃2(x2t ,w2t), · · · , f̃M (xMt ,wMt)

]
.

Vector wt can be easily characterized as the output of a system describ-

ing the delay dynamics of the information exchange process among the

agents. For the sake of simplicity and without loss of generality, it is as-

sumed that dim (wit) ≥ 1, i = 1, . . . ,M , that is, it is assumed that each

agent receives at least one delayed state information from another neigh-

boring agent. First, let set ∆ , max{∆ij , i, j = 1, ...,M , i 6= j} . Then,

let introduce the state vector zt , col [ ρ1t , · · · , ρτt , · · · , ρ∆t ] , zt ∈ IRnz ,

where nz , dim (zt) and where the variables ρ are introduced to store the

delayed states; speci�cally ρ1t+1 = xt and ρτt+1 = ρτ−1t , τ = 2, . . . , ∆ .
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Hence, it follows that  zt+1 = Azt +B xt

wt = C zt

(7.19)

where

A =



∅ · · · · · · · · · ∅

I1 ∅ · · · · · · ∅

∅ I2 ∅ · · · ∅
...

...
...

. . .
...

∅ · · · · · · I∆−1 ∅


, B =


I0

∅
...

∅

 , C =


C1

C2

...

CM



Ci =
[
Ci(1) · · · Ci(τ) · · · Ci(∆)

]

Ci(τ) =



δi1(τ) ∅ · · · · · · ∅

∅ δi2(τ) ∅ · · · ∅

∅ · · · δi3(τ) · · · ∅
...

...
...

. . .
...

∅ · · · · · · ∅ δiM (τ)


All matrices Iτ , for τ = 0, ..., ∆ − 1 are identity matrices of dimension

nx × nx, where nx , dim(xt) and δij(τ) , I is equal to the identity

matrix of dimension nj , i, j = 1, ...,M , i 6= j only for τ corresponding to

the delay associated with the information received by the i-th from the j-th

agent; otherwise δij(τ) = 0, thus there is no replication of information. It is

worth noting that agent Ai does not get replicated information from agent

Aj , thus in matrix C the matrix δij(τ) is equal to the identity for only one

value of τ .

Summing up, the overall state equation describing the dynamics of the
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team of agents can be written as a feedback interconnection between the

systems described by the state equations (7.18) and (7.19). In the following,

it will be shown that an ISS-Lyapunov function can be de�ned for each of

these systems, which implies that both will turn out to be regionally ISS.

After this step, the stability properties of the team of agents will be analyzed

by resorting to nonlinear small�gain theorem arguments. First, let W ,

W1×· · ·×WM , X , X1×· · ·×XM , X κf , X κ1f

1 ×· · ·×X κMf

M , XMPC ,

XMPC
1 ×· · ·×XMPC

M , Θ , Θ1×· · ·ΘM . The following intermediate result

can now be proved.

Lemma 7.2 Under Assumptions 7.1,7.4-7.8, dynamic systems (7.18) and

(7.19) are provided with suitable ISS-Lyapunov functions V (xt,wt) in

XMPC and VD(zt) in IRnz , respectively. �

Now, from the proof of Lemma 7.2, from (7.44) it follows immediately

that the ISS-Lyapunov function V (xt,wt) satis�es

V (xt+1,wt+1)− V (xt,wt) ≤ −α4(V (xt,wt)) + ζ(|wt|)

+σ2(|wt|) + σ3(|wt+1|)

for all xt ∈ X κf , and all wt, wt+1 ∈ W, where, given a suitable K∞-
function ζ as in point 4 of De�nition 7.2, α4(s) , α3 ◦ α−1

2 (s),α3(s) ,

min(α3(s/2), ζ(s/2)), α2(s) , α2(s) + σ1(s), (see for details the Step 1 of

the Proof of Theorem 7.1). Now, since from (7.19) wt = Czt , one has
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|wt| ≤ |zt| and, by using (7.45),

V (xt+1,wt+1)− V (xt,wt)≤−α4(V (xt,wt)) + ζ(α−1
1D(VD(zt))) (7.20)

+σ2(α−1
1D(VD(zt))) + σ3(α−1

1D(VD(zt+1)))

≤−α4(V (xt,wt)) + ζ(α−1
1D(||VD(z)[t+1]||))

+σ2(α−1
1D(||VD(z)[t+1]||))

+σ3(α−1
1D(||VD(z)[t+1]||))

=−α4(V (xt,wt)) + σ4(||VD(z)[t+1]||)

for all xt ∈ X κf , and all w ∈MW , where σ4(s) , ζ(α−1
1D(s))+σ2(α−1

1D(s))+

σ3(α−1
1D(s)).

Moreover, as far as the ISS-Lyapunov function VD(zt) is concerned,

from (7.46) it follows that

VD(zt+1)− VD(zt) ≤ −α4D(VD(zt)) + σ4D(V (xt,wt)) (7.21)

where, again, α4D(s) , α3D ◦ α−1
2D(s), whereas σ4D(s) , σD ◦ α−1

1D(s) .

Analogously to the proof of Theorem 7.1, given e ∈ IR≥0, letR(e) , {x :

V (x,w) ≤ e, ∀w ∈ W}. Let Ψ , {x : V (x) ≤ ē = maxR(e)⊆Xκf e,∀w ∈ W}.

It is clear that Ψ ⊇ Θw and that Ψ is a RPI set. Since the region Θw is

reached asymptotically, the state will arrive in Ψ in a �nite time, that is,

there exists Tψ such that V (xk,wk) ≤ ē, ∀k ≥ Tψ . Thanks to Remark 3.7

in [Jiang & Wang 2001], from (7.20) and (7.21) it follows that there exist

some KL-functions β̂ and β̂D such that

V (xk,wk) ≤ max{β̂(V (xt,wt), k − t), γ1(||VD(z)[k]||)} (7.22)
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for all xt ∈ Ψ, all k ∈ Z≥0, k ≥ t, and

VD(zk) ≤ max{β̂D(VD(zt), k − t), γ2(||V (x,w)[k]||)}, (7.23)

for all x ∈ X and all k ∈ Z≥0, k ≥ t, where let de�ne

γ1 , α
−1
4 ◦ ρ

−1 ◦ σ4 (7.24)

and

γ2 , α
−1
4D ◦ ρ

−1 ◦ σ4D (7.25)

with ρ any K∞-function such that (id− ρ) ∈ K∞.

Now, the following result about the stability properties of the team of

cooperating agents can be proved.

Theorem 7.3 Suppose that Assumptions 7.1 and 7.4-7.8 are veri�ed.

Moreover, assume that the following small gain condition holds:

γ1 ◦ γ2(s) < s. (7.26)

with γ1 and γ2 given by (7.24) and (7.25) and argument s takes its val-

ues from a suitable subset of IR≥0 according to inequalities (7.20)�(7.23).

Then the team of cooperating agents described by the interconnected dynamic

equations (7.18) and (7.19) is 0�AS in XMPC × IRnz . �

Remark 7.3 It is worth noting that the small�gain condition (7.26) may

turn out to be conservative in practice as it is typical of these kind of results.

On the other hand, the generality of the problem makes it rather di�cult to

obtain tighter conditions without introducing more restrictive assumptions

on the structure of the agents' dynamics and on the cost function. Indeed,

for special classes of cooperative control problems, di�erent conditions for
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the stability of the team of agents can be obtained. For instance, we recall

that in [Dunbar & Murray 2006] stability has been shown for formation con-

trol of UAV's under di�erent hypotheses as the knowledge of the neighbors

dynamics, suitably fast information exchange and bounded error between

the predicted and actuated state trajectories of each member of the team.

As another example, stability of a set of decoupled systems is ensured in

[Kevicky et al. 2004a], by assuming the knowledge of feasibility regions and

a speci�c hierarchical design of the decentralized MPC control problem: the

computations are shared by nodes with di�erent priorities, which can impose

their control decisions on the subordinate neighbors.

Remark 7.4 As expected, in the special case where the state equation (7.1)

takes on a linear structure, the FH cost function (7.6) is quadratic, and no

state and control constraints are present, more specialized and tight results

can be found. In particular, the control law takes on an explicit feedback�

feedforward structure and some interesting properties hold. The reader is

referred to [Franco et al. 2006] for more details.

7.4 Simulation results

In this section we will show some simulation results concerning a team of

UAVs moving in IR2 with nonlinear dynamics. Such a problem has been

selected because of its reasonable simplicity so as to be able to ascertain the

basic features and properties of the proposed cooperative control law. A

team of M = 3 vehicles will be considered, whose continuous-time models
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and data are taken according to [Jin et al. 2004]:

mẍi = −µ1ẋi + (uiR + uiL) cos(θi),

mÿi = −µ1ẏi + (uiR + uiL) sin(θi),

Jθ̈i = −µ2θ̇i + (uiR − uiL)rv.

(7.27)

where i = 1, 2, 3 . For simplicity, we assume that all the members of the

team have the same physical parameters: the mass is m = 0.75Kg, the

inertia is J = 0.00316Kgm2, the linear friction coe�cient is µ1 = 0.15Kg/s

and the rotational friction coe�cient is µ2 = 0.005Kgm2/s and �nally the

radius of the vehicle is rv = 8.9cm. The state vector of each agent will

be from now on denoted as zi, and is de�ned by considering the position

and velocity in each direction of the plane, plus the orientation angle and

rotational velocity zi , col (θi, θ̇i,xi, ẋi, yi, ẏi) , whereas the control vector

is given by ui , col (uiL,uiR) . The continuous-time models (7.27) are

discretized with a sampling time T = 0.1s, thus obtaining suitable discrete-

time models, where, at time t, the state vectors are denoted by zit and the

control vectors are denoted by uit .

Remark 7.5 In the following, the simulation trials will refer to the above

approximated discrete-time model for mere illustration purposes and to show

the e�ectiveness of the proposed cooperative control scheme. However, as

shown in [Nesic & Teel 2004a], in some cases the control law that stabilizes

the approximated discrete-time model may perform quite poorly when applied

to the exact model. This is clearly an important issue (see the above refer-

ence for more details and the works [Nesic et al. 1999a, Nesic et al. 1999b]

for the general case of control of nonlinear sampled-data systems). For a

MPC algorithm where the continuous time evolution of the system is explic-

itly taken into account, while the optimization is performed with respect to
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a piece-wise constant control signal, see [Magni & Scattolini 2004]. �

The objective of the distributed cooperative controller is to reach a

certain formation following a prede�ned desired trajectory, based on leader

one, for each UAV. The desired trajectories have been chosen with constant

velocities and null rotational velocity. At every time instant t, each agent

solves a local Problem 7.2.1 with FH cost function

Ji =
t+Nip−1∑
k=t

(
‖zik − z̄1k + di1‖2Qi + ‖uik − ūi‖

2
Ri

)
+ ‖zit+Nip − z̄1t+Nip

+ di1‖2Pi +
t+Nip−1∑
k=t

∑
j ∈Gi

‖zik − z̃jk + dij‖2Sij

(7.28)

where z̄1k represents the desired trajectory of the leader while dij are the

desired distance between agent i and agent j (dii = 0, ∀i = 1, . . . ,M).

Hence the term z̄1k−di1 represents the desired trajectory of the i−th UAV.

The values of dij are such that the three UAVs assume a triangle formation.

The term ūi is the control vector necessary in order to maintain each UAV

on the desired trajectory. For the information vector to take on a constant

value within the prediction horizon, we let

z̃jk = (z̄1k − dj1) + (zj
t−∆ij

− z̄1
t−∆ij

+ dj1) .

