Nonlinear systems Phase plane analysis

G. Ferrari Trecate

Dipartimento di Ingegneria Industriale e dell'Informazione Università degli Studi di Pavia

Advanced automation and control

Phase plan analysis

Problem

When $x(t) \in \mathbb{R}^2$, study state trajectories around an equilibrium state

Review: stability of an equilibrium state

Let \bar{x} be an equilibrium state for the NL invariant system $\dot{x} = f(x)$

Ball centered in $\bar{z} \in \mathbb{R}^n$ of radius $\delta > 0$ $B_{\delta}(\bar{z}) = \{z \in \mathbb{R}^n : ||z - \bar{z}|| < \delta\}$

Definition (Lyapunov stability)

The equilibrium state \bar{x} is

stable if

$$\forall \epsilon > 0 \; \exists \delta > 0, \; x(0) \in B_{\delta}(\bar{x}) \Rightarrow x(t) \in B_{\epsilon}(\bar{x}), \forall t \geq 0$$

• Asymptotically Stable (AS) if it is stable and $\exists \gamma >$ 0 such that

$$x(0) \in B_{\gamma}(\bar{x}) \Rightarrow \lim_{t \to +\infty} \|\phi(t, x(0)) - \bar{x}\| = 0$$

unstable if it is not stable

Remarks

Regions of attraction of \bar{x} AS

• $X \subseteq \mathbb{R}^n$ is a region of attraction of \bar{x} if

$$x(0) \in X \Rightarrow \lim_{t \to +\infty} \|\phi(t, x(0)) - \bar{x}\| = 0$$

Example: $B_{\gamma}(\bar{x})$ is a region of attraction

• THE region of attraction of \bar{x} is the union of all regions of attraction of \bar{x} (i.e. it is maximal)

Ferrari Trecate (DIS)

4 / 33

Review: stability tests for LTI systems

LTI system

$$\dot{x} = Ax, \quad x(t) \in \mathbb{R}^n$$

System eigenvalues = eigenvalues of the matrix A

Theorem

The equilibrium state $\bar{x} = 0$ of a linear system is

- AS \Leftrightarrow all system eigenvalues have real part < 0
- ullet unstable if at least a system eigenvalue has real part >0
- stable if all system eigenvalues have real part \leq 0, at least one has zero real part and all eigenvalues with zero real part are simple

When all eigenvalues have real part \leq 0 and there are multiple eigenvalues with zero real part, the equilibrium state can be either stable or unstable and more advanced tools are needed for reaching a conclusion.

Review: stability test for the equilibrium states of an NL system

NL system

$$\mathsf{NL}: \dot{x} = f(x)$$

 \bar{x} : equilibrium state

Linearized system around \bar{x} LIN : $\dot{\delta x} = A(\bar{x})\delta x$ $A(\bar{x}) = D_x f(x)\Big|_{x=\bar{x}}$

Theorem

The equilibrium state \bar{x} of NL

- ullet is AS if all eigenvalues of LIN have real part <0
- is unstable if at least an eigenvalue of LIN has real part > 0

No conclusion if all eigenvalues of LIN have real part \leq 0 and at least an eigenvalue has zero real part

Invariant regions

Definition

A set $G \subseteq \mathbb{R}^n$ is (positively) invariant for $\dot{x} = f(x)$ if

$$x(0) \in G \Rightarrow \phi(t, x(0)) \in G, \ \forall t \geq 0$$

Examples

• $G = \{\bar{x}\}, \bar{x}$ equilibrium state

•
$$G = \mathbb{R}^n$$

Review: equivalent LTI systems

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

• Change of coordinates $\hat{x}(t) = Tx(t)$, $T \in \mathbb{R}^{n \times n}$ invertible.

