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Invariant set theorems

In a neighborhood of x̄ = 0 it can happen that V̇ is only nsd even if x̄ = 0
is AS (see, e.g., the pendulum example). In this case, one can use
theorems attibuted to LaSalle that characterize attractivity of invariant
sets.

Review

A set G ⊆ Rn is (positively) invariant for ẋ = f (x) if

x(0) ∈ G ⇒ φ(t, x(0)) ∈ G , ∀t ≥ 0

Examples

G = {x̄}, x̄ equilibrium state

G = {p1, p2, p3} if pi ∈ Rn, i = 1, 2, 3 are equilibrium states

Periodic orbits and limit cycles

G = Rn
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Local LaSalle theorem

Theorem

Let V (x) ∈ C1 be a scalar function with the following properties:

∃l > 0 such that the level set Ωl = {x : V (x) < l} is bounded

V̇ (x) ≤ 0 ∀x ∈ Ωl

Let R =
{
x : V̇ (x) = 0

}
∩ Ωl and let M the largest invariant set in R.

Then, ∀x(0) ∈ Ωl one has φ(t, x(t))→ M for t → +∞a

aIn the sense that limt→+∞ infz∈M ‖φ(t, x(0))− z‖ = 0
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Local LaSalle theorem

Remarks

The theorem provides sufficient conditions for Ωl to be a region of
attraction for the set M

It is not necessary for V to be pd. If it happens and V̇ (x) ≤ 0
∀x ∈ Ωl Lyapunov stability theorem holds as well and therefore x̄ = 0
is stable.

Notable case: when M = {0} the theorem gives a region of attraction
for the equilibrium state x̄ = 0
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Example: how to prove that x̄ = 0 is AS when V̇ is sdn

Model

ẋ1 = x2

ẋ2 = −
b

m
x2|x2| −

k0

m
x1 −

k1

m
x3

1

m, b, k0, k1 > 0

We have already shown that

x̄ = 0 is an equilibrium state

V (x) =
1

2
mx2

2 +
1

2
k0x

2
1 +

1

4
k1x

4
1 is pd

in R2

V̇ (x(t)) = −bx2
2 |x2| is nsd in R2

Lyapunov stability theorem ⇒ x̄ = 0 is
stable
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Example: how to prove that x̄ = 0 is AS when V̇ is sdn
Now we use LaSalle theorem

Find for which l > 0 the set Ωl is bounded

Remark: if Ṽ (x) ≤ V (x) then Ωl ⊆
{
x : Ṽ (x) < l

}
Idea: remove positive terms from V in order to get a function Ṽ (x)
for which is easy to show that level sets are bounded (at least for a
sufficiently small l)

I often one tries to get a function Ṽ (x) that depends on ‖x‖ and not on
variables x1. . . . , xn separately.

V (x) =
1

2
mx2

2 +
1

2
k0x

2
1 +

1

4
k1x

4
1 ≥

1

2
mx2

2 +
1

2
k0x

2
1 ≥ c‖x‖2

for c = min

{
1

2
m,

1

2
k0

}
. Then since {x : c‖x‖ < l} is bounded

∀l > 0, also Ωl is bounded.

R =
{
x : x2

2 |x2| = 0
}
∩ Ωl =

{[
x1 0

]T
, x1 ∈ R

}
∩ Ωl
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Example: how to prove that x̄ = 0 is AS when V̇ is sdn

Now we show that the largest invariant set in R is M =

{[
0
0

]}
I By contradiction, if M contains p =

[
α 0

]T
, α 6= 0, then for x(0) = p

one has

ẋ2(0) = −
k0

m
x1(0)−

k1

m
x1(0)3

and therefore x2(0 + ε) 6= 0

From LaSalle theorem, ∀x(0) ∈ Ωl one has

lim
t→+∞

φ(t, x(0)) =
[
0 0

]T
Then x̄ = 0 is stable (from Lyapunov theorem) and Ωl is a region of
attraction ⇒ x̄ = 0 is AS
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Example: how to estimate a region of attraction of x̄ = 0

System

ẋ1 = x1

(
x2

1 + x2
2 − 2

)
− 4x1x

2
2

ẋ2 = 4x2
1x2 + x2

(
x2

1 + x2
2 − 2

)
We have already shown that

x̄ = 0 is an equilibrium state

V (x) = x2
1 + x2

2 is pd in B√2(0)

V̇ (x) = 2
(
x2

1 + x2
2

) (
x2

1 + x2
2 − 2

)
is nd in B√2(0)

