Nonlinear systems Closed orbits and limit cycles

G. Ferrari Trecate

Dipartimento di Ingegneria Industriale e dell'Informazione Università degli Studi di Pavia

Advanced automation and control

Closed orbits

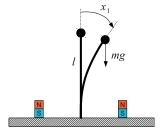
We still analyze NL systems in the phase plane

Definition: closed orbits

A closed orbit $\gamma \subset \mathbb{R}^2$ of the NL system $\dot{x} = f(x)$, $x(t) \in \mathbb{R}^2$ is the projection on the phase plane of a periodic and non constant state trajectory. Equivalently, γ is a closed orbit if

- γ is not an equilibrium point
- $\exists T > 0, \forall x_0 \in \gamma, x(nT) = x_0, \ \forall n \in \mathbb{N}$

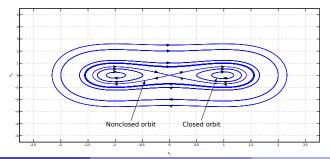
Example: undamped Duffing oscillator



bystem

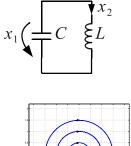
$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = x_1 - x_1^3 - \eta x_2, \ \eta = 0$

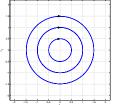


Ferrari Trecate (DIS)

Example: harmonic oscillator



Model (C = 1, L = 1) $\dot{x}_1 = x_2$ $\dot{x}_2 = -x_1$



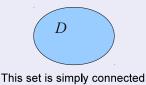
Every state trajectory $\phi(t, x_0)$, $x_0 \neq 0$ produces a closed orbit that depends upon the initial state

How to check if closed orbits exist ?

Bendixson criterion (absence of closed orbits)

Simply connected sets

A set is simply connected if it does not have "holes"



This set is not simply connected

Bendixson criterion

Assume that $f \in \mathcal{C}^1$ and let $D \subseteq \mathbb{R}^2$ be a simply connected set such that

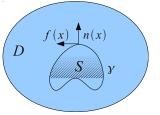
$$\operatorname{div}(f) = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}$$

is not identically zero and does not change sign in D. Then, there are no closed orbits in D.

Ferrari Trecate (DIS)

Proof of Bendixson criterion

• By contradiction, assume there is a closed orbit γ in D



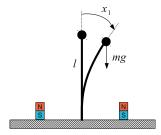
• From divergence theorem

- S: interior of γ
- D simply connected $\Rightarrow S \subseteq D$
- n(x): outgoing normal from S
- by construction $f(x) \cdot n(x) = 0$

$$0 = \int_{\gamma} f(x) \cdot n(x) = \iint_{S} \operatorname{div}(f) dx_1 dx_2$$

This is a contradiction since, in S, div(f) is not identically zero and it does not change sign

Example: damped Duffing oscillator



System

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = x_1 - x_1^3 - \eta x_2, \ \eta > 0$

Application of Bendixson criterion

$$\operatorname{div}(f) = \frac{\partial x_2}{\partial x_1} + \frac{\partial}{\partial x_2}(x_1 - x_1^3 - \eta x_2) = -\eta < \mathbf{0}, \quad \forall (x_1, x_2) \in \mathbb{R}^2$$

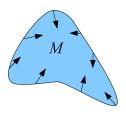
Pick $D = \mathbb{R}^2$. Bendixson \Rightarrow no closed orbit in \mathbb{R}^2 .

Invariant sets

Definition

A set $M \subseteq \mathbb{R}^n$ is (positively) invariant for $\dot{x} = f(x), \ x(t) \in \mathbb{R}^n$ if

 $\forall x_0 \in M \text{ it holds } \phi(t, x_0) \in M, \ \forall t \geq 0$



Theorem

If $V : \mathbb{R}^n \to \mathbb{R}$ is of class \mathcal{C}^1 and $M = \{x : V(x) \le c\}$, then M is invariant if

 $f(x) \cdot D_x V(x) \le 0, \ \forall x : V(x) = c$ i.e. if x is on the boundary of M, then the vector f(x) points into M.

Remark $(f(x) \in \mathbb{R}^2, V(x) \in \mathbb{R})$

$$f(x) \cdot D_x V(x) = \frac{\partial V}{\partial x_1}(x) f_1(x) + \frac{\partial V}{\partial x_2}(x) f_2(x)$$

Poincaré - Bendixson theorem

Theorem (presence of closed orbits)

Consider the NL system

$$\dot{x}_1 = f_1(x_1, x_2)$$

 $\dot{x}_2 = f_2(x_1, x_2)$

and let $M \subseteq \mathbb{R}^2$ be a nonempty, closed and bounded set such that the following conditions simultaneously hold

- (a) *M* is invariant;
- (b) M does not contain equilibrium states or it contains a single equilibrium state \bar{x} that is either an unstable focus or an unstable node.

Then M contains a closed orbit.

Remark
(b)
$$\Leftrightarrow D_x f\Big|_{x=\bar{x}}$$
 has only eigenvalues with real part > 0.