$$\dot{\hat{x}}(t) = T\dot{x}(t) = T(Ax(t) + Bu(t)) = T(AT^{-1}\hat{x}(t) + Bu(t))$$

$$= TAT^{-1}\hat{x}(t) + TBu(t) = \hat{A}\hat{x}(t) + \hat{B}u(t)$$

$$\hat{A} = TAT^{-1}, \quad \hat{B} = TB$$

$$y(t) = Cx(t) + Du(t) = CT^{-1}\hat{x}(t) + Du(t) = \hat{C}\hat{x}(t) + \hat{D}u(t)$$

$$\hat{C} = CT^{-1}, \quad \hat{D} = D$$

Review: equivalent LTI systems

 $\dot{x} = Ax + Bu$ y = Cx + Du

$$\dot{\hat{x}} = \hat{A}\hat{x} + \hat{B}u$$

 $y = \hat{C}\hat{x} + \hat{D}u$

Definition

The system $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ is *equivalent* to the system (A, B, C, D) in the sense that for an input u(t), $t \ge 0$ and two initial states $x_0 \in \hat{x}_0$ verifying $\hat{x}_0 = Tx_0$, the state trajectories verify $\hat{x}(t) = Tx(t)$, $t \ge 0$, and outputs are identical

Remark

A and \hat{A} are similar \Rightarrow they have the same eigenvalues

LTI systems in the phase plane

$$\dot{x} = Ax, \quad x \in \mathbb{R}^2$$

Change of coordinates: $\hat{x}(t) = Tx(t)$, $T \in \mathbb{R}^{2 \times 2}$ invertible. Equivalent system:

$$\dot{\hat{x}} = J\hat{x}, \quad J = TAT^{-1}$$

• One can always choose T such that J is in real Jordan form

the new coordinates are called normal

Case 1: A has real eigenvalues λ_1 , λ_2 and independent eigenvectors (A is diagonalizable)

$$J = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}$$

Phase plan: analysis in normal coordinates

Case 2: A has two real, identical eigenvalues $\lambda_1 = \lambda_2 = \lambda$ and linearly dependent eigenvectors (A is not diagonalizable)

$$J = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$$

Define $V_{\lambda} = \{v : Av = \lambda v\}$. This case happens ony if $\dim(V_{\lambda}) = 1$.

Case 3: A has complex conjugate eigenvalues $\lambda_1 = \alpha + j\beta \ \lambda_2 = \alpha - j\beta$

$$J = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}$$

How T is computed ?

Case 1:
$$Av_1 = \lambda_1 v_1$$
, $Av_2 = \lambda_2 v_2 \Rightarrow T^{-1} = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$
Case 2: $Av = \lambda v$. Compute a generalized eigenvector u verifying $Au = \lambda u + v$. One has

$$A\left[\begin{array}{c|c} v & u\end{array}\right] = \left[\begin{array}{c|c} Av & Au\end{array}\right] = \left[\begin{array}{c|c} v & u\end{array}\right] \left[\begin{array}{c|c} \lambda & 1\\ 0 & \lambda\end{array}\right] \Rightarrow T^{-1} = \left[\begin{array}{c|c} v & u\end{array}\right]$$

Case 3: Let $v_1 = u + jv$, $v_2 = u - jv$ be the eigenvectors associated to the eigenvalues $\lambda_1 = \alpha + j\beta$, $\lambda_2 = \alpha - j\beta$. One has

 $\begin{aligned} A(u+jv) &= (\alpha+j\beta)(u+jv) \quad A(u-jv) = (\alpha-j\beta)(u-jv) \\ \text{Summing and subtracting:} \end{aligned}$

 $Au = \alpha u - \beta v \quad Av = \beta u + \alpha v$

$$A\left[\begin{array}{c|c} u & v\end{array}\right] = \left[\begin{array}{c|c} u & v\end{array}\right] \left[\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha\end{array}\right] \Rightarrow T^{-1} = \left[\begin{array}{c|c} u & v\end{array}\right]$$

Next

Taxonomy of equilibria

The goal is to study the qualitative behavior of the state trajectories of an LTI system in the phase plane around the equilibrium state $\bar{x} = 0$

