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Phase plan analysis

Problem

When x(t) € R?, study state trajectories around an equilibrium state

x = f(x) __|0x = Dif

0x L} Analysis of dx(t)

0x = 0: equilibrium

X=X
x: equilibrium

\ //
\ /7
N ’
\

Analysis of x(t) around X ?



Review: stability of an equilibrium state
Let X be an equilibrium state for the NL invariant system x = f(x)

Ball centered in z € R” of radius § > 0
Bs(z) ={zeR": ||z-2Z| < 4}

Definition (Lyapunov stability)
The equilibrium state X is
@ stable if

Ve > 035 >0, x(0) € Bs(xX) = x(t) € Be(x),Vt >0
o Asymptotically Stable (AS) if it is stable and 3y > 0 such that

x(0) € By(x) = lim_{l¢(t,x(0)) — x| =0

@ unstable if it is not stable

v
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Remarks

X = 0 stable x =0 AS X = 0 unstable

ai
4%/

Regions of attraction of X AS

X4

e
R

@ X C RR" is a region of attraction of x if
x(0) € X = lim_é(t,x(0)) — x| = 0

Example: B,(X) is a region of attraction

@ THE region of attraction of X is the union of all regions of attraction
of X (i.e. it is maximal)
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Review: stability tests for LTI systems
LTI system
x=Ax, x(t)eR"

System eigenvalues = eigenvalues of the matrix A

Theorem
The equilibrium state x = 0 of a linear system is
e AS & all system eigenvalues have real part < 0
@ unstable if at least a system eigenvalue has real part > 0

@ stable if all system eigenvalues have real part < 0, at least one has
zero real part and all eigenvalues with zero real part are simple

When all eigenvalues have real part < 0 and there are multiple eigenvalues
with zero real part, the equilibrium state can be either stable or unstable
and more advanced tools are needed for reaching a conclusion.

v
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Review: stability test for the equilibrium states of an NL
system

Linearized system around X

NL system
NL : x = f(x) LIN : 0x = A(X)dx
x: equilibrium state A(X) = Dyf(x) .
Theorem

The equilibrium state x of NL
@ is AS if all eigenvalues of LIN have real part < 0

@ is unstable if at least an eigenvalue of LIN has real part > 0

No conclusion if all eigenvalues of LIN have real part < 0 and at least an
eigenvalue has zero real part
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Invariant regions

Definition
A set G C R" is (positively) invariant for x = f(x) if

x(0) € G = ¢(t,x(0)) € G, Vt >0

Examples
o G = {x}, x equilibrium state
e G=R"
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Review: equivalent LTI systems

x = Ax + Bu
y = Cx + Du

o Change of coordinates X (t) = Tx (t), T € R"*" invertible.

R(t) = Tx(t) = T(Ax(t)+ Bu(t)) = T(AT % (t) + Bu(t))
= TAT1%(t)+ TBu(t) = A% (t) + Bu(t)
A=TAT Y, B=TB
y(t) = Cx(t)+ Du(t) = CT71%(t) + Du(t) = Cx(t) + Du(t)
C=cTt', D=0D
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Review: equivalent LTI systems

% — Ao 4 B % =A% + Bu
y=CX+DU y:&)"(—}—bu

Definition

The system (A, B, C, D) is equivalent to the system (A, B, C, D) in the
sense that for an input u(t), t > 0 and two initial states xp e X verifying
X0 = Txp, the state trajectories verify X (t) = Tx(t), t > 0, and outputs
are identical )

Remark

A and A are similar = they have the same eigenvalues
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LTI systems in the phase plane

x=Ax, xeR2

Change of coordinates: % (t) = Tx(t), T € R>*2 invertible. Equivalent
system: .
k=J%x, J=TAT

@ One can always choose T such that J is in real Jordan form
» the new coordinates are called normal

Case 1: A has real eigenvalues A1, A2 and independent eigenvectors
(A is diagonalizable)
_|A1 O
=[5 )
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Phase plan: analysis in normal coordinates

Case 2: A has two real, identical eigenvalues A\1 = A = A and
linearly dependent eigenvectors (A is not diagonalizable)

Al
=[p
Define V), = {v : Av = Av}. This case happens ony if
dim(V)) = 1.

