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Phase plan analysis

Problem

When x(t) ∈ R2, study state trajectories around an equilibrium state

ẋ = f (x)

x̄ : equilibrium

˙δx = Dx f
∣∣∣
x=x̄

δx

δx = 0: equilibrium

Analysis of δx(t)

Analysis of x(t) around x̄ ?

First, a review of basic results ...
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Review: stability of an equilibrium state

Let x̄ be an equilibrium state for the NL invariant system ẋ = f (x)

Ball centered in z̄ ∈ Rn of radius δ > 0

Bδ(z̄) = {z ∈ Rn : ‖z − z̄‖ < δ}

Definition (Lyapunov stability)

The equilibrium state x̄ is

stable if

∀ε > 0 ∃δ > 0, x(0) ∈ Bδ(x̄)⇒ x(t) ∈ Bε(x̄), ∀t ≥ 0

Asymptotically Stable (AS) if it is stable and ∃γ > 0 such that

x(0) ∈ Bγ(x̄)⇒ lim
t→+∞

‖φ(t, x(0))− x̄‖ = 0

unstable if it is not stable
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Remarks
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Regions of attraction of x̄ AS

X ⊆ Rn is a region of attraction of x̄ if

x(0) ∈ X ⇒ lim
t→+∞

‖φ(t, x(0))− x̄‖ = 0

Example: Bγ(x̄) is a region of attraction

THE region of attraction of x̄ is the union of all regions of attraction
of x̄ (i.e. it is maximal)
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Review: stability tests for LTI systems

LTI system

ẋ = Ax , x(t) ∈ Rn

System eigenvalues = eigenvalues of the matrix A

Theorem

The equilibrium state x̄ = 0 of a linear system is

AS ⇔ all system eigenvalues have real part < 0

unstable if at least a system eigenvalue has real part > 0

stable if all system eigenvalues have real part ≤ 0, at least one has
zero real part and all eigenvalues with zero real part are simple

When all eigenvalues have real part ≤ 0 and there are multiple eigenvalues
with zero real part, the equilibrium state can be either stable or unstable
and more advanced tools are needed for reaching a conclusion.
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Review: stability test for the equilibrium states of an NL
system

NL system

NL : ẋ = f (x)

x̄ : equilibrium state

Linearized system around x̄

LIN : ˙δx = A(x̄)δx

A(x̄) = Dx f (x)
∣∣∣
x=x̄

Theorem

The equilibrium state x̄ of NL

is AS if all eigenvalues of LIN have real part < 0

is unstable if at least an eigenvalue of LIN has real part > 0

No conclusion if all eigenvalues of LIN have real part ≤ 0 and at least an
eigenvalue has zero real part

Ferrari Trecate (DIS) Nonlinear systems Advanced autom. and control 6 / 33



Invariant regions

Definition

A set G ⊆ Rn is (positively) invariant for ẋ = f (x) if

x(0) ∈ G ⇒ φ(t, x(0)) ∈ G , ∀t ≥ 0

Examples

G = {x̄}, x̄ equilibrium state

G = Rn
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Review: equivalent LTI systems

ẋ = Ax + Bu

y = Cx + Du

Change of coordinates x̂ (t) = Tx (t), T ∈ Rn×n invertible.

.
x̂(t) = Tẋ (t) = T (Ax (t) + Bu (t)) = T (AT−1x̂ (t) + Bu (t))

= TAT−1x̂ (t) + TBu (t) = Âx̂ (t) + B̂u (t)

Â = TAT−1, B̂ = TB

y (t) = Cx (t) + Du (t) = CT−1x̂ (t) + Du (t) = Ĉ x̂ (t) + D̂u (t)

Ĉ = CT−1, D̂ = D
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Review: equivalent LTI systems

ẋ = Ax + Bu

y = Cx + Du

˙̂x = Âx̂ + B̂u

y = Ĉ x̂ + D̂u

Definition

The system (Â, B̂, Ĉ , D̂) is equivalent to the system (A,B,C ,D) in the
sense that for an input u (t), t ≥ 0 and two initial states x0 e x̂0 verifying
x̂0 = Tx0, the state trajectories verify x̂ (t) = Tx (t), t ≥ 0, and outputs
are identical

Remark

A and Â are similar ⇒ they have the same eigenvalues
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LTI systems in the phase plane

ẋ = Ax , x ∈ R2

Change of coordinates: x̂ (t) = Tx (t) , T ∈ R2×2 invertible. Equivalent
system:

˙̂x = Jx̂ , J = TAT−1

One can always choose T such that J is in real Jordan form
I the new coordinates are called normal

Case 1: A has real eigenvalues λ1, λ2 and independent eigenvectors
(A is diagonalizable)

J =

[
λ1 0
0 λ2

]
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Phase plan: analysis in normal coordinates

Case 2: A has two real, identical eigenvalues λ1 = λ2 = λ and
linearly dependent eigenvectors (A is not diagonalizable)

J =

[
λ 1
0 λ

]
Define Vλ = {v : Av = λv}. This case happens ony if
dim(Vλ) = 1.