... therefore x̄ = 0 is AS
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Example: how to estimate a region of attraction of x̄ = 0

Now we use LaSalle theorem

Consider Ω1 =
{
x : x2

1 + x2
2 < 1

}
that is bounded

R =
{
x : 2(x2

1 + x2
2 )(x2

1 + x2
2 − 2) = 0

}
∩ Ω1 =

{[
0 0

]T}
M = R

From LaSalle theorem, Ω1is a region of attraction of x̄ = 0

Remarl

Also Ωl , l ∈ [1, 2] is a region of attraction of x̄ = 0. However, Ωl , l > 2 is
not a regione of attraction of x̄ = 0 (check it at home !)
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Global LaSalle theorem

Theorem

Let V (x) ∈ C1 be a scalar function such that

V (x) is radially unbounded

V̇ (x) ≤ 0, ∀x ∈ Rn

Define R =
{
x : V̇ (x) = 0

}
and let M be the largest invariant set in R.

Then, ∀x(0) ∈ Rn one has φ(t, x(t))→ M for t → +∞

Remark

V radially unbounded ⇒ sets Ωl are bounded, ∀l > 0
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Example

System

ẋ1 = − (x2 − a) x1 a ∈ R
ẋ2 = γx2

1 γ > 0

Computation of equilibrium states{
0 = − (x̄2 − a) x̄1

0 = γx̄2
1

⇒ all x̄ ∈ X =

{[
0
x̄2

]
, x̄2 ∈ R

}
are equilibria

Problem

Show that all state trajectories converge to X
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Example

System

ẋ1 = − (x2 − a) x1 a ∈ R
ẋ2 = γx2

1 γ > 0

Candidate function V

V (x) =
1

2
x2

1 +
1

2γ
(x2 − b)2 for b > a.

It is radially unbounded

It is not psd since V (0) 6= 0

V̇ (x) = x1 (− (x2 − a)x1)) +
x2 − b

γ
γx2

1 =

= −x2
1 (x2 − a) + x2

1 (x2 − b) = −x2
1 (b − a) ≤ 0, ∀x ∈ R2
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Esempio

Application of LaSalle theorem

R =
{
x : V̇ (x) = 0

}
=
{[

x1 x2

]T
: −x2

1 = 0
}

=
{[

0 x2

]T
, x2 ∈ R

}
= X

Then M = R.

LaSalle theorem (global version) ⇒ all state trajectories converge to X as

t → +∞
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Example: how to prove that x̄ = 0 is GAS when V̇ ≤ 0

Model

ẋ1 = x2

ẋ2 = −b(x2)︸ ︷︷ ︸
damping

−x3
1︸︷︷︸

elastic force

where b is a C1 function verifying

x2b(x2) > 0 for x2 6= 0 (1)

From (1) one has b(0) = 0 → x̄ = 0 is an equilibrium state

Candidate Lyapunov function: V (x) =
1

2
x2

2 +
∫ x1

0 y3 dy

V (x) is pd, radially unbounded and of class C1

V̇ (x) = x3
1x2 + x2

(
−b(x2)− x3

1

)
= −x2b(x2). From (1), V̇ is gnsd.
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Example: how to prove that x̄ = 0 is GAS when V̇ ≤ 0

Application of Lyapunov and LaSalle theorems

R =
{
x : V̇ (x) = 0

}
=
{[

x1 0
]T
, x1 ∈ R

}
= X .

Computation of M (the largest invariant set in R)

If x(0) ∈ R then ẋ2(0) = −x1(0)3. Therefore

x2(t) = 0,∀t ≥ 0⇔ x1(0) = 0. It follows that M =
{[

0 0
]T}

Conclusions:

V is pd and V̇ is nsd in all Bδ(0). From Lyapunov stability theorem, x̄ = 0
is stable

V is radially unbounded and V̇ ≤ 0, ∀x ∈ R2. From LaSalle theorem (global
version) the region of attraction of x̄ = 0 is R2

We conclude that x̄ = 0 is GAS

Ferrari Trecate (DIS) Nonlinear systems Advanced autom. and control 15 / 36



Lyapunov theory for LTI systems

LTI system

ẋ = Ax + Bu x(t) ∈ Rn, u(t) ∈ Rm (2)

Review

Stability of x̄ = 0 does not depend upon inputs and one can study the
stability of the origin of

ẋ = Ax (3)

If x̄ = 0 of (3) is stable/AS/unstable, all equilibrium states of (2) due
to a constant input have the same property

For LTI systems one says that “the system is stable”.