The delays have all been set to ∆ij = ∆ = 5T and the communication

topology is assumed to be stationary. Speci�cally, it is supposed that the

leader does not receive any information from the other agents (hence S1j =

0, ∀j ∈ G1). Moreover agent 2 gets information from the leader and from

agent 3 and, analogously, agent 3 gets information from the leader and from

agent 2.
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The values of the parameters used for the leader are N1c = N1p = 5 ,

Q1 = 0.1 · diag (1, 50, 1, 1, 1, 1) , R1 = 0.01 · diag (1, 1) , and S1j = 0, ∀j ∈
G1 . The lengths of horizons N1c,N1p , though quite small, are indeed

su�cient for the leader to show a reasonably good tracking performance

as it starts quite close to the desired trajectory. For the other agents,

we consider the same values of the parameters, that is, we have Nic =

10 , Nip = 250 , Qi = 0.1 · diag (1, 50, 1, 1, 1, 1) , Ri = 0.01 · diag (1, 1) ,

Sij = diag (0.1, 0.1, 1, 0.1, 1, 0.1) , αwi = 0.96 , i = 2, 3 . The matrices Pi

are obtained, from the choice of Qi, Ri and Sij , by the auxiliary control

law designed according to Lemma 7.1 using βi = 3 and S̃ij = 2Sij , i =

1, 2, 3 . The FHOCP is characterized by the constraints uiLmin ≤ u1it ≤
uiRmax; uiLmin ≤ u2it ≤ uiRmax , with uiLmin = 0 , uiLmax = 6 , uiRmin =

0 , and uiRmax = 6 , i = 1, 2, 3 , where u1it (u2it) denotes the �rst (second)

component of vector uit . Moreover, the terminal constraints ‖zit+Nip −
z̄it+Nip + di1‖2Pi ≤ Υi, i = 1, 2, 3 , have been obtained numerically according

to Lemma 7.1. The values of Υi are constant along the trajectories and

are respectively Υ1 = 0.3 and Υi = 1.2, i = 2, 3 . These values are not

comparable since the matrices Pi are di�erent. The control necessary in

order to maintain each UAV on the desired trajectory is ū1i = 1 , ū2i = 1 .

The values of the desired distances between the agents are the following:

d12 = 16col(0, 0,− sin(π/3) cos(π/4)− 0.5 cos(π/4),

0,− sin(π/3) cos(π/4) + 0.5 cos(π/4), 0)

d13 = 16col(0, 0,− sin(π/3) cos(π/4) + 0.5 cos(π/4),

0,− sin(π/3) cos(π/4)− 0.5 cos(π/4), 0)

d21 = 16col(0, 0, + sin(π/3) cos(π/4) + 0.5 cos(π/4),

0, + sin(π/3) cos(π/4)− 0.5 cos(π/4), 0)
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d23 = 16col(0, 0, cos(π/4), 0,− cos(π/4), 0)

d31 = 16col(0, 0, sin(π/3) cos(π/4)− 0.5 cos(π/4),

0, + sin(π/3) cos(π/4) + 0.5 cos(π/4), 0)

and

d32 = 16col(0, 0,− cos(π/4), 0, cos(π/4), 0) .

Moreover, the initial condition of the desired trajectory of the leader is:

z̄10 = col (π/4, 0, 0,
1
m

(ū1i + ū2i) cos(π/4), 0,
1
m

(ū1i + ū2i) sin(π/4)) .

The entire desired leader's trajectory is obtained, starting from the initial

conditions, holding constant the velocities. Finally, the initial conditions of

the UAVs are z10 = z̄10 , z20 = z̄20 , z30 = z̄20 + 3.8d23 .

In Fig. 7.2, the team trajectories are reported in the two-dimensional

space: the objective is to attain a triangle formation along a straight line of

45◦ as followers of the leader. The dotted lines depict the actual behavior

of the agents. It is worth noting the cooperative behavior of the agents: in

particular agent 2 (on the left of the leader) even if it starts on its trajectory

(z20 = z̄20) it moves on the right in order to reach faster a better (with

respect to cost (7.28)) formation with agent 3. Without the cooperative

term in the cost function the trajectory of agent 2 would be a straight line.

In Fig. 7.3, the behaviors of the control variables ui , col(uiL,uiR)

of Agents 2 and 3 are shown. In particular, in Figs. 7.3(a) and 7.3(b)

the behaviors of the �rst component of the control variables are plotted,

whereas in Figs. 7.3(c) and 7.3(d), the di�erence between the �rst and

the second components of the control variables are shown. This has been

done to better appreciate the di�erences between the �rst and the second
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Figure 7.2: Team trajectories (dotted lines). The front of the vehicle is
represented by the symbol '*' whereas the back of the vehicle is represented
by the symbol '+'.

components of the control variables; actually, these di�erences are rather

small due to the small magnitude of the variations of the orientation of the

two agents. In Fig. 7.3, the dashed lines depict the constraints imposed on

the control variables.

7.5 Conclusions

In this chapter, the problem of designing cooperative control algorithms

for a team of distributed agents with nonlinear discrete-time dynamics,

and analyzing the stability properties of the overall closed-loop system has

been investigated. The problem formulation is based on a decentralized

MPC framework, where the dynamics of the distributed agents are linked



7.5. Conclusions 159

Figure 7.3: Behaviors of the control variables of Agents 2 and 3. (a) and (b)
behaviors of the �rst component of the control variables. (c) and (d) di�er-
ence between the �rst and the second components of the control variables.
Dashed lines: control constraints.

by a cooperative cost function. Each agent uses locally computed control

laws, which take into consideration delayed state information from neigh-

boring agents. The resulting local control laws take the form of a feedback�

feedforward structure, which is derived by a nonlinear MPC framework.

A key contribution is the general problem formulation, which allows the

systematic derivation of rigorous stability results. The stability analysis is

made possible by combining the stability properties of the MPC local control

laws and ISS arguments. Finally, the team of cooperating agents is treated

as a single dynamical system resulting from a feedback interconnection of

regionally ISS systems, thus allowing the use of small-gain conditions to
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show asymptotic stability.

Despite the general formulation, there are some important issues requir-

ing further investigation. Future research e�orts will be devoted towards (i)

considering the case where disturbances and uncertainties a�ect the commu-

nication between the agents of the team and (ii) addressing the robustness

issue by generalizing the methodology to the case where optimality of the

algorithm is not required at each time-stage.

Appendix

Proof of Theorem 7.1: The proof will be carried out in three steps.

Step 1. First, it is going to be shown that Θw de�ned in (7.14) is a RPI

set for system (7.9). From the de�nition of α2(s) it follows that α2(|x|) +

σ1(|w|) ≤ α2(|x| + |w|). Therefore, V (x,w) ≤ α2(|x| + |w|) and hence

|x|+ |w| ≥ α−1
2 (V (x,w)), ∀x ∈ Ω. Moreover (see [Limon et al. 2006a]):

α3(|x|) + ζ(|w|) ≥ α3(|x|+ |w|) ≥ α4(V (x,w)) (7.29)

where α4(s) , α3 ◦ α−1
2 (s) is a K∞-function. Then, let consider system

(7.9) and the state transition from xk to xk+1:

V (f̃(xk,wk),wk+1)− V (xk,wk) ≤ −α4(V (xk,wk)) + ζ(|wk|) (7.30)

+σ2(|wk|) + σ3(|wk+1|)

≤ −α4(V (xk,wk)) + σ4(||w||)

for all xk ∈ Ω, all wk,wk+1 ∈ W, and all k ≥ 0, where σ4(s) = ζ(s) +

σ2(s) + σ3(s) .

Assume now that xt ∈ Θw. Then V (xt,wt) ≤ b(||w||); this implies
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ρ ◦ α4(V (xt,wt)) ≤ σ4(||w||). Without loss of generality, assume that (id−

α4) is a K∞-function, otherwise take a �bigger� α2 so that α3 < α2. Then

V (f̃(xt,wt),wt+1) ≤ (id− α4)(V (xt,wt)) + σ4(||w||)

≤ (id− α4)(b(||w||)) + σ4(||w||)

= −(id− ρ) ◦ α4(b(||w||)) + b(||w||)

−ρ ◦ α4(b(||w||)) + σ4(||w||).

From the de�nition of b, it follows that ρ ◦ α4(b(s)) = σ4(s) and, owing to

the fact that (id− ρ) is a K∞-function, it follows that

V (f̃(xt,wt),wt+1) ≤ −(id− ρ) ◦ α4(b(||w||)) + b(||w||) ≤ b(||w||) .

By induction one can show that V (f̃(xt+j−1,wt+j−1),wk+j) ≤ b(||w||) for

all j ∈ Z≥0, that is xk ∈ Θw, for all k ≥ t. Hence Θw is a RPI set for

system (7.9).

Step 2. Now it is shown that, starting from Ξ \ Θw, the state tends

asymptotically to Θw. Firstly, if xk ∈ Ω \Θw, then

ρ ◦ α4(V (xk,wk)) > σ4(||w||).

From the inequality (7.29), one has

ρ(α3(|xk|) + ζ(|wk|)) > σ4(||w||).

On the other hand, (id− ρ) is a K∞-function, hence

id(s) > ρ(s), ∀s > 0
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then

α3(|xk|) + ζ(||w||) > α3(|xk|) + ζ(|wk|)

> ρ(α3(|xk|) + ζ(|wk|))

> σ4(||w||) = ζ(||w||) + σ2(||w||) + σ3(||w||)

for all xk ∈ Ω \Θw, and all wk ∈ W, which, in turn, implies that

V (f̃(xk,wk),wk+1)− V (xk,wk) ≤ −α3(|xk|) + σ2(||w||) + σ3(||w||)

< 0 (7.31)

for all xk ∈ Ω \ Θw, and all wk,wk+1 ∈ W. Moreover, in view of (7.14),

there exists c̄ > 0 such that for all x1 ∈ Ξ\Ω, there exists x2 ∈ Ω\Θw such

that α3(|x2|) ≤ α3(|x1|)− c̄. Then from (7.31) it follows that

−α3(|x1|) + c̄ ≤ −α3(|x2|) < −σ2(||w||)− σ3(||w||),

for all x1 ∈ Ξ \ Ω, and all x2 ∈ Ω \Θw. Then

V (f̃(xk,wk),wk+1)− V (xk,wk) ≤ −α3(|xk|) + σ2(||w||) + σ3(||w||)

< −c̄

for all xk ∈ Ω\Θw, and all wk,wk+1 ∈ W. Hence, there exists T1 such that

x(T1, x̄, w) ∈ Ω.

Therefore, starting from Ξ, the state will reach the region Ω in a �nite time.

If in particular x(T1, x̄, w) ∈ Θw, the region Θw is achieved in a �nite time.

Since Θw is a RPI set, it is true that limk→∞ |x(k, x̄, w)|Θw = 0. Otherwise,

if x(T1, x̄, w) /∈ Θw, ρ ◦ α4(V (xk,wk)) > σ4(||w||); moreover, from (7.30)
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one has

V (f̃(xk,wk),wk+1)− V (xk,wk) ≤ −α4(V (xk,wk)) + σ4(||w||)

= −(id− ρ) ◦ α4(V (xk,wk))

−ρ ◦ α4(V (xk,wk)) + σ4(||w||)

≤ −(id− ρ) ◦ α4(V (xk,wk))

≤ −(id− ρ) ◦ α4 ◦ α1(|xk|)

for all xk ∈ Ω \Θw, and all wk,wk+1 ∈ W, where the last step is obtained

using (7.11). Then, ∀ε′ > 0, ∃T2(ε′) ≥ T1 such that

V (xT2 ,wT2) ≤ ε′ + b(||w||) . (7.32)

Therefore, starting from Ξ, the state will arrive close to Θw in a �nite time

and in Θw asymptotically. Hence limk→∞ |x(k, x̄, w)|Θw = 0.

Step 3: Finally, it is shown that system (7.9) is regionally ISS in Ξ.

Given e ∈ IR≥0, let R(e) , {x : V (x,w) ≤ e, ∀w ∈ W}. Let Ψ , {x :

V (x,w) ≤ ē = maxR(e)⊆Ω e, ∀w ∈ W}. It is clear that Ψ ⊇ Θw and that Ψ

is a RPI set. Since the upper bound of V (x,w) is known in Ψ ⊆ Ω then,

using the same steps of the proof of Lemma 3.5 in [Jiang & Wang 2001],

that also hold for discontinuous systems, it is possible to show that there

exist a KL-function β̂ and a K-function γ̂ such that

V (xk,wk) ≤ max{β̂(V (xt,wt), k − t), γ̂(||w||)}, ∀k ≥ t

for all xt ∈ Υ, all w ∈MW , where γ̂ = α−1
4 ◦ ρ−1 ◦ σ4. Hence

α1(|xk|) ≤ max{β̂(α2(|xt|) + σ1(|wt|), k − t), γ̂(||w||)},

≤ max{β̂(2α2(|xt|), k − t) + β̂(2σ1(|wt|), k − t), γ̂(||w||)},
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for all k ≥ t, all xt ∈ Υ, and all w ∈ MW . The last step is obtained

considering that β̂(r + s, t) ≤ β̂(2r, t) + β̂(2s, t) (see [Limon et al. 2006a]).

