Network models and graph theory

G. Ferrari Trecate

Dipartimento di Ingegneria Industriale e dell'Informazione (DIII) Università degli Studi di Pavia

Industrial Automation

Ferrari Trecate (DII)

Network models

Industrial Automation 1 / 19

Outline

Introduction to network models

- ∢ ≣ →

< □ > < ---->

2

Outline

Introduction to network models

3

イロト イヨト イヨト イヨト

Optimization on networks

Methods for solving decision problems where the unknowns can only take finitely many values

Focus on problems that can be represented as a graph or a network such as

- logistic or transport problems
- network design problems
- project management problems
- Several optimization problems on networks are computationally *very* demanding
- However, there are interesting industrial problems that can be solved in an efficient fashion

(日) (同) (三) (三)

Outline

2

イロト イヨト イヨト イヨト

Undirected graph

A graph is *undirected* if G = (V, E) is a pair comprising a finite set of vertices (or nodes) $V = \{1, 2, ..., n\}$ and a set of $E \subset V \times V$ unordered pairs called *edges* (or arcs).

Example: $V = \{1, 2, 3\}, E = \{(1, 2), (1, 3)\}$

Undirected edges : (1,2) = (2,1), (1,3) = (3,1)

Directed graph

A graph G is *directed* (or digraph) if all pairs in E are *ordered*.

Example::
$$V = \{1, 2, 3\}, E = \{(1, 2), (1, 3)\}$$

Ordered edges: (1,2) \neq (2,1), (1,3) \neq (3,1)

Network

If a function $c : E \to \mathbb{R}$ is specified, a graph is called *weighted* or *network*. If the graph is directed, one has a directed network.

Example of directed network: $V = \{1, 2, 3\}$, $E = \{(1, 2), (1, 3)\}$ c(1, 2) = 1 e c(1, 3) = -1

Subgraph

The graph H = (U, F) is a *subgraph* of G = (V, E) if $U \subseteq V, F \subseteq E$ and edges in F connect only vertices in U.

H = (U, F) is a subgraph of G because $U = \{1, 2, 4\} \subseteq V$, $F = \{(1, 2), (2, 4)\} \subseteq E$ and edges in F connects only vertices in U.

(a)

Cuts

Directed cuts

Let G = (V, E) be a digraph and $S \subseteq V$. The *directed cuts* associated to S are the sets of edges

$$\delta^+(S) = \{(i,j) \in E : i \in S, j \notin S\}$$
 (edges leaving S)
 $\delta^-(S) = \{(i,j) \in E : i \notin S, j \in S\}$ (edges entering in S)

For an undirected graph $\delta^+(S) = \delta^-(S)$.

$$\delta^{+}(\{1,2,3\}) = \{(1,4),(3,4)\}$$

$$\delta^{-}(\{1,2,3\}) = \{(4,2)\}$$

 $\delta^{-}(\{3,4\}) = \{(1,4),(2,3)\}$

- 4 同 6 4 日 6 4 日 6

Path

A sequence of arcs $e_1e_2\cdots e_k$ such that

$$e_1 = (v_1, v_2), e_2 = (v_2, v_3), \dots, e_k = (v_k, v_{k+1})$$

is a *path* from v_1 to v_{k+1} .

Notation: $v_1v_2\cdots v_{k+1}$

Path classification

- A path from a vertex to itself is a cycle.
- A path is *elementary* if it does not contain the same *edge* twice.
- A path is *simple* if it does not not pass through the same *vertex* twice (with the exception of the starting vertex for a cycle).

< 回 ト < 三 ト < 三 ト

- The path 12313 is elementary but not simple.
- The path 1234 is simple and elementary.
- The paths 1231 and 11 are cycles.

Remarks

All simple paths are also elementary (if the same vertex is not crossed twice, the path cannot contain the same edge twice).

Hamiltonian paths

A path is *Hamiltonian* if it simple and contains all vertices (except the starting vertex for a cycle).

The path 1234 is Hamiltonian. The path 11234 is not Hamiltonian. The cycle 12341 is Hamiltonian.

Remark

There is no simple algorithm for checking if a graph contains a Hamiltonian cycle ...

Ferrari Trecate (DII)

Network models

Connectivity and completeness

A vertex v_2 is *connected* to v_1 if there is a path from v_1 to v_2 .

- A graph is *connected* if all pairs of vertices are connected.
- A graph G = (V, E) is complete if $E = V \times V$

Tree

If G = (V, E) is undirected, a connected subgraph with k vertices and k - 1 edges is a *tree*. A tree is *spanning* if k = n, with n = |V|.

Ferrari	Trecate ((DII))

Tree theorem

Let T be an undirected graph. The following conditions are equivalent:

- T is a tree
- T is a connected acyclic graph
- T is acyclic and the addition of any arc produces a simple cycle
- T is connected and the deletion of any arc makes T disconnected
- Every pair of vertices of \mathcal{T} is connected by a unique simple path

Forest

A *forest* is an undirected acyclic graph. A subgraph of G is a *maximal* forest if the addition of any edge produces a cycle.

Remarks

A forest is always the union of disjoint trees. A spanning tree is a maximal forest.

Optimization on networks

Some interesting problems

Problem A Is an undirected graph connected ?

Problem B Given a digraph and two nodes v_1 and v_2 , check if v_2 is connected to v_1 .

Problem C Does an undirected graph contain a Hamiltonian cycle ?

Problem TSP (Travelling Salesman Problem) Given an undirected complete network and a number $r \in \mathbb{R}$ check if it contains a Hamiltonian cycle of cost less than r.

Problem TSP

- Vertices = towns
- Weights = distances (in Km) The traveling salesman must visit all town and be back to the first one covering less than r Km

Optimization on networks

Enumeration algorithm

All problems can be solved by computing all paths of length less than (or equal to) |V| contained in the graph Highly inefficient method: the number of paths explodes with the number of vertices

Which is the computational time needed for solving problems A, B, C and TSP ? It depends upon the adopted algorithm \dots

- A rigorous answer is provided by the computational complexity theory

Computational complexity

- Quantify the efficiency of a given algorithms
- Quantify the intrinsic difficulty of a problem

(日) (同) (三) (三)