Case 3: A has complex conjugate eigenvalues
M=a+jBl=a—jp
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How T is computed 7

Case 1:
Case 2:

Case 3:

Avi = A\ivy, Avo = oo = T-1= [ 1%} ‘ Vo ]

Av = A\v. Compute a generalized eigenvector u verifying
Au = Au+ v. One has

A[vu]:[AvAu]:[vu]P 1

) )\]:>T_1:[vu]

Let vi = u+jv, vo = u — jv be the eigenvectors associated
to the eigenvalues \;1 = a +j, Ao = a — j. One has

Alu+jv) = (e +B)(u+iv) Alu—jv) = (a—jB)(u—jv)
Summing and subtracting:
Au=au—pv Av=_pu+av

Alulv]=lulv]] % D=7 =[u]v]
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Next

Taxonomy of equilibria

The goal is to study the qualitative behavior of the state trajectories of an
LTI system in the phase plane around the equilibrium state X = 0
@ the behavior depends on system eigenvalues

@ we use normal coordinates to ease the analysis
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Analysis in normal coordinates

A1 0

Case 1: J = {O o

:| )\1,)\2 eR
X1 = )\1)’?1 — )’?1(1‘) = Al(O)eAlt

);?2 = ko — )?z(t) = )?2(0)6

“Remove” time from the equations. If A\; # 0, Ay # 0 and %1(0) # 0 one
gets

21 M MX 0 A
)?2(1%2 Zﬁz(O)A;e 3(22t:>“<2(0)x2 Mt — %2(0)%2 2a(t)
%(0)
and then o
N %2(0) A
2( )— Lxl(t)h
X1(0)>‘1
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Stable node

. %(0) 2
fat) = %)™, M#0, A2 #0
X]_(O) A1
4
Case la: A\, A <0
The origin is called stable node
v
22 22
2> 1 k<1
ER =5 : s ) EI I B S R )
Both axes are invariant sets
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Role played by the change of coordinates

In normal coordinates In the original coordinates

S
LI

Key remark
Same qualitative behavior, up to a coordinate change.

@ The origin of the system in the original coordinates is also termed
stable node

@ Same remark for all the cases we will study in the sequel !
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Unstable node

X (0
%o(t) = % qu(t)%, A #0, A2 #0
%1(0)*

Case 1b: A\, A >0

The origin is called unstable node

- X2
Example: 2>1

Both axes are invariant sets
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Degenerate node

%(0)
X1(0)T

()*1 M #0, A #0

Xo(t) =

Case 1c: A\ = X\

The origin is called stable/unstable degenerate node

Stable degenerate node Unstable degenerate node
A=A <0 AM=X>0

EH

o v

Ferrari Trecate (DIS) Nonlinear systems Advanced autom. and control 18 / 33



Saddle

X (0
%o(t) = %a( zzfq(t)%, AL #0, A2 #0
%1(0) >

Case 1d: \i <0< X\

The origin is called saddle

Both axes are invariant regions
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Saddle

5.\(1 = \1Xy — )’\(1(1“) = >A<1(0)e>‘1t

).A<2 = XX — )?2(1') = >A<2(0)e>‘2t

Case le: degenerate saddle
@ \1 < A\p =0 — all states on the X axis are equilibrium states.

@ 0= )1 < A\p — all states on the X; axis are equilibrium states.

)\1<)\2=0 O:>\1<)\2

v y
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Analysis in the normal coordinates

Al
Case 2: J = [0 )\} AeR
One can show that the state trajectories are given by
)?1(1‘) = >A<1(O)e)‘t + )?2(0)te)‘t (1)
%2(t) = %2(0)eM (2)

Assume X2(0) # 0 and “remove” time. If X # 0, from (2) one gets

w201 (0
%2(0)’ A\ %(0)

and using (1) one obtains

() = 51020+ 3in (jg%) 52(0

Ferrari Trecate (DIS) Nonlinear systems Advanced autom. and control 21 /33

v




Improper nodes

)'?1(1.') = 5\<1(0)

X2(0)

4
3

)?2(1') 1 )?2(1') ~
— n <m> %0(t)