Then

|xt| ≤ max{β̂1(α2(|xt|), k − t) + β̂1(σ1(|wt|), k − t), γ̂1(||w||)}

≤ β̂1(α2(|xt|), k − t) + β̂1(σ1(|wt|), k − t) + γ̂1(||w||)

≤ β̂1(α2(|xt|), k − t) + β̂1(σ1(||w||), k − t) + γ̂1(||w||)

≤ β̂2(|xt|, k − t) + γ̂2(||w||), ∀k ≥ t (7.33)

for all xt ∈ Υ, and all w ∈ MW , where β̂1(s, t) , α−1
1 ◦ β1(2s, t) and

β̂2(s, t) , β̂1(α2(s), t) are KL-functions while γ̂1(s) , α−1
1 ◦γ̂(s) and γ̂2(s) ,

β̂1(σ1(||w||), 0) + γ̂1(||w||) are K-functions. So, by (7.33) the system (7.9)

is ISS in Υ. By Lemma 2.1, the regional ISS property in Υ is equivalent to

UAG in Υ and LS. Using the fact that Υ is achieved in a �nite time, UAG

in Υ implies UAG in Ξ. Then UAG in Ξ and LS imply ISS in Ξ.

�

Proof of Theorem 7.2: First, by Assumption 7.4, for any xit ∈ Xif ,

the sequence

ũi[t,t+Nic−1] , col [κif (xit),κif (xit+1), . . . ,κif (xit+Nic−1)]

is an admissible control sequence for the FHOCP. Then, considering

also Assumption 7.7, XMPC
i ⊇ Xiκif ⊇ Xif . By Theorem 7.1, if sys-

tem admits an ISS-Lyapunov function in XMPC
i , then it is ISS in XMPC

i .

In this respect, in the following it will be shown that Vi(xit ,wit) ,

Ji(xit ,wit , uoi[t,t+Nic−1],Nic,Nip) is an ISS-Lyapunov function in XMPC
i .
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Moreover, in view of Assumptions 7.5-7.7 and point 5 of Assumption 7.4

Vi(xit ,wit) ≤ Ji(xit ,wit , ũi[t,t+Nic−1],Nic,Nip)

≤
t+Nip−1∑
k=t

[Lli |xik |+ Lliu |κif (xik) |+ Lqi |xik |+ Lqiw |wik |] + βVif (|xit+Nip |)

≤
t+Nip−1∑
k=t

[
(Lli + LliuLκif + Lqi)|xik |+ Lqiw |wik |

]
+ βVif (|xit+Nip |)

so that in view of point 3 of Assumption 7.4 and owing to (7.5), one has

Vi(xit ,wit) ≤
t+Nip−1∑
k=t

[
(Lli + LliuLκif + Lqi)(Lfic)k−t|xit |+ Lqiw(αwi)

k−t|wit |
]

+βVif (Lfic)Nip |xit |)

≤ (Lli + LliuLκif + Lqi)
(Lfic)Nip − 1
Lfic − 1

|xit |

+Lqiw
(αwi)

Nip − 1
αwi − 1

|wit |+ βVif ((Lfic)Nip |xit |)

Hence there exist two K∞-functions αi2 and σi1 such that the following

upper bound is veri�ed:

Vi(xit ,wit) ≤ αi2(|xit |) + σi1(|wit |), ∀xit ∈ Xiκif , ∀wit ∈ Wi (7.34)

The lower bound on Vi(xit ,wit) is easily obtained using Assumption 7.5:

Vi(xit ,wit) ≥ ri(|xit |), ∀xit ∈ Xi,∀wit ∈ Wi (7.35)

Now, in view of Assumption 7.4, it turns out that

ūi[t+1,t+Nic] , col
[
uoi[t+1,t+Nic−1],κif (xit+Nic )

]
(7.36)

is an admissible (in general, suboptimal) control sequence for the FHOCP
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at time t+ 1 with cost

Ji(xit+1 ,wit+1 , ūi[t+1,t+Nic],Nic,Nip)

= Vi(xit ,wit)− li(xit ,uoit)− qi(xit ,wit) +
t+Nip−1∑
k=t+1

[li(xik , ūik)+

+qi(xik ,Ak−(t+1)
wi wit+1)− li(xik ,uoik)− qi(xik ,Ak−twi wit)

]
+li(xit+Nip ,κif (xit+Nip )) + qi(xit+Nip ,ANip−1

wi wit+1)

+Vif (fi(xit+Nip ,κif (xit+Nip )))− Vif (xit+Nip )

Noting that, using Assumption 7.6

qi(xik ,Ak−(t+1)
wi wit+1)− qi(xik ,Ak−twi wit)

≤
∣∣∣qi(xik ,Ak−(t+1)

wi wit+1)− qi(xik ,Ak−twi wit)
∣∣∣

≤ Lqwi
∣∣∣Ak−(t+1)

wi wit+1 −Ak−twi wit

∣∣∣
= Lqwi (αwi)

k−(t+1)
∣∣wit+1 −Awiwit

∣∣
= Lqwi (αwi)

k−(t+1) [∣∣wit+1

∣∣+ αwi |wit |
]

and by using point 6 of Assumption 7.4, one obtains

Ji(xit+1 ,wit+1 , ūi[t+1,t+Nic],Nic,Nip)

≤ Vi(xit ,wit)− li(xit ,uot )− qi(xit ,wit) + ψi(| (Awi)
Nip−1

wit |)

+
t+Nip−1∑
k=t+1

{
Lqwi (αwi)

k−(t+1) [∣∣wit+1

∣∣+ αwi |wit |
]}

≤ Vi(xit ,wit)− li(xit ,uot )− qi(xit ,wit) + σi2(|wit |) + σi3(|wit+1 |)

where σi2(|wit |) , αwiLqiw
(αwi)

Nip − 1
αwi − 1

|wit |+ ψi((αwi)
Nip−1|wit |) and

σi3(|wit+1 |) , Lqiw
(αwi)

Nip − 1
αwi − 1

|wit+1 | are K∞-functions.
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Now, from inequality

Vi(xit+1 ,wit+1) ≤ Ji(xit+1 ,wit+1 , ūi[t+1,t+Nic],Nic,Nip)

and by Assumption 7.5, it follows that

Vi(xit+1 ,wit+1)−Vi(xit ,wit) ≤ −ri(|xit |) + σi2(|wit |) + σi3(|wit+1 |) (7.37)

for all xit ∈ Xi, and all wit ,wit+1 ∈ Wi. Finally, in view of the admissible

control sequence (7.36), it follows that XMPC
i is a RPIA set for the closed

loop (7.8). Therefore, by (7.34), (7.35), (7.37) and Assumption 7.8, the

optimal cost Ji(xit ,wit , uoi[t,t+Nic−1],Nic,Nip) is an ISS-Lyapunov function

for the closed-loop system (7.8) in XMPC
i and hence the closed-loop system

is ISS in XMPC
i . �

Proof of Lemma 7.1: Owing to the smoothness of κif (xi) and the

fact that it is a stabilizing control law and recalling that 0 ∈ Xi , 0 ∈

Ui , it follows that there exists Ῡi ∈ (0,∞) such that points 1, 2, and

3 of Assumption 7.4 are satis�ed for x>i Πixi ≤ Ῡi. point 5 is satis�ed

with αVif (|xi |) = λmin(Πi) |xi|2, and βVif (|xi|) = λmax(Πi)|xi|2, where

λmin(Πi) and λmax(Πi) denote the minimum and the maximum eigenvalues

of Πi , respectively. In order to prove point 6, letting

Φi(xi) , fi(xi,Kixi)−Aiclxi

the inequality

fi(xi,Kixi)
>

Πifi(xi,Kixi)− x>i Πixi ≤ −x>i
(
Qi +K>i RiKi

)
xi

−qi(xi,wi) + ψi (|wi|)

(7.38)
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is equivalent to

2Φi(xi)
>

ΠiAiclxi + Φi(xi)
>

ΠiΦi(xi) + x
>
A>iclΠiAiclxi − x

>
i Πixi

≤ −x>i
(
Qi +K>i RiKi

)
xi − qi(xi,wi) + ψi (|wi|) (7.39)

Indeed, from (7.17) it is easy to show that inequality (7.39) is equivalent to

2Φi(xi)>ΠiA
>
icl
xi + Φi(xi)>ΠiΦi(xi) (7.40)

≤ x>i Q̃ixi − x>i
(
Qi +K>i RiKi

)
xi − qi(xi,wi) + ψi (|wi|)

Now, de�ne Lri , sup
xi∈Bri

|Φi(xi)| / |xi| , where Bri , {xi : |xi| ≤ r} (Once

chosen r, Lri does exist and takes on a �nite value because fi ∈ C2) .

Moreover by the assumption on qi(xi,wi) and the de�nition of Q̃ it follows

that

x>i Q̃ixi − x>i
(
Qi +K>i RiKi

)
xi − qi(xi,wi) + ψi (|wi|)

≥ x>i Q̃ixi − x>i
(
Qi +K>i RiKi

)
xi − x>i S̃ix>i ≥ γi|xi|2,

with γi > 0. Then, ∀xi ∈ Bri , (7.40) is satis�ed if

γi|xi|2 ≥ {2Lri |Πi||Aicl |+ Lri
2|Πi|}|xi|2 (7.41)

Hence, since Lri → 0 as r → 0 , there exists Υi ∈
(
0, Ῡi

)
such that

inequality (7.41) holds ∀xi ∈ Xif , which implies that inequality (7.38) holds

as well. Finally, there exists N̄p such that for all Np ≥ N̄p, ∀xi /∈ Xif ,∀wi ∈
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Wi

Vfi(fi(xi,κif (xi)))− Vif (xi) ≤ −x>i
(
Qi +K>i RiKi

)
xi

−qi(xi, w̃i) + ψi (|w̃i|)

< 0

where w̃i = (Awi)
Nip−1wi so that point 4 of Assumption 7.4 is satis�ed,

too, thus ending the proof. �

Proof of Lemma 7.2: Consider the ISS-Lyapunov function candidate

V (xt,wt) ,
M∑
i=1

Vi(xit ,wit)

for system (7.18).2 From (7.34) and (7.35), it follows that

M∑
i=1

ri(|xit |) ≤ V (xt,wt) ≤
M∑
i=1

αi2(|xit |) +
M∑
i=1

σi1(|wit |)

Clearly |xit | ≤ |xt| and |wit | ≤ |wt|, ∀i = 1, . . . ,M and thus

V (xt,wt) ≤
M∑
i=1

αi2(|xit |) +
M∑
i=1

σi1(|wit |)

≤
M∑
i=1

αi2(|xt|) +
M∑
i=1

σi1(|wt|)

≤ α2(|xt|) + σ1(|wt|) ,

where α2(|xt|) ,
M∑
i=1

αi2(|xt|) and σ1(|wt|) ,
∑M

i=1 σi1(|wt|).

2It is worth noting that, instead of the above de�nition of V , a weighted sum of
Lyapunov functions could be used along the reasoning provided in [Khalil 2001] in the
framework of composite systems.
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Moreover
M∑
i=1

|xit | ≤
M∑
i=1

|xt| = M |xt|. Then |xt| ≥
1
M

M∑
i=1

|xit | and

|xt| ≤
M∑
i=1

|xit |. Now, recall that, for any K function γ, one has

γ

(
M∑
i=1

ai

)
≤

M∑
i=1

γ(Mai) where ai > 0, i = 1, . . . ,M are arbitrarily chosen

positive scalars). Therefore, considering the K function ri , for a generic

i ∈ {1, . . . ,M} , one has

ri(|xt|) ≤ ri

(
M∑
i=1

|xit |

)
≤

M∑
i=1

ri(M |xit |) ≤
M∑
i=1

ri(M |xt|)

and hence

ri (|xt|/M) ≤ ri

(
1
M

M∑
i=1

|xit |

)
≤

M∑
i=1

ri(|xit |) .

