Nonlinear systems State feedback control

#### G. Ferrari Trecate

Dipartimento di Ingegneria Industriale e dell'Informazione Università degli Studi di Pavia

Advanced automation and control

# Control schemes: output feedback

NL system

$$\dot{x} = f(x, u)$$
$$y = h(x, u)$$



# Control schemes: state feedback



State feedback: the controller uses the setpoint and a measure of the state for computing the control variable.

#### Pros

Since y = h(x, u) the output can only contain less information than the state. Therefore, state feedback usually guarantees better performances.

#### Cons

The state must be measured and this is not always the case. Otherwise the state must be estimated from measurements of u and y.

Ferrari Trecate (DIS)

# Control schemes

### Control problems:

- Regulation: make a desired equilibrium state AS
- Tracking: make the system output track, according to given criteria, special classes of setpoints  $y^o$

In both problems disturbances must be also attenuated or rejected.

#### Taxonomy of controllers

- Static: the controller is a static system (e.g. proportional control  $u(t) = k(y(t) y^{o}(t))$
- Dynamic: the controller is a dynamic system (e.g. PID controllers)

Topics that will be covered in this class Mainly static state-feedback controllers for NL invariant and SISO systems

# Stabilization of the origin

#### Regulation problem

System

$$\dot{x}=f(x,u)$$

Design the control law  $u(t) = k(x(t)) \ k : \mathbb{R}^n \to \mathbb{R}$  such that the origin of the closed-loop system

 $\dot{x} = f(x, k(x))$ 

is an AS equilibrium state

Stabilization of a generic equilibrium  $(\bar{x}, \bar{u})$ 

 $0 = f(\bar{x}, \bar{u})$ 

Define the variables  $\tilde{x} = x - \bar{x}$  and  $\tilde{u} = u - \bar{u}$ . Define also  $\tilde{f}(\tilde{x}, \tilde{u}) = f(\bar{x} + \tilde{x}, \bar{u} + \tilde{u})$ . Then one has

$$\dot{\tilde{x}} = \tilde{f}(\tilde{x}, \tilde{u})$$

where  $\tilde{f}(0,0) = 0$  (i.e. we are in the previous case)

# Stabilization of the origin

If we design  $\tilde{u}(t) = k(\tilde{x}(t))$  stabilizing the origin of the system in the new variables, the controller

$$u = \bar{u} + \tilde{u} = \bar{u} + k(\tilde{x}) = \bar{u} + k(x - \bar{x})$$

stabilizes the equilibrium state  $\bar{x}$  of the original system

#### Remarks

- Several industrial systems are designed to work around a nominal operation point (x̄, ū) that must be stabilized by the controller
- Stabilization of the origin is also at the core of the design of controllers for tracking problems
- For the sake of simplicity, in most cases we will neglect the presence of disturbances

State-feedback controllers - LTI systems

#### Multi-input LTI system

$$\dot{x} = Ax + Bu, \quad x(t) \in \mathbb{R}^n, \ u(t) \in \mathbb{R}^m$$

Control law (stabilizing  $\bar{x} = 0$ )

 $u(t) = Kx(t), \quad K \in \mathbb{R}^{m \times n}$ : to be designed

Closed-loop system:  $\dot{x} = (A + BK)x$ 

#### Eigenvalue Assignment (EA) problem

Compute, if possible, K such that the eigenvalues of A + BK take prescribed values (real or in complex conjugate pairs)

# Solution to the EA problem

#### Theorem

The EA problem can be solved if and only if the LTI system is reachable

#### Review

The system  $\dot{x} = Ax + Bu$  is reachable if and only if the matrix

$$M_r = \left[ \begin{array}{c|c} B & AB & A^2B & \cdots & A^{n-1}B \end{array} \right]$$

has maximal rank.

- *M<sub>r</sub>*: reachability matrix
- Terminology: the pair (A, B) is reachable

#### Definition

Let  $u(t) \in \mathbb{R}$ . The pair (A, B) is in the canonical controllability form if

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ b \end{bmatrix}, \ b \neq 0$$

#### Remarks

- If (A, B) is the canonical controllability form, then  $M_r$  has maximal rank by construction
- Let p<sub>A</sub>(λ) be the charachteristic polynomial of A. By construction, one has

$$p_A(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

• Structure of the canonical controllability form

$$\begin{array}{l} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_3 \\ \vdots \\ \dot{x}_{n-1} &= x_n \end{array} \right\} \leftarrow \text{ chain of } n-1 \text{ integrators} \\ \dot{x}_n = a(x) + bu \leftarrow \text{ the input acts on } \dot{x}_n \end{array}$$

where 
$$a(x) = -a_0x_1 - a_1x_2 - ... - a_{n-1}x_n$$

#### Idea

If the LTI system is in the canonical controllability form, choose

$$u = \underbrace{\frac{1}{b}(-a(x))}_{\text{this cancels } a(x)} + \frac{1}{b}\tilde{u}$$
  
he auxiliary input  $\tilde{u}$  assigns the closed-loop eigenvalues

Ferrari Trecate (DIS)

such that t

#### Algorithm

Let (A, B) be in canonical controllability form

• For given desired closed-loop eigenvalues  $\tilde{\lambda}_1, \tilde{\lambda}_2, \dots, \tilde{\lambda}_n$ , build up the polynomial

$$p^D(\lambda) = (\lambda - \tilde{\lambda}_1)(\lambda - \tilde{\lambda}_2) \cdots (\lambda - \tilde{\lambda}_n) = \lambda^n + \tilde{a}_{n-1}\lambda^{n-1} + \cdots + \tilde{a}_1\lambda + \tilde{a}_0$$

Use

$$u = \frac{1}{b}(-a(x) + \tilde{a}(x))$$

where  $\tilde{a}(x) = -\tilde{a}_0 x_1 - \tilde{a}_1 x_2 - \ldots - \tilde{a}_{n-1} x_n$ .