Case 3: A has complex conjugate eigenvalues
λ1 = α + jβ λ2 = α− jβ

J =

[
α β
−β α

]
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How T is computed ?

Case 1: Av1 = λ1v1, Av2 = λ2v2 ⇒ T−1 =
[
v1 v2

]
Case 2: Av = λv . Compute a generalized eigenvector u verifying

Au = λu + v . One has

A
[
v u

]
=
[
Av Au

]
=
[
v u

] [λ 1
0 λ

]
⇒ T−1 =

[
v u

]
Case 3: Let v1 = u + jv , v2 = u − jv be the eigenvectors associated

to the eigenvalues λ1 = α + jβ, λ2 = α− jβ. One has

A(u + jv) = (α + jβ)(u + jv) A(u − jv) = (α− jβ)(u − jv)

Summing and subtracting:

Au = αu − βv Av = βu + αv

A
[
u v

]
=
[
u v

] [ α β
−β α

]
⇒ T−1 =

[
u v

]
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Next

Taxonomy of equilibria

The goal is to study the qualitative behavior of the state trajectories of an
LTI system in the phase plane around the equilibrium state x̄ = 0

the behavior depends on system eigenvalues

we use normal coordinates to ease the analysis
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Analysis in normal coordinates

Case 1: J =

[
λ1 0
0 λ2

]
λ1, λ2 ∈ R

˙̂x1 = λ1x̂1 → x̂1(t) = x̂1(0)eλ1t

˙̂x2 = λ2x̂2 → x̂2(t) = x̂2(0)eλ2t

“Remove” time from the equations. If λ1 6= 0, λ2 6= 0 and x̂1(0) 6= 0 one
gets

x̂2(t)
λ1
λ2 = x̂2(0)

λ1
λ2 e

λ1 6λ2
6λ2

t
= x̂2(0)

λ1
λ2 eλ1t =

x̂2(0)
λ1
λ2

x̂1(0)
x̂1(t)

and then

x̂2(t) =
x̂2(0)

x̂1(0)
λ2
λ1

x̂1(t)
λ2
λ1
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Stable node

x̂2(t) =
x̂2(0)

x̂1(0)
λ2
λ1

x̂1(t)
λ2
λ1 , λ1 6= 0, λ2 6= 0

Case 1a: λ1, λ2 < 0

The origin is called stable node

λ2

λ1
> 1
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Role played by the change of coordinates

In normal coordinates
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In the original coordinates
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Key remark

Same qualitative behavior, up to a coordinate change.

The origin of the system in the original coordinates is also termed
stable node

Same remark for all the cases we will study in the sequel !
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Unstable node

x̂2(t) =
x̂2(0)

x̂1(0)
λ2
λ1

x̂1(t)
λ2
λ1 , λ1 6= 0, λ2 6= 0

Case 1b: λ1, λ2 > 0

The origin is called unstable node

Example: λ2

λ1
> 1
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Degenerate node

x̂2(t) =
x̂2(0)

x̂1(0)
λ2
λ1

x̂1(t)
λ2
λ1 , λ1 6= 0, λ2 6= 0

Case 1c: λ1 = λ2

The origin is called stable/unstable degenerate node

Stable degenerate node
λ1 = λ2 < 0
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Unstable degenerate node
λ1 = λ2 > 0
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Saddle

x̂2(t) =
x̂2(0)

x̂1(0)
λ2
λ1

x̂1(t)
λ2
λ1 , λ1 6= 0, λ2 6= 0

Case 1d: λ1 < 0 < λ2

The origin is called saddle
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Saddle

˙̂x1 = λ1x̂1 → x̂1(t) = x̂1(0)eλ1t

˙̂x2 = λ2x̂2 → x̂2(t) = x̂2(0)eλ2t

Case 1e: degenerate saddle

λ1 < λ2 = 0→ all states on the x̂2 axis are equilibrium states.

0 = λ1 < λ2 → all states on the x̂1 axis are equilibrium states.

