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Course schedule

Advanced automation and control

Industrial automation + Nonlinear systems

Lectures

Monday 14-16 room EF3, Thursday 16-18, room E1 (Industrial
automation)

Wednesday 14-16, room E1 (Nonlinear systems)

Office hours

By appointment (giancarlo.ferrari@unipv.it). Office:
Dipartimento di Ingegneria Industriale e dell’Informazione, floor F
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Course website

http:

//sisdin.unipv.it/labsisdin/teaching/courses/ails/files/ails.php

a copy of the slides can be downloaded after authentication with
login/password
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Textbooks

For a review of basic systems theory and automatic control

G. F. Franklin, J. D. Powell, A. Emami-Naeini. Feedback Control of
Dynamic Systems 6th ed., 2009 Prentice Hall

P. Bolzern, R. Scattolini, N. Schiavoni. Fondamenti di Controlli Automatici,
2nd ed., 2004, McGraw-Hill, Italia

For the topics in nonlinear systems covered in the course

J.-J. E. Slotine e W. Li. Applied nonlinear control. Prentice-Hall (1991)

H.K. Khalil. Nonlinear systems - third edition. Prentice-Hall (2002)

S. Sastry. Nonlinear systems - Analysis, Stability and Control.
Springer-Verlag (1999) (and C. Tomlin - slides of the course “Advanced
Nonlinear Control”, Stanford University)

All above books cover several topics that will be not discussed in the course.
Khalil an Sastry’s books are the most advanced (and difficult) ones

The exam will focus only on topics covered in the course
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Exams

Closed-books closed-notes written exam split in two parts

First part: industrial automation

Second part: nonlinear systems

Total duration: ∼ 3h. No graphic or programmable calculators are allowed

Registration to exams

Through the university website

Usually, registrations end 7 days before the exam date
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Nonlinear (NL) systems

Analysis vs. simulation

Steadily increasing computing power allows one to simulate complex
NL systems

Simulation and intuition allow one to understand several aspects of
NL systems

However,

Impossible to use only simulation to prove interesting properties (e.g.
stability)

Analysis procedures allow properties of NL systems to be rigorously
assessed

I Sometimes, results are surprising and highlight behaviors one had not
tought to simulate !
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Nonlinear (NL) systems

NL systems vs. linear systems

Several results on the analysis and control of linear systems
HOWEVER

Most real systems are NL

Linear systems do not capture behaviors such as
I isolated multiple equilibria
I limit cycles
I subharmonics
I complex dynamics, e.g. chaos

Next ...

Review of systems theory !

Examples of nonlinear behaviors
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Review

NL system

ẋ(t) = f (x(t), u(t), t) (1)

y(t) = g(x(t), u(t), t) (2)

x(t0) = x0 (3)

x(t) ∈ Rn state

u(t) ∈ Rm input

y(t) ∈ Rp output

(1): state equation

(2): output equation

n: system order

Definition

A state trajectory is a function x(t) verifying (1) and (3). For highlighting
the dependence on the input, initial time and initial states, we write
x(t) = φ(t, t0, x0, u) and φ is called transition map
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Drawing state trajectories

Often one draws the image of the trajectory φ(t, t0, x0, u), i.e. the set of
points

{φ(t, t0, x0, u), t ≥ t0} ⊂ Rn
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Review

NL system

ẋ(t) = f (x(t), u(t), t)

y(t) = g(x(t), u(t), t)

x(t0) = x0

x(t) ∈ Rn

u(t) ∈ Rm

y(t) ∈ Rp

An NL system is:

Invariant if f and g do not depend upon time
I Without loss of generality, one can set t0 = 0 and
φ(t, t0, x0, u) = φ(t, x0, u)

Autonomous if the system does not depend upon the input u(t)
I φ(t, t0, x0, u) = φ(t, t0, x0)

Invariant and autonomous: ẋ(t) = f (x(t)), y(t) = g(x(t))
I φ(t, t0, x0, u) = φ(t, x0)

Static if n = 0
I described only through the output equation y(t) = g(u(t), t)
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Review of linear systems

A system is linear if f and g are linear functions of x and u

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C (t)x(t) + D(t)u(t)

A(t), B(t), C (t), D(t) matrices

Linear Time-Invariant (LTI) system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

A, B, C , D matrices
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Multiple isolated equilibria
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NL vs. linear systems: Duffing oscillator

Model

ml2ẍ1 = mgl sin(x1)− αx1 − kẋ1 + τ

−αx1: restoring torque (α > 0)