Next

Study how Lyapunov theory looks like when applied to linear systems
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Review: positive definite matrices

Definition

A matrix M ∈ Rn×n is

(a) positive definite (pd) if x 6= 0⇒ xTMx > 0. Notation:
M > 0

(b) positive semidefinite (psd) if xTMx ≥ 0, ∀x ∈ Rn. Notation:
M ≥ 0

(c) negative definite/semidefinite (nd/nsd) if −M is pd/psd.
Notation: M < 0/M ≤ 0

Notation: M1 > M2 means M1 −M2 > 0

Quadratic functions xTMx

Decomposition

M =
M + MT

2︸ ︷︷ ︸
symmetric part

+
M −MT

2︸ ︷︷ ︸
antisymmetric part
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Review: quadratic functions

Remark: the quadratic form of the antisymmetric part is zero

xT
M −MT

2
x = xT

M

2
x − xT

MT

2
x = xT

M

2
x −

(
xT

MT

2
x

)T

= 0

Since

xTMx = xT
M + MT

2
x + xT

M −MT

2
x

one can assume without loss of generality that M is symmetric.

Properties of the quadratic function xTMx

from (a) and (b) one has
I if M > 0, V (x) = xTMx is a pd function
I if M ≥ 0, V (x) = xTMx is a psd function
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Review: quadratic functions

Properties of the quadratic function xTMx

a symmetric matrix M has real eigenvalues

If M > 0, defining λmin(M) and λmax(M) as the minimum and
maximum eigenvalue of M, respectively, one has

λmin(M)‖x‖2 ≤ xTMx ≤ λmax(M)‖x‖2

More in general, ‖M‖ = λmax(M) is a norm in the space of
positive-definite symmetric matrices. Moreover ‖Mx‖ ≤ ‖M‖‖x‖
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Lyapunov functions for LTI systems

ẋ = Ax (4)

Candidate Lyapunov function: V (x) = xTPx , P > 0 (P symmetric)

V (x) is quadratic, gpd and radially unbounded

V̇ = ẋTPx + xTPẋ = xT
(
ATP + PA

)
x

If ATP + PA < 0, i.e. there is Q > 0 symmetric such that

ATP + PA = −Q (5)

then V̇ (x) is gnd for (4) and x̄ = 0 is GAS.

Definition

(5) is called Lyapunov equation

Problem

Is it also true that if x̄ = 0 is AS then there is P such that
ATP + PA < 0 ?
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Lyapunov theorem for LTI systems

Theorem

A necessary and sufficient condition for the asymptotic stability of an LTI
system is that for all symmetric matrices Q > 0 the only matrix P that
solves the Lyapunov equation is symmetric and P > 0. In this case
V (x) = xTPx is a Lyapunov function and V̇ (x) = −xTQx .

Remarks

For LTI systems it is enough to consider quadratic Lyapunov
functions !

Example of “converse Lyapunov theorem”: if x̄ = 0 is AS, then there
is a Lyapunov function

I converse Lyapunov theorems exisit just for special classes of NL systems

Algorithm:
I choose Q > 0 (e.g. Q = I )
I solve ATP + PA = −Q (linear systems in the entries of the symmetric

matrix P)
I the LTI system is AS if and only if P > 0
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Lyapunov theorem for LTI systems

Proof

We have already seen that for a given P, if there is Q such that
ATP + PA = −Q the system is AS.
We now show that if the system is AS then, given a symmetric matrix
Q > 0, the equation ATP + PA = −Q has only one solution P and P > 0.
Define

P =

∫ +∞

0
eA

TtQeAt dt

Since det(eAt) 6= 0, for all A ∈ Rn×n, one has that P is pd. Moreover P is

symmetric (since eA
Tt =

(
eAt
)T

and Q = QT). One has

ATP + PA =

∫ +∞

0

(
ATeA

TtQeAt + eA
TtQeAtA

)
dt =

=

∫ +∞

0

d

dt

(
eA

TtQeAt
)
dt =

[
eA

TtQeAt
]+∞

0
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Lyapunov theorem for LTI systems

Since all eigenvalues of A have strictly negative real part, eAt → 0 as

t → +∞ and then
[
eA

TtQeAt
]+∞

0
= −Q that shows ATP + PA = −Q.