Therefore, letting r (|xt|) , ri (|xt|/M) for an arbitrarily chosen index i, one

has

r(|xt|) ≤ V (xt,wt), ∀xt ∈ X , ∀wt ∈ W (7.42)

V (xt,wt) ≤ α2(|xt|) + σ1(|wt|), ∀xt ∈ X κf , ∀wt ∈ W (7.43)

From (7.37) it follows that

∆V ,
M∑
i=1

Vi(xit+1 ,wit+1)−
M∑
i=1

Vi(xit ,wit)

≤ −
M∑
i=1

ri(|xit |) +
M∑
i=1

σi2(|wit |) +
M∑
i=1

σi3(|wit+1 |)
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Moreover, note that

−
M∑
i=1

ri(|xit |) ≤ −ri (|xt|/M)

and
M∑
i=1

σi2(|wit |) ≤
M∑
i=1

σi2(|wt|)

and
M∑
i=1

σi3(|wit+1 |) ≤
M∑
i=1

σi3(|wt+1|)

Then, letting

σ2(|wt|) ,
M∑
i=1

σi2(|wit |)

and

σ3(|wt+1|) ,
M∑
i=1

σi3(|wit+1 |)

it follows that

∆V ≤ −r (|xt|) + σ2(|wt|) + σ3(|wt+1|) (7.44)

for all xt ∈ X , and all w ∈ MW . Therefore, by (7.42), (7.43) and (7.44),

V (xt,wt) is an ISS-Lyapunov function in XMPC for system (7.18) and hence

this system is ISS in XMPC .

As far as system (7.19) is concerned (remember that this system de-

scribes the e�ects of the time�delays in the information exchange variables),

the proof that it is ISS is obviously trivial since (7.19) is an asymptotically

stable discrete-time linear system. Let only very brie�y sketch some parts

of the proof just for the purpose of introducing a few quantities that will

be used subsequently. Following [Jiang & Wang 2001], a candidate ISS-
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Lyapunov function for system (7.19) is VD(zt) , z>t Pzt , where P is the

positive de�nite solution of the Lyapunov equation A>PA− P = −Q for a

given symmetric positive-de�nite matrix Q. It can be immediately shown

that

α1D(|zt|) ≤ VD(zt) ≤ α2D(|zt|) (7.45)

where α1D(s) , λmin(P )s2 and α2D(s) , λmax(P )s2 (λmin(P ) and

λmax(P ) denote the minimum and maximum eigenvalues of P, respectively).

Moreover, de�ning ∆VD , VD(zt+1)−VD(zt), it is straightforward to obtain

∆VD ≤ −α3D(|zt|) + σD(|xt|) (7.46)

where α3D(s) , 1
2λmin(Q)s2 and σD(s) , λmax(2B>PAA>PB

λmin(Q) +B>PB)s2.

�

Proof of Theorem 7.3: If γ1 ◦ γ2(s) < s, from (7.22) and (7.23) it

follows that

V (xk,wk) ≤ ||V (x,w)[k]||

≤ max{β̂(V (xt,wt), 0), γ1(β̂D(VD(zt), 0), γ1 ◦ γ2(||V (x,w)[k]||)}

≤ max{β̂(V (xt,wt), 0), γ1(β̂D(VD(zt), 0)}

for all xt ∈ Ψ, and all k ∈ Z≥0, k ≥ t and

VD(zk) ≤ ||VD(z)[k]||

≤ max{β̂D(VD(zt), 0), γ2(β̂(V (xt,wt), 0)), γ2 ◦ γ1(||VD(z)[k]||)}

≤ max{β̂D(VD(zt), 0), γ2(β̂(V (xt,wt), 0))}

for all xt ∈ Ψ, and all k ∈ Z≥0, k ≥ t and hence V (xk,wk), VD(zk) are

bounded by initial condition. By Lemma 3.13 in [Jiang & Wang 2001],
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an asymptotic gain from VD(zk) to V (xk,wk) is given by γ1 whereas an

asymptotic gain from V (xk,wk) to VD(zk) is given by γ2. Hence:

lim
k→∞

V (xk,wk) ≤ lim
k→∞

[α−1
4 ◦ ρ

−1 ◦ σ4(VD(zk))]

= lim
k→∞

γ1(VD(zk))

and

lim
k→∞

VD(zk) ≤ lim
k→∞

[α−1
4D ◦ ρ

−1 ◦ σ4D(V (xk,wk))]

= lim
k→∞

γ2(V (xk,wk))

Hence

lim
k→∞

V (xk,wk) ≤ lim
k→∞

γ1(VD(zk))

≤ lim
k→∞

γ1 ◦ γ2(V (xk,wk)) (7.47)

Again, the assumption that γ1 ◦ γ2(s) < s implies that

lim
k→∞

V (xk,wk) = lim
k→∞

VD(zk) = 0

Thus, the system is 0-AS in XMPC × IRnz . �





Chapter 8

MPC of Glycaemia in Type 1

Diabetic Patients

8.1 Introduction

Control systems theory has been extending into many �elds and medicine is

not an exception (see for example [Palerm 2003] and the references therein),

although the progress has been slow in some cases due to particular chal-

lenges encountered by the inherent complexity of biological systems. Bi-

ological systems are highly non-linear and there is a large inter-individual

variability. Furthermore, the human body is a system intrinsically time-

variant.

A typical medical application is glycemic control for the type 1 (insulin-

dependent) diabetic patient. Diabetes (medically known as diabetes melli-

tus) is the name given to disorders in which the body has trouble regulating

its blood glucose, or blood sugar, levels. There are two major types of di-

abetes: type 1 diabetes and type 2 diabetes. Type 1 diabetes, also called

juvenile diabetes or insulin-dependent diabetes, occurs when the body's im-

mune system attacks and destroys beta cells of the pancreas. Beta cells nor-

mally produce insulin, a hormone that regulates, together with glucagon (an

other hormone produced by alpha cells of the pancreas), the blood glucose
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concentration in the body, i.e. while insulin lowers it, glucagon increases it.

The food intake in the body results in an increase in the glucose concentra-

tion. Insulin permits most of the body's cells to take up glucose from the

blood and use it as energy. When the beta cells are destroyed, no insulin

can be produced, and the glucose stays in the blood instead, where it can

cause serious damage to all the organ systems of the body. For this reason,

people with type 1 diabetes must take insulin in order to stay alive. This

means undergoing multiple injections daily (normally coinciding with the

meal times), or having insulin delivered through an insulin pump, and test-

ing their blood sugar by pricking their �ngers for blood six or more times

a day [JDRF Website ]. This method is approximate, merely an open-loop

control with intermittently monitored glucose levels resulting in intermit-

tently administered insulin doses that are manually administered by a pa-

tient using a written algorithm. Poor glycemic control leads to severe health

complications, including blindness and kidney failure in the long term, and

loss of consciousness and coma in the short term when hypoglycemic.

The currently available intensive therapy can be contrasted to glucose

management by a closed-loop system, which for control of blood glucose

in patients with diabetes is known as an arti�cial pancreas. In this case,

glucose levels are monitored continuously, which results in continuously in-

fused insulin dosed according to a computerized algorithm without a need

for patient input. Compared to currently applied intensive therapy, an ar-

ti�cial pancreas can potentially result in: 1) less glycemic variability; 2)

less hypoglycemia; 3) less pain from pricking the skin to check the blood

glucose and deliver insulin boluses; and 4) less overall patient e�ort. No ar-

ti�cial pancreas system is currently approved; however, devices that could

become components of such a system are now becoming commercially avail-

able [Klono� 2007].
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The World Health Organization (WHO) estimates that in 2006 more

than 180 million people worldwide have diabetes. This number is likely to

more than double by 2030 [WHO Website ], a substantial �gure to warrant

relevant research in this area.

8.2 Arti�cial Pancreas

Type 1 diabetes (T1DM) is caused by an absolute de�ciency of insulin se-

cretion. It includes cases primarily due to β cell destruction, and who are

prone to ketoacidosis. These cases are those attributable to an autoimmune

process, as well as those with β cell destruction for which no pathogenesis

is known (i.e. idiopathic). People with this type of Diabetes Mellitus fully

depend on exogenous insulin. It is this speci�c group which would ben-

e�t the most from closed-loop glucose regulation. Closed-loop control for

regulating glycemia requires three components: glucose measurements, the

control algorithm and a way to administer the insulin (see [Palerm 2003]

for details). The administration of insulin, and type of insulin, is some-

thing that is relevant even with the current modalities of treatment. As

such, the rest of this section covers the various options. Glucose sensing

is dealt in the modeling section below. The two main modalities currently

in clinical use are multiple daily injections (MDI) and continuous subcuta-

neous insulin infusion (CSII) with an externally worn infusion pump that

operates in open-loop. The type of insulin used also varies, as there is the

regular human insulin plus other variations that have been engineered to

have speci�c absorption properties; some are quickly absorbed, while others

are slow acting. This allows for a single shot to have an e�ect over several

hours, in order to regulate fasting levels, or to quickly bring insulin levels

up to coincide with a meal. Research towards the realization of an arti�cial
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pancreas is active since 1970. The �rst prototype commercialized was the

so-called Biostatorr. It adopted the intravenous (iv) route both for glucose

monitoring and insulin infusion: an early version used a glucose infusion to

counter-regulate insulin action and prevent hypoglycaemia. The control al-

gorithm, based on Albisser et al. [Albisser et al. 1974], calculates current

insulin infusion as a sigmoidal function of actual blood glucose level, mim-

icking β cell response observed in in-vitro experiments. The iv-iv approach

is highly invasive, so it can't be used on a daily basis. However, this is

the best approach in terms of performance because it minimizes the delay

between insulin infusion and action. Recently new fast insulin analogues

(e.g. Lispro insulin [Homko et al. 2003]) and less invasive glucose sensors

have been introduced. These technological improvements have made more

feasible the adoption of a subcutaneous route (sc-sc); however, there are

still di�culties that justi�es the development of speci�c and sophisticated

control algorithms. Main issues are delays and the presence of important

disturbances on glucose level like meals and physical activity. Furthermore,

control can only act on insulin infusion, without counter-regulation: that

increases the risk of hypoglycaemia. There is also the need of controller per-

sonalization: in fact, there is a large inter-individual and intra-individual

variability in diabetic patients. Many solutions have been proposed in lit-

erature for this control problem, which are based on di�erent approaches.

PID (Proportional-Integral-Derivative) strategy is certainly one of the most

simple and follow, partly as a result of studies that show the similarity with

the β cell functionality [Steil et al. 2004]. Steil et al. [Steil et al. 2006]

have proposed a controller based on PID with time-variant parameters to

manage the di�erent response between day and night. Marchetti et al.

[Marchetti et al. 2006] use a PID switching strategy at meals with an al-

gorithm that generates a time-variant setpoint (reference governor). Some
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authors have shown that integral action is fully responsible for the ad-

ministration of excessive insulin in the postprandial period, with the re-

sult of generating numerous hypoglycaemia. For example, Shimoda et al.

[Shimoda et al. 1997] have used an algorithm PD (Proportional-Derivative)

in tests on diabetics. This work has also shown that the use of a rapid in-

sulin analogue, known as Lispro, can obtain bene�ts comparable to those

using regular insulin via the intravenous route. A pure feedback control,

such as PID, is able to react against a disturbance only when it is manifested

as a variation of the measured variable. In the case sc-sc, the presence of

delays results in unsatisfactory performance. This has led to the study of

solutions based on more sophisticated approaches, such as predictive control

or MPC, which had already been applied successfully in other biomedical

issues such as regulation of blood pressure [Gopinath et al. 1995] and of

anesthesia [Linkens & Mahfouf 1994]. The predictive control uses a model

to predict the dynamic of the system within a certain time and calculates

the input through the optimization of a �tness function in that time in-

terval. The main bene�t of this strategy is to predict the evolution of

blood glucose and, therefore, to be able to act on time by avoiding hypogly-

caemic and hyperglycaemic events. This ability is very useful especially if

the disturbances trend is known in advance, even if only partially. Another

advantage is to explicitly consider the presence of constraints on the inputs

and outputs. Parker et al. [Parker et al. 1999] use a linear predictive con-

trol, the simplest of that class, based on a model of the system identi�ed

by the step response. Hovorka et al. [Hovorka et al. 2004] have proposed a

regulator that uses a nonlinear and time-variant model for the prediction,

whose parameters are adjusted over time using a Bayesian estimate. This

technique has the disadvantage compared to linear MPC, not to lead to a

closed form for the control law: so the optimization problem must be solved
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on-line and can be very computationally expensive. Another approach that

allows to solve the problem of constrained optimization o�-line needs the

use of a parametric programming algorithm (Dua et al.[Dua et al. 2006]).