−kẋ1: damping torque (k > 0)

τ : electromagnetic torque (input)

NL system

Defining x2 = ẋ1, u =
τ

ml2
,

ẋ1 = x2

ẋ2 =
g

l
sin(x1)−

α

ml2
x1 −

k

ml2
x2 + u
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Review

Equilibrium

Given u(t) = ū, ∀t ≥ 0, the state x̄ ∈ Rn is an equilibrium state for the
nonlinear time-invariant system ẋ = f (x , u) if it verifies f (x̄ , ū) = 0a. The
pair (x̄ , ū) is called an equilibrium.

aẋ = x2 + 1, x(t) ∈ R has no equilibrium state

Duffing oscillator: equilibra for ū = 0

Physical intuition: 3 equilibra
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Duffing oscillator: equilibria of approximate models

NL system

ẋ1 = x2

ẋ2 =
g

l
sin(x1)−

α

ml2
x1 −

k

ml2
x2 + u

Linear approximation: sin(x1) ' x1

LTI system (u = 0)

ẋ1 = x2

ẋ2 =

(
g

l
−

α

ml2

)
x1 −

k

ml2
x2

Equilibrium states:

x̄2 = 0(
g

l
−

α

ml2

)
6= 0⇒ x̄1 = 0

Either one or infinite equilibrium states
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Duffing oscillator: equilibria of approximate models

NL system

ẋ1 = x2

ẋ2 =
g

l
sin(x1)−

α

ml2
x1 −

k

ml2
x2 + u

Approximation: sin(x1) ' x1 − x3
1/6

Approximated NL system (u = 0)

ẋ1 = x2

ẋ2 =

(
g

l
−

α

ml2

)
x1 −

g

6l
x3

1 −
k

ml2
x2

Equilibrium states:

x̄2 = 0(
g

l
−

α

ml2

)
x̄1 −

g

6l
x̄3

1 = 0

One can have 3 equilibrium states
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Duffing oscillator: equilibria of the approximate NL model

If we set g
l −

α
ml2

= 1, g
6l = 1, k

ml2
= η, we get

Automonous Duffing model:

ẋ1 = x2

ẋ2 = x1 − x3
1 − ηx2

Equilibrium states:

p1 =

[
−1
0

]
, p2 =

[
0
0

]
, p3 =

[
1
0

]
,
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Linear approximations around an
equilibrium
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Review: linearization around an equilibrium

Let (x̄ , ū) be an equilibrium for the NL invariant system

ẋ = f (x , u)

y = g(x , u)

Deviations: δx(t) = x(t)− x̄ , δu(t) = u(t)− ū, δy(t) = y(t)− ȳ

First order Taylor expansion about the equilibrium:

f (x , u) ' f (x̄ , ū) + Dx f (x , u)
∣∣∣
x=x̄
u=ū

(x − x̄) + Duf (x , u)
∣∣∣
x=x̄
u=ū

(u − ū)

g(x , u) ' g(x̄ , ū) + Dxg(x , u)
∣∣∣
x=x̄
u=ū

(x − x̄) + Dug(x , u)
∣∣∣
x=x̄
u=ū

(u − ū)

Dx f (x , u) =


∂f1(x, u)

∂x1

· · ·
∂f1(x, u)

∂xn
.
.
.

. . .
.
.
.

∂fn(x, u)

∂x1

· · ·
∂fn(x, u)

∂xn

 Jacobian with respect to the variables x
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Review: linearization around an equilibrium

One gets:

˙δx = ẋ − ˙̄x = f (x , u) ' f (x̄ , ū)︸ ︷︷ ︸
=0

+Dx f (x , u)
∣∣∣
x=x̄
u=ū

δx + Duf (x , u)
∣∣∣
x=x̄
u=ū

δu

δy = −ȳ + y ' −g(x̄ , ū) + g(x̄ , ū)︸ ︷︷ ︸
=0

+Dxg(x , u)
∣∣∣
x=x̄
u=ū

δx + Dug(x , u)
∣∣∣
x=x̄
u=ū

δu

Linearized system

Defining

A = Dx f (x , u)
∣∣∣
x=x̄
u=ū

, B = Duf (x , u)
∣∣∣
x=x̄
u=ū

, C = Dxg(x , u)
∣∣∣
x=x̄
u=ū

, D = Dug(x , u)
∣∣∣
x=x̄
u=ū

the linearized system around the equilibrium (x̄ , ū) is

˙δx = Aδx + Bδu

δy = Cδx + Dδu
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Review: linearization around an equilibrium