For proving that P is the only solution to the Lyapunov equation, assume
that P1 is another solution. One has

P1 = −
[
eA

TtP1e
At
]+∞

0
= −

∫ +∞

0

d

dt

(
eA

TtP1e
At
)
dt =

= −
∫ +∞

0
eA

Tt
(
ATP1 + P1A

)
eAt dt =

=

∫ +∞

0
eA

TtQeAt dt = P
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Example

{
ẋ1 = 4x2 + u

ẋ2 = −8x1 − 12x2

⇒ A =

[
0 4
−8 −12

]
Check if the systems is AS using the Lyapunov theorem

Choose Q = I . Let P =

[
p11 p12

p21 p22

]
where p12 = p21.

Solve the Lyapunov equation: ATP + PA = −Q[
0 −8
4 −12

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 4
−8 −12

]
=

[
−1 0
0 −1

]
[
−8p12 −8p22

4p11 − 12p12 4p12 − 12p22

]
+

[
−8p12 4p11 − 12p12

−8p22 4p12 − 12p22

]
=

[
−1 0
0 −1

]
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Example
Imposing identity between corresponding elements in the matrices one gets
the linear system 

−8p12 − 8p12 = −1

−8p22 + 4p11 − 12p12 = 0

4p11 − 12p12 − 8p22 = 0

4p12 − 12p22 + 4p12 − 12p22 = −1

Remark: the third equation is redundant because matrices ATP + PA and
Q are symmetric.

Solving the linear systems one gets

P =
1

16

[
5 1
1 1

]
⇒ eigenvalues: 0.0477, 0.3273

Since P > 0 the systems is AS.
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LTI systems: GAS and GES

If V (x) = xTPx , P > 0 is a Lyapunov function certifying the asymptotic
stability if x̄ = 0 and V̇ (x) = −xTQx , Q > 0, then

(a) λmin(P)‖x‖2 ≤ V (x) ≤ λmax(P)‖x‖2, ∀x ∈ Rn

(b) V̇ (x(t)) ≤ −λmin(Q)‖x‖2, ∀x ∈ Rn

From Lyapunov theorem on global exponential stability, (a)+(b)⇒ x̄ = 0
is GES

Corollary

An LTI system is AS if and only if it is GES. Moreover, if for a symmetric
Q > 0, the symmetric matrix P > 0 solves ATP + PA = −Q, then the

scalar γ =
λmin(Q)

2λmax(P)
is an estimate of the convergence rate.

The best estimate of the convergence rate can be obtained setting Q = I .
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Previous example

{
ẋ1 = 4x2 + u

ẋ2 = −8x1 − 12x2

⇒ A =

[
0 4
−8 −12

]
For Q = I we have found

P =
1

16

[
5 1
1 1

]

Eigenvalues of P are 0.0477 and 0.3273. Then γ =
λmin(Q)

2λmax(P)
= 1.5276

This implies, ∀x(0) ∈ R2, ‖x(t)‖ ≤ c‖x(0)‖e−1.5276t , where c > 0 is a
suitable constant.
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How one can build Lyapunov functions for NL systems ?

ẋ = f (x), f ∈ C1, x̄ = 0: equilibrium state

There is no general procedure

Common alternatives:

physical energy of the system, possibly leaving free parameters that
can be tuned to make V̇ nd/nsd

try with V (x)=xTPx , where P is symmetric and pd

ad hoc methods for special classes of systems

Ferrari Trecate (DIS) Nonlinear systems Advanced autom. and control 28 / 36



The indirect Lyapunov method

Is the test for the stability of an equilibrium based on the linearized system

Nonlinear system

Σ : ẋ = f (x)

x̄ = 0: equilibrium state, f ∈ C1

Linearized system

Σl : ˙δx = Aδx

A = Dx f (x)
∣∣∣
x=0

Theorem

The equilibrium state x̄ of Σ

is AS if all eigenvalues of Σl have real part < 0

is unstable if at least an eigenvalue of Σl has real part > 0

hHen the origin is AS, the proof of the theorem provides an estimate of
the region of attraction
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Estimation of the region of attraction

Partial proof

From the Lyapunov theorem for LTI systems we know that if the system is
AS, then given the symmetric matrix Q > 0, the Lyapunov equation

ATP + PA = −Q

has only one solution P > 0 where P is symmetric. Let V (x) = xTPx be a
candidate Lyapunov function for the NL system ẋ = f (x)