Case 2a: A #0

The origin is called stable/unstable improper node

@ only the X3 axis is invariant

v
A<0 A>0

2 ! 2| + i H T
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Improper nodes

a(t) =
%o(t) =

% (O)e)‘t + %2(0)teM

%(0)e”

Case 2a: A =0
The system is unstable
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Analysis in normal coordinates

(0%
—p

Using polar coordinates

Case 3: J = { ﬁ a,f € R (eigenvalues: a + j3)

_ Je2 4 o2
r=3\/Xy +X5
1 (%
p=tan"t (=
X1

r=ar — r(t) = r(0)e**

¢ =—B— ¢(t) = ¢(0) — Bt

one can show that

State trajectories spiraling clockwise !
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Foci

i =ar — r(t) = r(0)e*

¢ =—B— ¢(t) = $(0) — St

Case 3a: eigenvalues with nonzero real part (a # 0)

The origin is called stable/unstable focus

Stable focus (a < 0) Unstable focus (o > 0)

—
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Center

r=ar— r(t) =r(0)e*

¢ =—B— ¢(t) = ¢(0) — Bt

Case 3b: eigenvalues with zero real part (o = 0)

The origin is called center
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Generalization to nonlinear systems

L« ):<1 = fi(x1, x2)
X0 = f(x1,x2)

. I _ _  _T
LInearized systems around the equilibrium state x = [xl Xg]

Oh(x) Oh(x)

. (5X1 o — 5X1 -\ . 8X1 3X2
LIN : [& 2] = A(%) [5)(2] AR) = DXf(x)‘X:)_( ary
8x1 aXQ =52
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Generalization to nonlinear systems

Definition
The equilibrium state x is hyperbolic if LIN does not have eigenvalues on
the imaginary axis

Hartman-Grobman theorem

If fi, > € C! and X is hyperbolic, then there exist § > 0 and an
homeomorphism h : Bs(X) — R? that maps state trajectories of NL into
state trajectories of LIN and verifies h(x) = 0.

Remarks

@ Homeomorphism: continuous function with a continuous inverse (i.e.
a change of coordinates)

Example: h(x) = Tx, det(T) # 0 is an homeomorphism

@ The change of coordinates is unique for all state trajectories until they
stay in Bs(x)

v
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Remarks on Hartman-Grobman theorem

o Intuitively, h is a distorting lens

e '\\ 3 9. .
o\ \/

.I_t*‘\

. { \ L4
\ \
. ) \ .
*S/ ('.°
*£ \e

(7]
—

@ The qualitative behavior of the state trajectories of NL around X and
of LIN around éx = 0 is identical )

@ When the theorem can be applied the equilibria of NL are classified as
those of LIN
@ However we are classifying only local behaviors
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Remarks on Hartman-Grobman theorem

It is important that A(x) does not have eigenvalues with zero real part

Example

. [ =% A(x) [ 0 1] Eigenvalues: 0+
. . X) = 1genvalues:
(SXQ = —5X1 -1 0 & J

The origin of LIN is a center but the origin of NL is more like
@ a “stable focus” if ¢ > 0

@ an “unstable focus” if e < 0
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Example

Duffing model

NL system Linearized system
Xp = X1 — x13 —nxp, n=1 5x2 = 6x1 — 3)_(125X1 — 0x>

Around py = [-1 0] and ps=[1 0]"

1 3
] =- Eigenvalues: — Eztjg

0 1

D, f = [_2 -

Hartman-Grobman theorem can be applied — p; and p3 are stable foci

Ferrari Trecate (DIS) Nonlinear systems Advanced autom. and control 31/33



Example

Around pp = [0 O}T

5
D, f = [(1) _11} = Eigenvalues: — 1 + \/7_

Hartman-Grobman theorem can be applied — py is a saddle

Moo s o

X
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Phase plane - conclusions

Analysis around an equilibrium

When x(t) € R?, one can study the qualitative behavior of state
trajectories around an equilibrium state

o Eigenvalues

x = f(x) -k =Dof| ax f---- OFPA|
X: equilibrium _ = o Classification
4 d0x = 0: equilibrium of 6x = 0

\ II
! 1
\

!

Hartman-Grobman theorem: analysis around x
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