Poincaré - Bendixson theorem

Remark



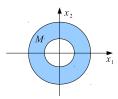
State trajectories cannot converge to an equilibrium state in M and they must lie forever in $M \rightarrow$ closed orbits exist.

Example: harmonic oscillator

System

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = -x_1$$

Let $M = \{x : c_1 \le V(x) \le c_2\}$ where $V(x) = x_1^2 + x_2^2$, $c_1, c_2 > 0$. Is there any closed orbit in M?



• *M* is nonempty closed and bounded.

•
$$f(x) \cdot \nabla V(x) = 2x_2x_1 - 2x_1x_2 = 0$$

M is invariant (check it at home !!)

There are no equilibrium states in M (because $c_2 \ge c_1 > 0$) From the Poincaré-Bendixson theorem there is a closed orbit in M^a

^aIn this case there are infinite closed orbits.

Example

System

$$\dot{x}_1 = x_1 + x_2 - x_1 \left(x_1^2 + x_2^2 \right) \dot{x}_2 = -2x_1 + x_2 - x_2 \left(x_1^2 + x_2^2 \right)$$

Let $M = \{x : V(x) \le c\}$ where $V(x) = x_1^2 + x_2^2$. For $c \ge 2$ is there any closed orbit in M ?

Solution

Only one equilibrium state
$$\bar{x} = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\mathrm{T}}$$
.

$$D_x f\Big|_{x=\bar{x}} = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \Rightarrow$$
 Eigenvalues: $1 \pm j\sqrt{2}$

M is nonempty, closed, bounded and contains an unstable focus.

Example

Compute for which values of c the set M is invariant $V(x) \in C^1$. At points x such that V(x) = c one has

$$\begin{aligned} \frac{\partial V}{\partial x_1} f_1 &+ \frac{\partial V}{\partial x_2} f_2 = \\ &= 2x_1 \left(x_1 + x_2 - x_1 \left(x_1^2 + x_2^2 \right) \right) + 2x_2 \left(-2x_1 + x_2 - x_2 \left(x_1^2 + x_2^2 \right) \right) = \\ &= 2 \left(x_1^2 + x_2^2 \right) - 2 \left(x_1^2 + x_2^2 \right)^2 - 2x_1 x_2 \le \\ &\underbrace{\leq}_{|2x_1x_2| \le x_1^2 + x_2^2} 2 \left(x_1^2 + x_2^2 \right) - 2 \left(x_1^2 + x_2^2 \right)^2 + \left(x_1^2 + x_2^2 \right) = \\ &= 3c - 2c^2 \end{aligned}$$

Therefore M is invariant for $c \ge 1.5$ and, from Poincaré-Bendixson theorem, there is a closed orbit in M.

Closed orbits and equilibria

Index theorem

Let γ be a closed orbit for

$$\dot{x}_1 = f_1(x_1, x_2)$$

 $\dot{x}_2 = f_2(x_1, x_2)$

and let G be the set of points in the interior of γ . Then,

(a) there is at least an equilibrium state in G
(b) if the equilibrium states in G are hyperbolic ^a, then N - S = 1, where
N is the number of nodes and foci in G
S is the number of saddles in G

^aThis means the linearized system does not have eigenvalues with zero real part.

.

Example

Problem

$$\dot{x}_1 = -x_1 + x_1 x_2$$
$$\dot{x}_2 = x_1 + x_2 - 2x_1 x_2$$

Does it exist a closed orbit that embraces all equilibrium states ?

Two equilibrium states:

$$p_{1} = \begin{bmatrix} 0\\0 \end{bmatrix} \Rightarrow D_{x}f\Big|_{x=p_{1}} = \begin{bmatrix} -1 & 0\\1 & 1 \end{bmatrix} \Rightarrow \text{saddle}$$
$$p_{2} = \begin{bmatrix} 1\\1 \end{bmatrix} \Rightarrow D_{x}f\Big|_{x=p_{2}} = \begin{bmatrix} 0 & 1\\-1 & -1 \end{bmatrix} \Rightarrow \text{stable focus}$$

In order to have N - S = 1, a closed orbit can only embrace p_2 .

Limit cycles

Definition

A limit cycle is a closed orbit γ such that there is $\tilde{x} \notin \gamma$ and

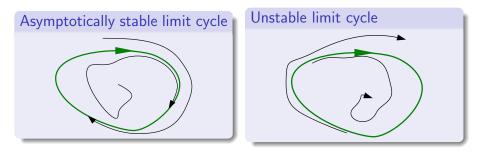
$$\phi(t, \tilde{x}) \rightarrow \gamma \text{ for } t \rightarrow +\infty \text{ or for } t \rightarrow -\infty$$

Example

The harmonic oscillator has closed orbits but no limit cycles

- Limit cycles cannot be generated by LTI systems !
- There are tools for checking if a closed orbit is a limit cycle (not in this course)

Examples of limit cycles



Semistable limit cycle