V̇ (x) = xTPẋ + ẋTPx = xTPf (x) + f (x)TPx

Write f as
f (x) = Ax + g(x)

where A = Dx f (x)
∣∣∣
x=0

and g(x) is the remainder of the Taylor series of f

around the origin.
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Estimation of the region of attraction

Then,
‖g(x)‖
‖x‖

→ 0 per ‖x‖ → 0 (6)

Let us consider again V̇

V̇ (x) = xTP (Ax + g(x)) +
(
xTAT + g(x)T

)
Px =

= xT
(
ATP + PA

)
x + 2xTPg(x) = −xTQx + 2xTPg(x)

From (6) one has

∀γ > 0,∃r > 0 : ‖g(x)‖ < γ‖x‖, ∀x ∈ Br (0) (7)

and then, for x ∈ Br (0)

V̇ (x) ≤ −xTQx + |2xTPg(x)| ≤ −xTQx + 2‖x‖‖P‖‖g(x)‖
<︸︷︷︸

x∈Br (0)

−xTQx + 2γλmax(P)‖x‖2 ≤ − [λmin(Q)− 2γλmax(P)] ‖x‖2
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Estimation of the region of attraction

For a sufficiently small γ, one has λmin(Q)− 2γλmax(P) > 0. We have
then shown that in Br (0) (where r is such that (7) holds) V is pd and V̇
is nd. Form LaSalle thereom, we can show that any level set
Ωl = {x : V (x) < l} included in Br (0) is a region of attraction for x̄ = 0.

Algorithm

decompose f as f (x) = Ax + g(x), A = Dx f (x)
∣∣∣
x=0

pick Q > 0 and solve ATP + PA = −Q

compute γ such that
λmin(Q)

2λmax(P)
> γ

Let Br (0) such that x ∈ Br (0)⇒ ‖g(x)‖ < γ‖x‖. Any level set
Ωl =

{
x : xTPx < l

}
included in Br (0) is a region of attraction.

Remark: the estimation of the maximal region of attraction is conservative
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Example

{
ẋ1 = x2

ẋ2 = −x1 − x3
1 − 2x2

Show that the origin is AS and compute a region of attraction.

Stability analysis using the linearized system{
˙δx1 = δx2

˙δx2 = −δx1 − 3x̄2
1 δx1 − 2δx2

⇒ A =

[
0 1
−1 −2

]

det(λI − A) = 0 ⇒ det

([
λ 1
1 λ+ 2

])
= 0 ⇒ λ2 + 2λ+ 1 = 0

Eigenvalues: λ1 = λ2 = −1. From the Lyapunov indirect method, the
origin is AS1

1In particular, from Hartman-Grobman theorem, the origin is a stable node.
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Example

Estimate of the region of attraction

f (x) =

[
0 1
−1 −2

] [
x1

x2

]
+

[
0
−x3

1

]
⇒ g(x) =

[
0
−x3

1

]
Choose (arbitrarily) Q = I and solve the Lyapunov equation
ATP + PA = −Q

Let P =

[
p11 p12

p21 p22

]
with p12 = p21.

[
0 −1
1 −2

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 1
−1 −12

]
=

[
−1 0
0 −1

]
[
−p12 −p22

p11 − 2p12 p12 − 2p22

]
+

[
−p12 p11 − 2p12

−p22 p12 − 2p22

]
=

[
−1 0
0 −1

]
Imposing identity between corresponding elements in the matrices one gets
the linear system
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Example 
−2p12 = −1

−p22 + p11 − 2p12 = 0

2p12 − 4p22 = −1

and therefore

P =
1

2

[
3 1
1 1

]
⇒ eigenvalues: 1±

√
2

2

Choose γ such that
λmin(Q)

2λmax(P)
> γ

λmax(P) = 1 +

√
2

2
, λmin(Q) = 1

λmin(Q)

2λmax(P)
=

1

2 +
√

2
> γ ⇒ set (arbitrarily) γ =

1

4
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Example

Conclusion

Let r be such that x ∈ Br (0)⇒ ‖g(x)‖ < γ‖x‖.

‖g(x)‖ < γ‖x‖ ⇒
∥∥∥∥[ 0

x3
1

]∥∥∥∥ < 1

4
‖x‖ ⇒ |x3

1 | <
1

4

√
x2

1 + x2
2

Any ellipsoid

Ωl =

{[
x1

x2

]
:
[
x1 x2

] 1

2

[
3 1
1 1

] [
x1

x2

]
< l

}

included in Br (0) is a region of attraction.
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