λ1 < λ2 = 0
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0 = λ1< λ2
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Analysis in the normal coordinates

Case 2: J =

[
λ 1
0 λ

]
λ ∈ R

One can show that the state trajectories are given by

x̂1(t) = x̂1(0)eλt + x̂2(0)teλt (1)

x̂2(t) = x̂2(0)eλt (2)

Assume x̂2(0) 6= 0 and “remove” time. If λ 6= 0, from (2) one gets

eλt =
x̂2(t)

x̂2(0)
, t =

1

λ
ln

(
x̂2(t)

x̂2(0)

)

and using (1) one obtains

x̂1(t) = x̂1(0)
x̂2(t)

x̂2(0)
+

1

λ
ln

(
x̂2(t)

x̂2(0)

)
x̂2(t)
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Improper nodes

x̂1(t) = x̂1(0)
x̂2(t)

x̂2(0)
+

1

λ
ln

(
x̂2(t)

x̂2(0)

)
x̂2(t)

Case 2a: λ 6= 0

The origin is called stable/unstable improper node

only the x̂1 axis is invariant

λ < 0
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λ > 0
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Improper nodes

x̂1(t) = x̂1(0)eλt + x̂2(0)teλt

x̂2(t) = x̂2(0)eλt

Case 2a: λ = 0

The system is unstable
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Analysis in normal coordinates

Case 3: J =

[
α β
−β α

]
α, β ∈ R (eigenvalues: α± jβ)

Using polar coordinates

r =
√

x̂2
1 + x̂2

2

φ = tan−1

(
x̂2

x̂1

)
one can show that

ṙ = αr → r(t) = r(0)eαt

φ̇ = −β → φ(t) = φ(0)− βt

State trajectories spiraling clockwise !
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Foci

ṙ = αr → r(t) = r(0)eαt

φ̇ = −β → φ(t) = φ(0)− βt

Case 3a: eigenvalues with nonzero real part (α 6= 0)

The origin is called stable/unstable focus

Stable focus (α < 0)
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Unstable focus (α > 0)
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Center

ṙ = αr → r(t) = r(0)eαt

φ̇ = −β → φ(t) = φ(0)− βt

Case 3b: eigenvalues with zero real part (α = 0)

The origin is called center
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Generalization to nonlinear systems

NL :

{
ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

LInearized systems around the equilibrium state x̄ =
[
x̄1 x̄2

]T
LIN :

[
˙δx1
˙δx2

]
= A(x̄)

[
δx1

δx2

]
A(x̄) = Dx f (x)

∣∣∣
x=x̄

=

∂f1(x)

∂x1

∂f1(x)

∂x2
∂f2(x)

∂x1

∂f2(x)

∂x2


x=x̄
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Generalization to nonlinear systems

Definition

The equilibrium state x̄ is hyperbolic if LIN does not have eigenvalues on
the imaginary axis

Hartman-Grobman theorem

If f1, f2 ∈ C1 and x̄ is hyperbolic, then there exist δ > 0 and an
homeomorphism h : Bδ(x̄) 7→ R2 that maps state trajectories of NL into
state trajectories of LIN and verifies h(x̄) = 0.

Remarks

Homeomorphism: continuous function with a continuous inverse (i.e.
a change of coordinates)

I Example: h(x) = Tx , det(T ) 6= 0 is an homeomorphism

The change of coordinates is unique for all state trajectories until they
stay in Bδ(x̄)
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Remarks on Hartman-Grobman theorem

Intuitively, h is a distorting lens

�

h

x 0

The qualitative behavior of the state trajectories of NL around x̄ and
of LIN around δx = 0 is identical

When the theorem can be applied the equilibria of NL are classified as
those of LIN

However we are classifying only local behaviors

Ferrari Trecate (DIS) Nonlinear systems Advanced autom. and control 29 / 33



Remarks on Hartman-Grobman theorem

It is important that A(x̄) does not have eigenvalues with zero real part

Example

NL :

{
ẋ1 = x2

ẋ2 = −x1 − εx2
1x2

x̄ =

[
0
0

]

LIN :

{
˙δx1 = δx2

˙δx2 = −δx1

A(x̄) =

[
0 1
−1 0

]
Eigenvalues: 0± j

The origin of LIN is a center but the origin of NL is more like

a “stable focus” if ε > 0

an “unstable focus” if ε < 0
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Example

Duffing model

NL system

ẋ1 = x2

ẋ2 = x1 − x3
1 − ηx2, η = 1

Linearized system

˙δx1 = δx2

˙δx2 = δx1 − 3x̄2
1 δx1 − δx2

Around p1 =
[
−1 0

]T
and p3 =

[
1 0

]T
Dx f =

[
0 1
−2 −1

]
⇒ Eigenvalues:−

1

2
± j

√
3

2

Hartman-Grobman theorem can be applied → p1 and p3 are stable foci
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Example

Around p2 =
[
0 0

]T
Dx f =

[
0 1
1 −1

]
⇒ Eigenvalues:− 1±

√
5

2

Hartman-Grobman theorem can be applied → p2 is a saddle
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Phase plane - conclusions

Analysis around an equilibrium

When x(t) ∈ R2, one can study the qualitative behavior of state
trajectories around an equilibrium state

ẋ = f (x)

x̄ : equilibrium

˙δx = Dx f
∣∣∣
x=x̄

δx

δx = 0: equilibrium

Eigenvalues

of Dx f
∣∣∣
x=x̄

Classification
of δx = 0

Hartman-Grobman theorem: analysis around x̄
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