8.2.1 Arti�cial Pancreas Project

In 2006, the Juvenile Diabetes Research Foundation (JDRF

[JDRF Website ]), the largest nonpro�t foundation in the world who

work for type 1 diabetics, has launched a project to accelerate the develop-

ment and adoption of a device for the closed loop control of blood glucose.

The objective of the project is to make available on the market within

5 years (i.e. by 2011) arti�cial pancreas technology and, subsequently,

to promote its use on a large scale. To achieve these goals, JDRF has

launched a campaign to expedite the approval of this device by the U.S.

regulatory institutions (FDA, Food and Drug Administration) and to

obtain coverage by health insurance. JDRF has created a consortium (the

Arti�cial Pancreas Consortium) of British and Americans research centers

that currently includes the University of Cambridge, the University of

Colorado, Stanford, Yale, the Sansum research center and the University of

Virginia. The University of Pavia collaborates in this project joined with

the University of Virginia and the University of Padova (see Figure 8.1).

In this chapter, the feedback control of glucose concentration in Type-

1 diabetic patients using s.c. insulin delivery and s.c. continuous glucose

monitoring is considered. In particular, linear and nonlinear MPC controller

synthesized on a recently developed nonlinear in-silico model of glucose

metabolism (see [Magni et al. 2007b]) are proposed. The algorithms are

tested on virtual patient populations and the performances are evaluated

by using particular metrics described later on.
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Figure 8.1: JDRF Consortium

The Food and Drug Administration (FDA) accepted the in-silico ex-

periments, based on a metabolic simulator and virtual patient populations,

as substitutes of animal tests. Currently, experiments using the developed

linear model predictive controller are in progress at the Charlottesville and

Padova hospitals.

8.3 Glucose Regulation

There are several topics in physiology that are related to an understand-

ing of glucose regulation and the particulars that need to be considered in

modeling and control. Three categories need to be considered: the gas-

trointestinal (GI) system as related to digestion and nutrient absorption,

the hepatic function in metabolism and the endocrine pancreas with its se-
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cretion of insulin and glucagon as the main regulators of blood glucose level

(see [Palerm 2003] for details).

The root source of glucose for the body is the food. As ingested, food

cannot be absorbed; it thus requires both mechanical and chemical diges-

tion. It is the job of the GI system to do this processing, and then to

facilitate the absorption of nutrients. The GI tract is composed of hollow

organs connected in series; these have sphincters at key locations in order

to regulate �ow. Associated with the GI system are organs and glands that

secrete various substances into the hollow organs.

Carbohydrates, are present in food as disaccharides and monosaccha-

rides (including glucose); since only monosaccharides are absorbed, carbo-

hydrates require chemical digestion as well. Digestion duration varies with

the composition of the meal, but usually it lasts about two hours. At end

glucose is absorbed in the intestine, entering bloodstream.

In carbohydrate metabolism and the regulation of blood glucose levels

the liver plays a central role. It receives blood from the portal circulation

(coming from the stomach, small and large intestines, pancreas and spleen).

Thus most nutrients (lipids are absorbed into the lymphatic circulation) and

pancreatic hormones pass through the liver before continuing on.

The liver stores several substances, including carbohydrates. Depending

on metabolic requirements these are either sequestered or released into the

blood stream. Among these is glucose, which it can also synthesize. Given

its central position, the liver plays a critical role in energy metabolism.

The two hormones with the largest role in glucose regulation are insulin

and glucagon. Between meals, insulin levels are low and glucagon levels are

high; given these conditions, the liver serves as a source of glucose. It does

this by gluconeogenesis ( synthesis of glucose from amino acids and lactate)



8.3. Glucose Regulation 183
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Figure 8.2: Structure and functionality of islet of Langerhans

and glycogenolysis (the breakdown of glycogen stores into glucose). Other

monosaccharides are largely converted into glucose. In the postprandial

period, insulin levels are higher. The liver then takes up glucose from the

portal circulation; it either stores it by synthesizing glycogen, or breaks it

down to pyruvate (glycolysis). Carbohydrates not oxidized nor stored as

glycogen are metabolized to fat. Insulin and glucagon are secreted by the

pancreas, in the islets of Langerhans, the endocrine glands.

Each islet contains four types of cells (see Figure 8.2). β cells (the most

numerous) secrete insulin, proinsulin, C peptide and amylin. α cells se-

crete glucagon, δ cells secrete somatostatin and F cells secrete pancreatic

polypeptide. These cells are in�uenced by external links (neural, cell-cell

and humoral), as well as by other cells in the islet. Insulin's actions serve to

replenish fuel reserves in muscle, liver and adipose tissue. During fasting,

β cells secrete small amounts of insulin. With low insulin levels, lipids are
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mobilized from adipose tissue, and amino acids are mobilized from protein

stores in muscle and other tissues. These lipids and amino acids are pre-

cursors for hepatic ketogenesys and gluconeogenesis, and are also oxidized

as fuel.

Insulin secretion increases with feeding. Elevated levels of insulin reduce

lipid and amino acid mobilization within fuel stores, which are also replen-

ished by the enhanced uptake of carbohydrates, lipids and amino acids by

insulin-sensitive target tissues. This action maintains plasma glucose within

tight limits, assuring a constant supply of fuel for the central nervous sys-

tem (CNS). Plasma glucose below 2-3 mM/l (36-54 mg/dl), hypoglycemia,

results in confusion and seizures, and if not resolved, coma and eventually

death. Severe hyperglycemia (plasma glucose above 30-40 mM) results in

osmotic diuresis, leading to severe dehydration, hypertension and vascu-

lar collapse. Insulin synthesis and secretion in the β cells is stimulated by

exposure to glucose, which is its main regulator.

Glucagon promotes hepatic glucose production; it does so by activating

glycogenolysis and inhibiting glycogen synthesis and glycolysis. In the liver,

glucagon stimulates fat oxidation as a source of energy. If the needs for

energy of the liver are exceeded, fatty acids are only partially oxidized,

forming ketone bodies. These keto acids can then be used by other tissues

as fuel (besides glucose, keto acids are the only other energy source the

brain will utilize). This is particularly important during fasting. Other

hormones have minor e�ects, for example, somatostatin, secreted by δ cells

in the pancreas and the hypothalamus, inhibits the secretion of several other

hormones, including insulin and glucagon. It is still unclear if it has any

paracrine e�ects on α or β cells.
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8.4 Models for the Glucose-Insulin System

Mathematical models for the glucose-insulin system could be very useful

for the research about automatic glycemic control. In fact, they permit the

design and validation of control algorithms reducing the number of in-vivo

experiments required.

Di�erent models have been proposed in literature ranging

in complexity from simple linear models like Ackerman et al.

[Gatewood et al. 1968], via the classical minimal model of Bergmann

et al. [Bergman & Urquhart 1971], to the non-linear models and inclu-

sive models of Hovorka et al. [Hovorka et al. 2004] and Sorensen et al.

[Sorensen 1985].

Recently, however, thanks to new types of OGTT1 or Mixed Meal ex-

periments using radioactive tracers and new techniques such as NMR2 and

PET3, quantitative data have been obtained on physiological variables never

seen before, such as the liver production or glucose muscular utilization.

Thanks to this new database was possible to develop new models more

complex and detailed than previous: in particular, the model developed by

Dalla Man et al. [Dalla Man et al. 2007b] from the University of Padova

(Italy).

8.4.1 Dalla Man et al. model for the diabetic patient

The development of this model was made possible thanks to a database

of 204 healthy subjects, who was given a mixed meal containing glucose

labeled with a radioactive tracer. At the same time, two tracer are ad-

1Oral Glucose Tolerance Test.
2Nuclear Magnetic Resonance.
3Positron Emission Tomography.
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ministered intravenously: this triple-tracer technique [Basu et al. 2003] has

enabled the �ow measurement of glucose in the body. Without the use

of this technique it is only possible to measure blood glucose levels and

insulinemia, without being able to distinguish, for example, between glu-

cose produced endogenously by the liver and glucose introduced with the

meal. So it was possible to obtain direct measurements of the rate of ap-

pearance Ra, namely the glucose �ow entering the bloodstream from the

gastro-intestinal tract, endogenous glucose production EGP , renal extrac-

tion E and glucose utilization U . These new informations have enabled a

qualitative leap in modeling, with the possibility of splitting the system into

sub-units interconnected: for each unit is postulated a compartment model

whose parameters are estimated using the available measures of inputs and

outputs.

The model described in [Dalla Man et al. 2007b] refers to an healthy

person. Therefore, it was necessary to make some structural changes to the

model to re�ect the absence in patients with type 1 diabetes of endogenous

insulin production (see [Magni et al. 2007b]). The fundamental change con-

cerns the replacement of the subsystem of the pancreatic β-cell with a unit

that models the dynamics of a subcutaneous (sc) infusion of insulin.

The model, overall, may be seen as a MISO (Multi Input Single Output)

with two inputs, the glucose introduced with the meal and insulin adminis-

tered subcutaneously, and only one exit, the blood glucose. In the following

sections the functional units are described in details. For an overview of

interconnections between the units, see Figure 8.3.
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Figure 8.3: Interconnections between subsystems of Dalla Man et al. model
[Dalla Man et al. 2007b] changed to cope with type 1 diabetic patients as
described in [Magni et al. 2007b]
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Gastro-Intestinal subsystem

Gastro-Intestinal subsystem describes the glucose transfer coming from a

meal through the gastro-intestinal system. It consists of three compart-

ments (see Figure 8.4): two for the glucose in the stomach (solid Qsto1 and

liquid Qsto2 (mg)) and one for the glucose in the intestinal tract Qgut (mg).

The glucose �ow d(t) (mg/min) coming from the meal is the input of the �rst

compartment. The stomach digests the meal with grinding coe�cient kgri;

then the chyme enters the intestine with fractional coe�cient of transfer

kempt, that is a time-variant nonlinear function of total Qsto = Qsto1 +Qsto2

that will be later described; �nally glucose is absorbed and enters the blood-

stream. The rate of appearance Ra (mg/Kg/min) is a constant percentage

f (about 90%) of the total �ow leaving the intestine.

Q̇sto1(t) = −kgriQsto1(t) + d(t)

Q̇sto2(t) = −kempt(t,Qsto(t)) ·Qsto2(t) + kgriQsto1(t)

Q̇gut(t) = −kabsQgut(t) + kempt(t,Qsto(t)) ·Qsto2(t)

Qsto(t) = Qsto1(t) +Qsto2(t)

Ra(t) = f · kabs ·Qgut(t)/BW

(8.1)

In order to guarantee model identi�ability, kgri is �xed and equal to kmax.

Furthermore, f is considered constant (f = 0.9).

Coe�cient of gastric emptying kempt

The coe�cient of gastric emptying kempt (1/min) is a time-variant non-

linear function of Qsto

kempt(t,Qsto(t)) = kmax +
kmax − kmin

2
{tanh[α(Qsto(t)− b ·D(t))]

− tanh[β(Qsto(t)− d ·D(t))]}
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Figure 8.5: kempt(t,Qsto) function, where D is the total glucose quantity of
the last meal

where

α =
5

2D(t)(1− b)
, β =

5
2D(t)d

D(t) =
∫ tf

ti

d(t)dt

with ti and tf respectively start time and end time of the last meal, b,

d, kmax and kmin model parameters (see Figure 8.5). For details, see

[Dalla Man et al. 2006].

Glucose subsystem

Glucose subsystem model consists of two compartments (see Figure 8.6),

one for plasma glucose Gp (mg/Kg) and one for the glucose on tissue Gt

(mg/Kg). Glucose �ows (mg/Kg/min) entering the �rst compartment are

EGP coming from the liver and Ra coming from the gastro-intestinal tract.