We hope state trajectories of the linearized system are good
approximations of x(t)− x̄ ... but this does not always happen

Example: (a): ẋ = x3, (b): ẋ = −x3

Linearized systems around x̄ = 0 are the same: ˙δx = 0⇒ δx(t) = x0

but NL systems have different behaviors
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Phase plane
For second-order systems it is possible to graphically study the projection
of trajectories in the plane (x1, x2) that is called phase plane

Example

ẋ1 = −x1 + 0.5x2

ẋ2 = 0.5x1 − x2
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Some types of equilibria for second-order LTI systems
Autonomous LTI system

ẋ = Ax

The origin x̄ = 0 is always an equilibrium state

When x(t) ∈ R2 one can classify the behavior of state trajectories
using the eigenvalues λ1, λ2 of the matrix A.

Complex eigenvalues with real part < 0

The origin is a stable focus
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Some types of equilibria for second-order LTI systems
Autonomous LTI system

ẋ = Ax

The origin x̄ = 0 is always an equilibrium state

When x(t) ∈ R2 one can classify the behavior of state trajectories
using the eigenvalues λ1, λ2 of the matrix A.

Real eigenvalues and λ1 < 0 < λ2

The origin is a saddle
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Equilibria of second-order NL systems

Idea: analyze the behavior of state trajectories around an equilibrium state
using the linearized system

Example: Duffing model for η = 1

NL system

ẋ1 = x2

ẋ2 = x1 − x3
1 − ηx2, η = 1

Linearized system

˙δx1 = δx2

˙δx2 = δx1 − 3x̄2
1 δx1 − δx2

Around p1 =
[
−1 0

]T
and p3 =

[
1 0

]T
Dx f =

[
0 1
−2 −1

]
⇒ Eigenvalues:−

1

2
± j

√
3

2

Can we conlude that p1 and p3 are stable foci ?
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Equilibria of second-order NL systems

Around p2 =
[
0 0

]T
Dx f =

[
0 1
1 −1

]
⇒ Eigenvalues:− 1±

√
5

2

Can we conlude that p2 is a saddle ?
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From the state trajectories it
seems the answer is yes...
The analysis is local.
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Equilibria of second-order NL systems
Duffing model: global behavior
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Plots obtained with the MatLab program pplane
http://math.rice.edu/~dfield/
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Subharmonics

Ferrari Trecate (DIS) Nonlinear systems Advanced autom. and control 28 / 38



Subharmonics

Duffing model with input

ẋ1 = x2

ẋ2 = x1 − x3
1 − ηx2 + u

η= 0.025, u(t) = 7.5 sin(t)
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Subharmonics

Harmonics that are NOT present in the
input appear in the output (even in the
asymptotic régime)

Impossible for asymptotically stable
LTI systems (because of the
frequency response theorem)

Ferrari Trecate (DIS) Nonlinear systems Advanced autom. and control 29 / 38



Chaos
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Chaos

Duffing model with input

ẋ1 = x2

ẋ2 = x1 − x3
1 − ηx2 + u

η= 0.025, u(t) = 7.5 sin(t)

State trajectory x1 when x(0) = 0 and x(0) = 0 + ε
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Chaos

Huge sensitivity to initial
states.

Simulations might be
meaningless
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Limit cycles
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Surge and rotating stall in jet engine compressors
Engine “de Havilland Goblin II”1

1Picture from Wikipedia
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Surge and rotating stall in jet engine compressors

Jet engine

NL model (dimensionless units)

ẋ1 = B (C (x1)− x2)

ẋ2 =
1

B

(
x1 − F−1

α (x2)
)

B > 0 compressor angular speed (rotor)

x1: compressor mass flow

x2: plenum pressure rise

α: throttle angle

C (·): compressor charachteristic

Fα(·): throttle charachteristic
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Analysis of equilibria

Computation of equilibria0 = B (C (x̄1)− x̄2)

0 =
1

B

(
x̄1 − F−1

α (x̄2)
) ⇒

{
x̄2 = C (x̄1)

x̄1 = F−1
α (x̄2)

⇒ Fα(x̄1) = C (x̄1)

Equilibria for various throttle angle
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Unstalled operating point
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This is the desired behavior: stable equilibrium
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Surge
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Perturbation of the throttle charachteristic

Unstable equilibrium and stable limit cycle

Surge ⇒ dangerous pressure waves
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Rotating stall
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Perturbation of the throttle charachteristic + decrease of the angular
speed B of the compressor

Stable equilibrium but insufficient pressure ⇒ rotating stall !
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