- the behavior depends on system eigenvalues
- we use normal coordinates to ease the analysis

Analysis in normal coordinates

Case 1:
$$J = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \quad \lambda_1, \lambda_2 \in \mathbb{R}$$

$$\dot{\hat{x}}_1 = \lambda_1 \hat{x}_1 \to \hat{x}_1(t) = \hat{x}_1(0) e^{\lambda_1 t}$$

 $\dot{\hat{x}}_2 = \lambda_2 \hat{x}_2 \to \hat{x}_2(t) = \hat{x}_2(0) e^{\lambda_2 t}$

"Remove" time from the equations. If $\lambda_1 \neq 0$, $\lambda_2 \neq 0$ and $\hat{x}_1(0) \neq 0$ one gets

$$\hat{x}_2(t)^{rac{\lambda_1}{\lambda_2}} = \hat{x}_2(0)^{rac{\lambda_1}{\lambda_2}} e^{rac{\lambda_1 \varkappa_2}{\varkappa_2}t} = \hat{x}_2(0)^{rac{\lambda_1}{\lambda_2}} e^{\lambda_1 t} = rac{\hat{x}_2(0)^{rac{\lambda_1}{\lambda_2}}}{\hat{x}_1(0)} \hat{x}_1(t)$$

and then

$$\hat{x}_{2}(t) = rac{\hat{x}_{2}(0)}{\hat{x}_{1}(0)^{rac{\lambda_{2}}{\lambda_{1}}}} \hat{x}_{1}(t)^{rac{\lambda_{2}}{\lambda_{1}}}$$

Stable node

$$\hat{x}_{2}(t) = rac{\hat{x}_{2}(0)}{\hat{x}_{1}(0)^{rac{\lambda_{2}}{\lambda_{1}}}} \hat{x}_{1}(t)^{rac{\lambda_{2}}{\lambda_{1}}}, \quad \lambda_{1} \neq 0, \,\, \lambda_{2} \neq 0$$

Case 1a: $\lambda_1, \lambda_2 < 0$

The origin is called stable node

Role played by the change of coordinates

Key remark

Same qualitative behavior, up to a coordinate change.

- The origin of the system in the original coordinates is also termed stable node
- Same remark for all the cases we will study in the sequel !

Unstable node

$$\hat{x}_{2}(t) = rac{\hat{x}_{2}(0)}{\hat{x}_{1}(0)^{rac{\lambda_{2}}{\lambda_{1}}}} \hat{x}_{1}(t)^{rac{\lambda_{2}}{\lambda_{1}}}, \quad \lambda_{1} \neq 0, \,\, \lambda_{2} \neq 0$$

Case 1b: $\lambda_1, \lambda_2 > 0$

The origin is called unstable node

Both axes are invariant sets

Degenerate node

$$\hat{x}_{2}(t) = rac{\hat{x}_{2}(0)}{\hat{x}_{1}(0)^{rac{\lambda_{2}}{\lambda_{1}}}} \hat{x}_{1}(t)^{rac{\lambda_{2}}{\lambda_{1}}}, \quad \lambda_{1} \neq 0, \,\, \lambda_{2} \neq 0$$

Case 1c: $\lambda_1 = \lambda_2$

The origin is called stable/unstable degenerate node

Stable degenerate node $\lambda_1 = \lambda_2 < 0$

 $\begin{array}{l} \text{Unstable degenerate node}\\ \lambda_1=\lambda_2>0 \end{array}$

Saddle

$$\hat{x}_{2}(t) = rac{\hat{x}_{2}(0)}{\hat{x}_{1}(0)^{rac{\lambda_{2}}{\lambda_{1}}}} \hat{x}_{1}(t)^{rac{\lambda_{2}}{\lambda_{1}}}, \quad \lambda_{1} \neq 0, \,\, \lambda_{2} \neq 0$$