As outputs there are insulin-dependent utilization Uid and independent Uii
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and the renal extraction E. Subsystem equations are


Ġp(t) = −k1Gp(t) + k2Gt(t) + EGP (t) +Ra(t)− Uii − E(t)

Ġt(t) = k1Gp(t)− k2Gt − Uid(t)

G(t) = Gp(t)/VG

(8.2)

where VG (dl/Kg) is the distribution volume of glucose, G (mg/dl) is the

glycemia. Insulin-independent utilization Uii, that occurs primarily in cen-

tral nervous system, in this model is considered constant and equal to 1

mg/Kg/min.

Basal steady state, i.e. constant glycemia Gb (mg/dl), is characterized

by the following equations − k1Gpb + k2Gtb + EGPb +Rab − Uii − Eb = 0

k1Gpb − k2Gtb − Uidb = 0
(8.3)

so, noting that at basal equilibrium Rab = 0,

EGPb = Uii + Uidb + Eb (8.4)

Renal Extraction E
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Renal extraction represents the glucose �ow which is eliminated by the

kidney, when glycemia exceeds a certain threshold ke2

E(t) = max(0, ke1 · (Gp(t)− ke2))

The parameter ke1 (1/min) represents renal glomerular �ltration rate.

At basal one has

Eb = max(0, ke1 · (Gpb − ke2)) (8.5)

Basal renal extraction is null in almost all patients.

Endogenous glucose production EGP

EGP comes from the liver, where a glucose reserve exists (glycogen).

EGP is inhibited by high levels of glucose and insulin

EGP (t) = max(0,EGPb − kp2(Gp(t)−Gpb)− kp3(Id(t)− Ib)) (8.6)

where kp2 and kp3 are model parameters and Id (pmol/l) is a delayed insulin

signal, coming from the following dynamic system İ1(t) = kiI(t)− kiI1(t)

İd(t) = kiI1(t)− kiId(t)
(8.7)

where I (pmol/l) is plasma insulin concentration or insulinemia and ki

(1/min) is a model parameter.

Insulin-dependent utilization Uid

It depends non-linearly from tissue glucose

Uid(t) = Vm(X(t))
Gt(t)

Km +Gt(t)
(8.8)
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where Vm (1/min) is a linear function of interstitial �uid insulin X (pmol/l)

Vm(X(t)) = Vm0 + VmxX(t)

which depends from insulinemia in the following way

Ẋ(t) = −p2UX(t) + p2U (I(t)− Ib) (8.9)

where p2U (1/min) is called rate of insulin action on peripheral glucose.

Considering basal steady state

Uidb = Vm0
Gtb

Km +Gtb
(8.10)

and

Gtb = (Uii − EGPb + k1Gpb + Eb)/k2

Vm0 = (EGPb − Uii − Eb) · (Km +Gtb)/Gtb
(8.11)

Insulin subsystem

Insulin �ow s, coming from the subcutaneous compartments, enters the

bloodstream and is degradated in the liver and in the periphery


İp(t) = −(m2 +m4)Ip(t) +m1Il(t) + s(t)

İl(t) = −(m1 +m3)Il(t) +m2Ip(t)

I(t) = Ip(t)/VI

(8.12)

where VI (l/Kg) is the distribution volume of insulin, m1, m2, m3 e m4

(1/min) are model parameters.
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m2, m3, m4 depend on m1 in the following way

m2 = 0.6 · CLins
HEb · VI ·BW

m3 = m1 ·
HEb

1−HEb

m4 = 0.4 · CLins
VI ·BW

(8.13)

where HEb (adimensional) is the basal hepatic insulin extraction, while

CLins (l/min) is the insulin clearance. HEb is considered constant and

equal to 0.6.

At basal one has 0 = −(m2 +m4)Ipb +m1Ilb + sb

0 = −(m1 +m3)Ilb +m2Ipb

(8.14)

so 
Ilb =

m2

m1 +m3
Ipb

sb = (m2 +m4)Ipb −m1Ilb

(8.15)
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Figure 8.7: Schema of insulin subsystem
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where Ipb = Ib · VI .

S.C. Insulin subsystem

Usually in diabetic patients, insulin is administered by subcutaneous injec-

tion. Insulin takes some time to reach the circulatory apparatus, unlike in

the healthy subject in which the pancreas secretes directly into the por-

tal vein. This delay is modeled here with a two compartments, S1 and S2

(pmol/Kg), which represent respectively polymeric and monomeric insulin

in the subcutaneous tissue
Ṡ1(t) = −(ka1 + kd)S1(t) + u(t)

Ṡ2(t) = kdS1(t)− ka2S2(t)

s(t) = ka1S1(t) + ka2S2(t)

(8.16)

where u(t) (pmol/Kg/min) represents injected insulin �ow, kd is called

degradation constant, ka1 and ka2 are absorption constants.

At basal one has 
0 = −(ka1 + kd)S1b + ub

0 = kdS1b − ka2S2b

sb = ka1S1b + ka2S2b

(8.17)

and solving the system 
S1b =

sb
kd + ka1

S2b =
kd
ka1

S1b

ub = sb

(8.18)

The quantity ub (pmol/min) represents insulin infusion to maintain diabetic

patient at basal steady state.
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Stato Description Basal Value Unit

x1 Qsto1 Solid glucose in stomach 0 mg

x2 Qsto2 Liquid glucose in stomach 0 mg

x3 Qgut Glucose in intestine 0 mg

x4 Gp Plasma glucose Gpb mg/Kg

x5 Gt Glucose in tissue Gtb mg/Kg

x6 I1 Delayed insulin signal Ib pmol/l

x7 Id Delayed insulin signal Ib pmol/l

x8 X Interstitial �uid insulin 0 pmol/l

x9 Il Liver insulin Ilb pmol/Kg

x10 Ip Plasma insulin Ipb pmol/Kg

x11 S1 S.c. polymeric insulin S1b pmol/Kg

x12 S2 S.c. monomeric insulin S2b pmol/Kg

x13 GM S.c. glucose Gb mg/dl

Table 8.1: State table for Dalla Man et al. model

S.C. Glucose subsystem

Subcutaneous glucose GM (mg/dl) is, at steady state, highly correlated

with plasma glucose; dynamically, instead, it follows the changes in plasma

glucose with some delay. This dynamic was modeled with a system of the

�rst order

ĠM (t) = −kscGM (t) + kscG(t) (8.19)

Model states and parameters

Final model consists of 13 states, reported in Table 8.1 with basal values.

Dalla Man et al. [Dalla Man et al. 2007b] model is uniquely de�ned by

25 independent parameters, and 5 constants reported in Table 8.2 and Table

8.3 respectively.
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Parameter Unit

BW Kg

kabs min−1

kmax min−1

kmin min−1

b adimensional

d adimensional

ka1 min−1

ka2 min−1

kd min−1

m1 min−1

CLins l/min

VI l/Kg

k1 min−1

k2 min−1

VG dl/Kg

EGPb mg/Kg/min

kp2 min−1

kp3 min−1

ki min−1

Ib pmol/l

Km mg/Kg

Vmx min−1

p2U min−1

ksc min−1

Gb mg/dl

Table 8.2: Parameter table for Dalla Man et al. model.

Constant Unit

f adimensional

Uii mg/Kg/min

HEb adimensional

ke1 min−1

ke2 mg/Kg

Table 8.3: Constant table for Dalla Man et al. model
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8.5 Metrics to asses control performance

In evaluating the performance of a control algorithm one has to remember

that its basic function is to mimic as best as possible the feature of the

β-cells, which is to maintain glucose levels between 80 and 120 mg/dl in the

face of disturbances such as meals or physical activity. A good algorithm

should be able to maintain blood sugar low enough, as this reduces the long-

term complications related to diabetes, but also must avoid even isolated

episodes of hypoglycemia. A metric has to take into account these features:

other metrics such as average blood sugar or measures related to it as HbA1c

are not very signi�cant.

Blood Glucose Index (BGI)

Blood Glucose Index is a metric proposed by Kovatchev et al.

[Kovatchev et al. 2005], to evaluate the clinical risk related to a particu-

lar glycemic value

BGI(·) = 10(g[lna(·)− b])2 (8.20)

where a, b and g are �xed constant.

In particular, these parameters are equal to

a = 1.44 b = 10.07 g = 0.75

The target G0, i.e. the value whose risk is zero, is

G0 = e
a√
b = 148.31 mg/dl

The BGI function is asymmetric, because hypoglycemia is considered
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Figure 8.8: Blood Glucose Index

more dangerous than hyperglycemia (see Figure 8.8).

Starting from the BGI, two synthetic indices for sequences of n mea-

surements of blood glucose can be de�ned

LBGI (Low BGI) measures hypoglycemic risk

LBGI =
10
n

n∑
i=1

rl2(Gi)

where rl(·) = min(0, g[lna(·)− lna(G0)])

HBGI (High BGI) measures hyperglycemic risk

HBGI =
10
n

n∑
i=1

rh2(Gi)

where rh(·) = max(0, g[lna(·)− lna(G0)]).
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Figure 8.9: Control Variability Grid Analysis with summary

Control Variability Grid Analysis (CVGA)

The Control Variability Grid Analysis (CVGA) is a graphical representation

of min/max glucose values in a population of patients either real or virtual.

The CVGA provides a simultaneous assessment of the quality of glycemic

regulation in all patients. As such it may play an important role in the

tuning of closed-loop glucose control algorithms and also in the comparison

of their performances. Assuming that for each subject a time series of mea-

sured Blood Glucose (BG) values over a speci�ed time period (e.g. 1 day) is

available, the CVGA is obtained as follows. For each subject a point is plot-

ted whose X-coordinate is the minimum BG and whose Y-coordinate is the

maximum BG within the considered time period (see Figure 8.9). Note that
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the X axis is reversed as it goes form 110 (left) to 50 (right) so that optimal

regulation is located in lower left corner. The appearance of the overall

plot is a cloud of points located in various regions of the plane. Di�erent

regions on the plane can be associated with di�erent qualities of glycemic

regulation. In order to classify subjects into categories, 9 rectangular zones

are de�ned as follows

Zone A (Gmax < 180, Gmin > 90) : Accurate control.

Zone B high (180 < Gmax < 300, Gmin > 90) : Benign trend towards

hyperglycemia.

Zone B low (Gmax < 180, 70 < Gmin < 90) : Benign trend towards hy-

poglycemia.

Zone B (180 < Gmax < 300, 70 < Gmin < 90) : Benign control.

Zone C high (Gmax > 300, Gmin > 90) : overCorrection of hypo-

glycemia.

Zone C low (Gmax < 180, Gmin < 70) : overCorrection of hyper-

glycemia

Zone D high (Gmax > 300, 70 < Gmin < 90) : failure to Deal with hy-

perglycemia.

Zone D low (180 < Gmax < 300, Gmin < 70) : failure to Deal with hy-

poglycemia.

Zone E (Gmax > 300, Gmin < 70) : Erroneous control.

A synthetic numeric assessment of the global level of glucose regulation

in the population is given by the Summary of the CVGA.
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8.6 Regulator design

8.6.1 Unconstrained LMPC

The LMPC regulator design needs to identify a linear-low order model which

approximates the behavior of the nonlinear system. It will be used as the

prediction model of the LMPC controller. In the unconstrained case, LMPC

gives an explicit control law.

MPC model for prediction

Considering the di�culty of identifying an individualized model for each

patient, we decided to use for prediction the mean Dalla Man et al. model,

which is nonlinear and time-variant. Hence, some steps are required in order

to obtain a LTI4 model as required by the LMPC formulation.

Linearization

The mean Dalla Man et al. model with kempt(t,Qsto) = kmean =
kmin+kmax

2 , �xed in in order to obtain a time-invariant model, can be syn-

thetically described by  ẋ(t) = f(x(t),u(t), d(t))

y(t) = Cx(t)
(8.21)

where x(t) ∈ R13 is the state vector of Dalla Man et al. model, u(t) ∈ R is

the insulin �ow injected for unit of weight (pmol/Kg/min), d(t) ∈ R is the

CHO �ow assumed orally (mg/min), the output y(t) ∈ R is the measurable

variable, i.e. subcutaneous glucose y = x13 = GM (t) (mg/dl).

Linearizing the system around the basal steady-state point, the following

4Linear Time-Invariant
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13th-order linear system, with two inputs and one output, is obtained δẋ(t) = Aδx(t) +Bδu(t) +Md(t)

δy(t) = Cδx(t)
(8.22)

where 
δx = x− xb

δy = y − yb

δu = u− ub

where yb = Gb and A, B and M matrices are obtained as:

A =
δf

δx

(
x,u, d

)∣∣∣∣
basal

, B =
δf

δu

(
x,u, d

)∣∣∣∣
basal

, M =
δf

δd

(
x,u, d

)∣∣∣∣
basal

A ∈ R13×13, B ∈ R13×1, M ∈ R13×1

Discretization

After de�ning an appropriate sample time TS , the system has been

discretized  δx(k + 1) = ADδx(k) +BDδu(k) +MDd(k)

δy(k) = CDδx(k)
(8.23)

In order to calculate AD, BD, MD and CD matrices, consider the discrete-

time system in Figure 8.10. It consists of a zero-order hold (ZOH), the

continuous-time system and the sampler connected in series. The ZOH

holds, for the whole time period of length TS , a constant value equal to the

last value of the input sequence:

δu(t) = δu∗(k), kTS ≤ t < (k + 1)TS (8.24)
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Figure 8.10: ZOH method for system discretization

d(t) = d∗(k), kTS ≤ t < (k + 1)TS (8.25)

while the sampler gives as output y∗(k) as:

y∗(k) = y(kTS) (8.26)

Considering continuous-time Lagrange equation:

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ +

∫ t

0
eA(t−τ)Md(τ)dτ , t > 0 (8.27)

and equations (8.24), (8.25) and (8.26) one has:

AD = eATS , BD =
∫ TS

0
eAηBdη, MD =

∫ TS

0
eAηMdη, CD = C

(8.28)

Sample time TS was �xed equal to 15 minutes.

Order reduction, balancing and Input-Output realization

In order to reduce the complexity of the system, a model order reduction

and a balancing have been done, so obtaining a third order model described
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by the following transfer function

∆Y (z) = Ct(zI −At)−1Bt∆U(z) + Ct(zI −At)−1MtD(z) =

=
NumB(z)
Den(z)

∆U(z) +
NumM (z)
Den(z)

D(z)
(8.29)

with

NumB(z) = b2z
2 + b1z + b0

NumM (z) = m2z
2 +m1z +m0

Den(z) = z3 + a2z
2 + a1z + a0

(8.30)

Since, due to the balancing, the two transfer functions have the same

denominator, the following input-output representation is obtained

δy(k + 1) = −a2δy(k)− a1δy(k − 1)− a0δy(k − 2)+

+ b2δu(k) + b1δu(k − 1) + b0δu(k − 2)+

+m2d(k) +m1d(k − 1) +m0d(k − 2)

(8.31)

Note that, by using an input-output representation of the system, the ne-

cessity of an observer is avoided.

Finally, system (8.29) can be given in the following state-space (non-

minimal) representation

 ξ(k + 1) = AIOξ(k) +BIOδu(k) +MIOd(k)

δy(k) = CIOξ(k)
(8.32)
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where

ξ(k) =



δy(k)

δy(k − 1)

δy(k − 2)

δu(k − 1)

δu(k − 2)

d(k − 1)

d(k − 2)


, BIO(k) =



b2

0

0

1

0

0

0


, MIO(k) =



m2

0

0

0

0

1

0


(8.33)

AIO =



−a2 −a1 −a0 b1 b0 m1 m0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0


(8.34)

CIO =
[

1 0 0 0 0 0 0
]

(8.35)

Control law computation

In order to derive the LMPC control law the following quadratic discrete-

time cost function is considered

J(x(k),u(·), k) =
N−1∑
i=0

[
q
(
δy0(k + i)− δy(k + i)

)2
+ r
(
u(k + i)

)2
]

+s
(
δy0(k +N)− δy(k +N)

)2
(8.36)

where N is the optimization horizon, yo(k) the desired output at time k,

while q, r and s are positive scalars.
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The evolution of the system can be re-written in a compact way as

follows

Y(k) = Acx(k) + BcU(k) +McD(k) (8.37)

where, considering (8.32)

Y(k) =


δy(k + 1)

...

δy(k +N)

 , U(k) =


δu(k)

...

δu(k +N − 1)

 , D(k) =


d(k)
...

d(k +N − 1)



Ac =



CIOAIO

CIOA
2
IO

...

CIOA
N−1
IO

CIOA
N
IO



Bc =



CIOBIO 0 · · · 0 0

CIOAIOBIO CIOBIO · · · 0 0
...

...
. . .

...
...

CIOA
N−2
IO BIO CIOA

N−3
IO BIO · · · CIOBIO 0

CIOA
N−1
IO BIO CIOA

N−2
IO BIO · · · CIOAIOBIO CIOBIO



Mc =



CIOMIO 0 · · · 0 0

CIOAIOMIO CIOMIO · · · 0 0
...

...
. . .

...
...

CIOA
N−2
IO MIO CIOA

N−3
IO MIO · · · CIOMIO 0

CIOA
N−1
IO MIO CIOA

N−2
IO MIO · · · CIOAIOMIO CIOMIO


(8.38)
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Matrices Ac,Bc and Mc are derived using the discrete time Lagrange for-

mula

ξ(k + i) = AiIOξ(k) +
i−1∑
j=0

Ai−j−1
IO

(
BIOδu(k + j) +MIOd(k + j)

)
, i > 0

(8.39)

In this way, the cost function becomes

J(x(k),U(k), k) =

= (δy0(k)− δy(k))>q(δy0(k)− δy(k))+

+ (Y0(k)− Y(k))>Q(Y0(k)− Y(k))+

+ U>(k)RU(k)

(8.40)

In the unconstrained case, the solution of the optimization problem is

U0(k) =
(
B>c QBc +R

)−1

B>c Q
(
Y0(k)−Acξ(k)−McD(k)

)
=

= K0Y0(k)−Kxξ(k)−KDD(k)

(8.41)

where 

K0 =
(
B>c QBc +R

)−1

B′cQ

Kx =
(
B>c QBc +R

)−1

B>c QAc

KD =
(
B>c QBc +R

)−1

B>c QMc

(8.42)

Finally, following the Receding Horizon approach the control law is given

by

δu0(k) =
[

1 0 · · · 0
]
U0(k)

In order to tune just one parameter, in (8.36), r has been �xed at 1 and

s = q. Moreover, matrices Q and R are de�ned as follows
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Q = qI1, R = I2

where I1 and I2 are identity matrices of appropriate dimensions. In order to

complete the regulator de�nition, it is necessary to de�ne the optimization

horizon, the scalar q and how to generate the vectors δY0(k), ξ(k) e D(k)

that appear in (8.41).

Optimization horizon

The optimization horizon has been �xed for each virtual patient at 240

minutes (4 hours). Since sample time is 15 min, N = 240/TS = 16 sampling

times.

Generation of state vector ξ(k)

In order to generate vector ξ(k) it is useful to de�ne the following dy-

namic system, whose aim is to store the previously measured values of inputs

and outputs
ψ(k + 1) = ADIOψ(k) +BDIO

[
δym(k) δum(k) dm(k)

]>
ξ(k) = CDIOψ(k) +DDIO

[
δym(k) δum(k) dm(k)

]> (8.43)

where

ψ(k) =



δy(k − 1)

δy(k − 2)

δy(k − 3)

δu(k − 1)

δu(k − 2)

d(k − 1)

d(k − 2)


, BDIO(k) =



1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0


, DDIO(k) =



1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0


(8.44)
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ADIO =



0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0


, CDIO =



0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


(8.45)

Note that the inputs of such a system are measured variables, that are used

as inputs of the regulator, that means the measured values of δy, δu and d.

The warm-up procedure of the regulator consists in store the �rst three

measures of this variables in order to initialize the state vector ψ.

Generation of vector δY0(k)

The glycemia reference vector y0, has been considered constant at 112

mg/dl. Hence

δY0(k) = (y0 − yb)


1
...

1

 =


112− yb

...

112− yb

 (8.46)

Generation of vector D(k)

Vector D(k) represents the meals prediction along the optimization hori-

zon. This means that the i-th element of vectorD(k) is equals to the amount

of carbohydrates (mg/min) that is supposed to be absorbed at time instant

k+ i− 1. This information, that can be called meal announcement, is very

useful since permits to react in advance with respect to distrubances on the

controlled variable. This is one of the key advantage of model predictive

control with respect to other kind of feedback regulators such as the PID.

Even if it is unrealistic to know in advance the real amount and time of
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future meals, we can suppose to know a nominal diet of the patient, that

can be used in order to make the vector of predictable disturbances along

the optimization horizon

D(k) =


diet(k)

...

diet(k +N − 1)

 (8.47)

8.6.2 NMPC

Unconstrained LMPC with a quadratic cost function provides an explicit

control law. The simplicity of this solution is of great advantage in order

to implement the controller on real patients.

In the following a nonlinear model predictive control is proposed. The

goal is to evaluate the (upper) performance limit of a predictive control

algorithm in the blood glucose control problem. In order to do this, we

consider the best unrealistic situation:

1. the nonlinear model used in the synthesis of the NMPC describes

exactly the system

2. all the states of the systems are measurables. A state feedback NMPC

is proposed (we don't use an observer).

The model used in the synthesis of the NMPC is the full nonlinear

continuous time model previously described in Section 8.4.1.

Nonlinear predictive control allows the use of nonlinear cost functions.

We have decided to adopt a cost function related to the LBGI and HBGI

indexes previously described in Section 8.5. In order to minimize the control

energy used along the optimization horizon, the cost function presents also
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a term depending from the control action.

The Finite Horizon Optimal Control Problem consists in minimizing,

with respect to control sequence u1(tk), . . . ,uN (tk) (tk = kTS with TS sam-

pling time period), the following nonlinear cost function with horizon N

J(xtk ,u1(tk), · · · ,uN (tk)) (8.48)

=
∫ tk+N

tk

{
10q(g((ln(Gp(τ)))a − b))2 + ru(τ)2

}
dτ

Note that a full hybrid solution is developed, i.e. the control inputs

ui(tk) are constrained to be piecewise constants, u(τ) = ui(tk), τ ∈

[tk+i−1, tk+i), i ∈ [1, . . . ,N ], see [Magni & Scattolini 2004].

The values of g, a and b adopted in this case are

g = 0.75, a = 1.44, b = 9.02

These values have been changed with respect to the original ones of

the risk indexes in order to consider the fact that the cost function is a

compromise between state and control requirements.

As for the LMPC, the optimization horizon has been �xed at N = 16

sampling times. In order to complete the regulator de�nition, it is necessary

to de�ne the scalars q and r. In order to tune just one of them, q has been

�xed at 1.
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Figure 8.11: Nominal scenario for adult patient

8.7 Clinical Scenario

An in silico trial consisting of 100 patients is used to assess the performances

of LMPC and NMPC controllers. The performance are tested on a clinical

scenario. It is a speci�c of all the parameters which characterize a given

experiment, for example the simulation duration, the meal pro�le, open-loop

insulin therapy, switching time to closed loop and start time of regulation

phase.

8.7.0.1 Nominal scenario

Nominal scenario consists of the following phases (see �gure 8.11):

1. Patient enters at 17.00 of Day 1. Simultaneously data gathering for

warm-up phase starts. Microinfusor is programmed to inject basal

insulin for the speci�c patient.

2. At 18.00 of Day 1 patient has a meal of about 15 minutes of du-

ration. The meal contains 85g of carbohydrates. Simultaneously

patient receives an insulin bolus δ according to his personal in-
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sulin/carbohydrate ratio (CHO ratio o CR), that is

δ = 85 · CR

3. Control loop is closed at 21.30 of Day 1. At this time the switching

phase starts. In this phase the metrics for evaluation are not calcu-

lated.

4. At 23.00 of Day 1 regulation phase starts.

5. At 7.30 of Day 2, patient has breakfast containing 50g of CHO. Meal

duration is considered about 2 minutes.

6. Experiment �nishes at 12.00 of Day 2. Patient is discharged and

restarts his normal insulinic therapy.