Case 1d: $\lambda_1 < 0 < \lambda_2$

The origin is called saddle

Both axes are invariant regions

Saddle

$$\begin{split} \dot{\hat{x}}_1 &= \lambda_1 \hat{x}_1 \rightarrow \hat{x}_1(t) = \hat{x}_1(0) e^{\lambda_1 t} \\ \dot{\hat{x}}_2 &= \lambda_2 \hat{x}_2 \rightarrow \hat{x}_2(t) = \hat{x}_2(0) e^{\lambda_2 t} \end{split}$$

Case 1e: degenerate saddle

- $\lambda_1 < \lambda_2 = 0 \rightarrow \text{all states on the } \hat{x}_2 \text{ axis are equilibrium states.}$
- $0 = \lambda_1 < \lambda_2 \rightarrow$ all states on the \hat{x}_1 axis are equilibrium states.

Analysis in the normal coordinates

Case 2:
$$J = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} \quad \lambda \in \mathbb{R}$$

One can show that the state trajectories are given by

$$\hat{x}_1(t) = \hat{x}_1(0)e^{\lambda t} + \hat{x}_2(0)te^{\lambda t}$$
 (1)
 $\hat{x}_2(t) = \hat{x}_2(0)e^{\lambda t}$ (2)

Assume $\hat{x}_2(0) \neq 0$ and "remove" time. If $\lambda \neq 0$, from (2) one gets

$$e^{\lambda t}=rac{\hat{x}_2(t)}{\hat{x}_2(0)}, \quad t=rac{1}{\lambda}{
m ln}\left(rac{\hat{x}_2(t)}{\hat{x}_2(0)}
ight)$$

and using (1) one obtains

$$\hat{x}_1(t) = \hat{x}_1(0) \frac{\hat{x}_2(t)}{\hat{x}_2(0)} + \frac{1}{\lambda} \ln\left(\frac{\hat{x}_2(t)}{\hat{x}_2(0)}\right) \hat{x}_2(t)$$

Improper nodes

$$\hat{x}_1(t) = \hat{x}_1(0)rac{\hat{x}_2(t)}{\hat{x}_2(0)} + rac{1}{\lambda} {
m ln} \left(rac{\hat{x}_2(t)}{\hat{x}_2(0)}
ight) \hat{x}_2(t)$$

Case 2a: $\lambda \neq 0$

The origin is called stable/unstable improper node

• only the \hat{x}_1 axis is invariant

Improper nodes

$$egin{aligned} \hat{x}_1(t) &= \hat{x}_1(0)e^{\lambda t} + \hat{x}_2(0)te^{\lambda t} \ \hat{x}_2(t) &= \hat{x}_2(0)e^{\lambda t} \end{aligned}$$

Case 2a: $\lambda = 0$

The system is unstable

Analysis in normal coordinates

Case 3:
$$J = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} \quad \alpha, \beta \in \mathbb{R} \text{ (eigenvalues: } \alpha \pm j\beta \text{)}$$

Using polar coordinates

$$r = \sqrt{\hat{x}_1^2 + \hat{x}_2^2}$$
$$\phi = \tan^{-1}\left(\frac{\hat{x}_2}{\hat{x}_1}\right)$$

one can show that

$$\dot{r} = \alpha r \rightarrow r(t) = r(0)e^{\alpha t}$$

 $\dot{\phi} = -\beta \rightarrow \phi(t) = \phi(0) - \beta t$

State trajectories spiraling clockwise !