8.8 Control design procedure

LMPC and NMPC have respectively one parameter that must be tuned

for each patient in order to achieve good performances in term of glycemia

regulation. Figure 8.12 explains the control design procedure. Given a

model, linear in the LMPC case, nonlinear in the NMPC, the controllers

are synthesized by �xing all the parameters of their designs. Then, once

the control laws are determined, these are applied to a subject realistic

model of each patient. The test consists in the nominal scenario previously

described. The CVGA, described in Section 8.5, is a very useful tool in

order to evaluate the outcome of the test. However, it does not provide a

numerical values that permits to quantify the quality of the performance.

Basing on the CVGA, a good performance index is the norm-in�nite of the

distance, in CVGA coordinates, from the lower left corner of the grid. Note
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Figure 8.12: Control design procedure

that the lines of level of this performance index are squared (see Figure 8.13).

Whenever the results obtained are not satisfactory, tunable parameters of

the regulators (that means q or r) are changed. In particular, a calibration

procedure has been developed in order to obtain the best value of parameter

q (or r), for each patient (see [Tessera 2007] for details). Figure 8.14 show an

example of calibration curve for a patient in the LMPC case. An increase in

the value of parameter q causes a decrease in both maximum and minimum

blood glucose (the reverse happens in NMPC case by changing parameter

r). The arrow points the optimal value of the index at which an optimal q

is associated.
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Figure 8.13: Performance index: norm-in�nite of the distance from the
lower left corner of the CVGA

8.9 Results

In this section the results obtained by applying LMPC and NMPC to the

100 virtual patient population are shown. In particular, the CVGA of Figure

8.15 show the comparison between the NMPC with r calibrated for each

patient and the NMPC with an unique r for all the population. It is worth

to note that clearly the �rst solution gives better performances even if also

the second one provide good results in terms of patients contained in the

good zones (A and B).

Figure 8.16 show the comparison between NMPC and LMPC. The pa-

rameters q and r have been individually tuned. It is worth to note that

LMPC uses a mean model of the population for the synthesis of the regu-

lator of each patient. Di�erently, NMPC is in the best situation: for each

patient, the model used in the synthesis is exactly the nonlinear model used

in the test. The �gure show that, in terms of CVGA, the unrealistic NMPC
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Figure 8.14: Example of calibration curve in LMPC case

improves the performances, but this improvement is not very signi�cant.

The real advantage of the NMPC is shown in Figure 8.17 and regards the

insulin pro�le. Comparing with the LMPC one it is smoother in spite of a

more or less equivalent glycaemia regulation.

8.10 Conclusions

In this chapter, the feedback control of glucose concentration in Type-1 di-

abetic patients using s.c. insulin delivery and s.c. continuous glucose mon-

itoring is considered. In particular, a linear model predictive control based

and a nonlinear state feedback model predictive control (MPC) synthesized

on a recently developed nonlinear in-silico model of glucose metabolism

([Magni et al. 2007b]) have been proposed. In order to assess the perfor-

mances of the proposed algorithm against interindividual variability, an in

silico trial with 100 virtual patients was carried out. The simulation ex-
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Figure 8.15: Comparison between NMPC with r individually tuned and r
unique for all the patients

Figure 8.16: Comparison between LMPC with q individually tuned and
NMPC with r individually tuned for all the patients
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Figure 8.17: Comparison between LMPC and NMPC: glucose and insulin
pro�les of a particular patient

periments highlight the increased e�ectiveness of the meal announcement

signal with respect to the linear MPC due to a more accurate nonlinear

model. Moreover, one of the main advantages of a nonlinear approach is

the possibility to use a nonlinear cost function based on the risk index de-

�ned in [Kovatchev et al. 2005]. The obtained results encourage a deeper

investigation along this direction. In particular, the following assumptions

should be removed: perfect knowledge of the model parameters and state

availability. An on-line optimization problem could also be a limitation for

a real application. It is worth to note that in 2006, Juvenile Diabetes Re-

search Foundation has launched a project to accelerate the development and

adoption of a device for the closed loop control of blood glucose. University
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of Pavia collaborates in this project joined with the University of Virginia

and the University of Padova. Currently, experiments using the developed

linear model predictive controller are in progress at the Charlottesville and

Padova hospitals.





Chapter 9

Appendix of the Thesis

This section provides the main notations and de�nitions used in the thesis.

Let IR, IR≥0, Z and Z≥0 denote the real, the non-negative real, the integer

and the non-negative integer sets of numbers, respectively.

The Euclidean norm is denoted as | · | while | · |∞ denotes the in�nity-

norm.

Given a matrix A ∈ IRn×n, let denote with σ̄(A) the maximum singular

value of A.

Given a signal w, let w[t1,t2] be a signal sequence de�ned from time

t1 to time t2. In order to simplify the notation, when it is inferrable

from the context, the subscript of the sequence is omitted. The set of

sequences w, whose values belong to a compact set W ⊆ IRm is denoted

by MW , while Wsup , supw∈W{|w|}, W inf , infw∈W{|w|}. Moreover

‖w‖ , supk≥0{|wk|} and ‖w[τ1,τ2]‖ , supτ1≤k≤τ2{|wk|} where wk denotes

the values that the sequence w takes in correspondence to the index k.

The symbol id represents the identity function from IR to IR, while γ1◦γ2

is the composition of two functions γ1 and γ2 from IR to IR.

Given a set A ⊆ IRn, |ζ|A , inf {|η − ζ| , η ∈ A} is the point-to-set

distance from ζ ∈ IRn to A while, given two sets A ∈ IRn , B ∈ IRn,

dist(A,B) , inf {|ζ|A , ζ ∈ B}.
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The di�erence between two given sets A ⊆ IRn and B ⊆ IRn with B ⊆ A,

is denoted by A \ B , {x : x ∈ A,x /∈ B}. Given a closed set A ⊆ IRn, ∂A

denotes the boundary of A while int(A) denotes the interior of A.

Given two sets A∈IRn, B∈IRn, then the Pontryagin di�erence set C is

de�ned as C=A v B,{x∈IRn : x+ξ∈A,∀ξ∈B}, while the Minkowski sum

set is de�ned as S=A⊕B,{x∈IRn : ∃ξ∈A, η∈B,x=ξ+η} .

Given a vector η ∈ IRn and a positive scalar ρ∈ IR>0, the closed ball

centered in η and of radius ρ , is denoted as B(η, ρ),{ξ∈IRn : |ξ−η|≤ρ}.

The shorthand B(ρ) is used when the ball is centered in the origin.

For x, y ∈ IRn, x ≥ y ⇐⇒ xi ≥ yi, i = 1, · · · ,n and x � y means the

negation of x ≥ y.

De�nition 9.1 (K-function) A function γ : IR≥0→IR≥0 is of class K (or

a �K-function�) if it is continuous, positive de�nite and strictly increasing.

De�nition 9.2 (K∞-function) A function γ : IR≥0→IR≥0 is of class K∞
if it is a K-function and γ(s)→ +∞ as s→ +∞.

De�nition 9.3 (KL-function) A function β : IR≥0 × Z≥0 → IR≥0 is of

class KL if, for each �xed t ≥ 0, β(·, t) is of class K, for each �xed s ≥ 0,

β(s, ·) is decreasing and β(s, t)→ 0 as t→∞.

De�nition 9.4 (Upper limit) Given a bounded function s : Z≥0 → IR≥0,

the upper limit is de�ned as

limt→∞s(t) , inf
t≥0

sup
τ≥t

s(τ). �

Consider a discrete-time autonomous nonlinear model

xk+1 = F (xk, dk,wk), k ≥ 0 (9.1)
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where xk ⊆ Rn is the system state, dk ∈ D(x) ⊆ IRp models a class of

uncertainty which depends on the state (for each x the set D(x) is closed),

while wk ∈ W ⊆ IRq models a class of disturbance. The transient of the

system (9.1) with initial state x0 = x̄ and disturbance sequences d and w

is denoted by x(k, x̄, d, w).

De�nition 9.5 (RPI set) A set Ξ ⊆ IRn is a Robust Positively Invariant

(RPI) set for the system (9.1), if F (x, d,w) ∈ Ξ for all x ∈ Ξ, all d ∈ D(x),

and all w ∈ W.

De�nition 9.6 (0-AS in Ξ) Given a compact set Ξ ⊂ IRn including the

origin as an interior point, the system (9.1) with d = 0 and w = 0 is said

to be 0-AS in Ξ, if Ξ is positively invariant and if there exists a KL-function

β such that

|x(k, x̄, 0, 0)| ≤ β(|x̄|, k), ∀k ≥ 0, ∀x̄ ∈ Ξ. (9.2)

De�nition 9.7 (AG in Ξ) : Given a compact set Ξ ⊂ IRn including the

origin as an interior point, the system (9.1) satis�es the Asymptotic Gain

(AG) property in Ξ, if Ξ is a RPI set for (9.1) and if there exists a K∞-

function γAG such that for all initial values x̄ ∈ Ξ, all d ∈ D and all w ∈ W,

one has

limk→∞|x(k, x̄, d, w)| ≤ γAG(||w||).

De�nition 9.8 (ISS in Ξ with respect to A) Given a compact set Ξ ⊂

IRn including the origin as an interior point, the system (9.1) with d ∈MD
and w ∈MW , is said to be ISS in Ξ with respect to set A (compact-ISS), if

Ξ is a RPI set for (9.1) and if there exist a KL-function β and a K-function

γ2 such that

|x(k, x̄, d, w)|A ≤ β(|x̄|A, k) + γ2(||w||)
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for all x̄ ∈ Ξ and k ≥ 0.

De�nition 9.9 (LpS) System (9.1) with d ∈ MD and w ∈ MW satis�es

the LpS (Local practical Stability) property if there exists a constant c ≥ 0

such that for each ε > 0, there exists a δ > 0 such that

|x(k, x̄, d, w)| ≤ c+ ε

for all k ≥ 0, all |x̄| ≤ δ and all |wk| ≤ δ.

De�nition 9.10 (LS with respect to A) System (9.1) with d1 ∈ MD
and w ∈ MW satis�es the LS (Local Stability) property with respect to set

A, if for each ε > 0, there exists a δ > 0 such that

|x(k, x̄, d, w)|A ≤ ε

for all k ≥ 0 for all |x̄|A ≤ δ and all |wk| ≤ δ.

De�nition 9.11 (UpAG in Ξ) Given a compact set Ξ ⊂ IRn including

the origin as an interior point, system (9.1) with d ∈ MD1 and w ∈ MW
satis�es the UpAG (Uniform practical Asymptotic Gain) property in Ξ, if Ξ

is a RPI set for (9.1) and if there exist a constant c ≥ 0 and a K-function

γ2 such that for each ε > 0 and ν > 0, ∃T = T (ε, ν) such that

|x(k, x̄, d, w)| ≤ γ2(||w||) + c+ ε

for all x̄ ∈ Ξ with |x̄| ≤ ν, and all k ≥ T . If the origin of system (9.1) is an

equilibrium point and c = 0, the system is said to satisfy the UAG (Uniform

Asymptotic Gain) property.

De�nition 9.12 (UAG in Ξ with respect to A) Given a compact set
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Ξ ⊂ IRn including the origin as an interior point, system (9.1) with d ∈MD
and w ∈ MW satis�es the UAG (Uniform Asymptotic Gain) property in

Ξ, if Ξ is a RPI set for (9.1) and if there exist a K-function γ2 such that

for each ε > 0 and ν > 0, ∃T = T (ε, ν) such that

|x(k, x̄, d, w)|A ≤ γ2(||w||) + ε

for all x̄ ∈ Ξ with |x̄|A ≤ ν, and all k ≥ T . �

Consider now a discrete-time nonlinear model

xk+1 = f(xk,uk, dk,wk), k ≥ 0 (9.3)

where xk ∈ X ⊆ Rn is the system state, uk ∈ U ⊆ IRm is the current control

vector, dk ∈ D1(x,u) ⊆ IRp models a class of uncertainty which depends on

the state and the control input (for each x and u the set D1(x,u) is closed),

while wk ∈ W ⊆ IRq models a class of disturbance.

De�nition 9.13 (RPIA set) Consider system (9.3) with x0 = x̄. Given

a control law u = κ(x), Ξ ⊆ X is a Robust Positively Invariant Admissible

(RPIA) set for the closed-loop system (9.3) with uk = κ(xk), if x̄ ∈ Ξ

implies xk ∈ Ξ and κ(xk) ∈ U , for all dk ∈ D1(x,u), all wk ∈ W and all

k ≥ 0.
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