Foci

$$\dot{r} = \alpha r \rightarrow r(t) = r(0)e^{\alpha t}$$

 $\dot{\phi} = -\beta \rightarrow \phi(t) = \phi(0) - \beta t$

Case 3a: eigenvalues with nonzero real part ($\alpha \neq 0$) The origin is called stable/unstable focus

Center

$$\dot{r} = lpha r o r(t) = r(0)e^{lpha t}$$

 $\dot{\phi} = -eta o \phi(t) = \phi(0) - eta t$

Case 3b: eigenvalues with zero real part ($\alpha = 0$)

The origin is called center

Generalization to nonlinear systems

NL:
$$\begin{cases} \dot{x}_1 = f_1(x_1, x_2) \\ \dot{x}_2 = f_2(x_1, x_2) \end{cases}$$

Llnearized systems around the equilibrium state $ar{x} = egin{bmatrix} ar{x}_1 & ar{x}_2 \end{bmatrix}^{ ext{T}}$

$$\mathsf{LIN}: \begin{bmatrix} \dot{\delta x_1} \\ \dot{\delta x_2} \end{bmatrix} = A(\bar{x}) \begin{bmatrix} \delta x_1 \\ \delta x_2 \end{bmatrix} \quad A(\bar{x}) = D_x f(x) \Big|_{x=\bar{x}} = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} \end{bmatrix}_{x=\bar{x}}$$

Generalization to nonlinear systems

Definition

The equilibrium state \bar{x} is hyperbolic if LIN does not have eigenvalues on the imaginary axis

Hartman-Grobman theorem

If $f_1, f_2 \in C^1$ and \bar{x} is hyperbolic, then there exist $\delta > 0$ and an homeomorphism $h : B_{\delta}(\bar{x}) \mapsto \mathbb{R}^2$ that maps state trajectories of NL into state trajectories of LIN and verifies $h(\bar{x}) = 0$.

Remarks

• Homeomorphism: continuous function with a continuous inverse (i.e. a change of coordinates)

Example: h(x) = Tx, det $(T) \neq 0$ is an homeomorphism

• The change of coordinates is unique for all state trajectories until they stay in $B_{\delta}(\bar{x})$

Remarks on Hartman-Grobman theorem

• Intuitively, *h* is a distorting lens

- The qualitative behavior of the state trajectories of NL around \bar{x} and of LIN around $\delta x = 0$ is identical
- When the theorem can be applied the equilibria of NL are classified as those of LIN
- However we are classifying only local behaviors

Remarks on Hartman-Grobman theorem

It is important that $A(\bar{x})$ does not have eigenvalues with zero real part

Example

$$\mathsf{NL}: \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1 - \epsilon x_1^2 x_2 \end{cases} \quad \bar{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\mathsf{LIN}: \begin{cases} \dot{\delta x}_1 = \delta x_2 \\ \dot{\delta x}_2 = -\delta x_1 \end{cases} \quad A(\bar{x}) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \mathsf{Eigenvalues:} \quad 0 \pm j$$

The origin of LIN is a center but the origin of NL is more like

• a "stable focus" if $\epsilon > 0$

• an "unstable focus" if $\epsilon < 0$

Example

Duffing model

NL system

Linearized system

 $\dot{x}_1 = x_2 \qquad \qquad \dot{\delta x}_1 = \delta x_2 \\ \dot{x}_2 = x_1 - x_1^3 - \eta x_2, \ \eta = 1 \qquad \qquad \dot{\delta x}_2 = \delta x_1 - 3\bar{x}_1^2 \delta x_1 - \delta x_2$

Around
$$p_1 = \begin{bmatrix} -1 & 0 \end{bmatrix}^{\mathrm{T}}$$
 and $p_3 = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathrm{T}}$
 $D_x f = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} \Rightarrow \text{ Eigenvalues: } -\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$

Hartman-Grobman theorem can be applied $ightarrow p_1$ and p_3 are stable foci

Example

Around $p_2 = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\mathrm{T}}$

$$D_x f = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \Rightarrow$$
 Eigenvalues: $-1 \pm \frac{\sqrt{5}}{2}$

Hartman-Grobman theorem can be applied $\rightarrow p_2$ is a saddle

Phase plane - conclusions

Analysis around an equilibrium

When $x(t) \in \mathbb{R}^2$, one can study the qualitative behavior of state trajectories around an equilibrium state