Closed-loop system

$$\begin{array}{l} \dot{x}_1 &= x_2 \\ \vdots & \\ \dot{x}_{n-1} &= x_n \end{array} \right\} \text{ chain of } n-1 \text{ integrators} \\ \dot{x}_n &= \tilde{a}(x) \end{array}$$

The matrix A is in the canonical controllability form: by construction  $p^{D}(\lambda)$  is the closed-loop characteristic polynomial

#### Matrix K (gain matrix)

$$u = \frac{1}{b}(-a(x) + \tilde{a}(x)) =$$
  
=  $\frac{1}{b}((a_0 - \tilde{a}_0)x_1 + (a_1 - \tilde{a}_1)x_2 + \dots + (a_{n-1} - \tilde{a}_{n-1})x_n) = Kx$   
 $K = \frac{1}{b}[(a_0 - \tilde{a}_0) \quad (a_1 - \tilde{a}_1) \quad \dots \quad (a_{n-1} - \tilde{a}_{n-1})]$ 

with

How to solve the EA problem if the LTI system is not in the canonical controllability form ?

Lemma

If (A, B) is reachable, there is an invertible matrix T such that the equivalent system

$$\dot{\hat{x}} = \hat{A}\hat{x} + \hat{B}u, \quad \hat{A} = TAT^{-1}, \hat{B} = TB$$

where  $\hat{x} = Tx$ , is in the canonical controllability form with b = 1.

#### Computation of T

$$\begin{split} M_r &= \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \\ \hat{M}_r &= \begin{bmatrix} \hat{B} & \hat{A}\hat{B} & \hat{A}^2\hat{B} & \cdots & \hat{A}^{n-1}\hat{B} \end{bmatrix} = TM_r \end{bmatrix} \to T = \hat{M}_r M_r^{-1} \end{split}$$

#### Algorithm

Given A, B and the desired closed-loop charachteristic polynomial

$$p^{D}(\lambda) = \lambda^{n} + \tilde{a}_{n-1}\lambda^{n-1} + \dots + \tilde{a}_{1}\lambda + \tilde{a}_{0}$$

compute p<sub>A</sub>(λ) = λ<sup>n</sup> + a<sub>n-1</sub>λ<sup>n-1</sup> + ··· + a<sub>1</sub>λ + a<sub>0</sub>
build<sup>a</sup> Â, B̂ and M̂<sub>r</sub>. Compute T = M̂<sub>r</sub>M<sup>-1</sup><sub>r</sub>
build<sup>b</sup> K̂ = [(a<sub>0</sub> - ã<sub>0</sub>) (a<sub>1</sub> - ã<sub>1</sub>) ··· (a<sub>n-1</sub> - ã<sub>n-1</sub>)]
compute K = K̂T an set u = Kx

 ${}^{a}\hat{A}$  and  $\hat{B}$  are in the canonical controllability form with b = 1. For the computation it is enough to know  $p_{A}(\lambda)$ .

<sup>b</sup>Controller design in the coordinates  $\hat{x}$ .

# Ackermann's formula

In the previous algorithm one can avoid the use of  $\hat{x}$  coordinates and design directly the controller K as a function of A and B.

#### Theorem

Let (A, B) be a reachable pair and let

$$p^{D}(\lambda) = \lambda^{n} + \tilde{a}_{n-1}\lambda^{n-1} + \dots + \tilde{a}_{1}\lambda + \tilde{a}_{0}$$

be the desired closed-loop polynomial. Then, the controller u = Kx such that the charachteristic polynomial of A + BK is  $p^{D}(\lambda)$  is given by

$$K = -\begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix} M_r^{-1} p^D(A) \tag{1}$$

#### Equation (1) is called the Ackermann's formula

# Proof of the Ackermann's formula

Being  $\hat{A}$  in in the canonical controllability form, one can verify that the first row of  $\hat{A}^i$ ,  $1 \leq i < n$  is composed by zero entries except the entry in position (1, i + 1) that is 1

$$\hat{A} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ x & x & x & \cdots & x & x \end{bmatrix} \quad \hat{A}^{2} = \begin{bmatrix} 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ x & x & x & \cdots & x & x \\ x & x & x & \cdots & x & x \end{bmatrix}$$
$$\hat{A}^{n-1} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 1 \\ x & x & x & \cdots & x & x \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x & x & x & \cdots & x & x \\ x & x & x & \cdots & x & x \\ x & x & x & \cdots & x & x \end{bmatrix}$$

### Proof of the Ackermann's formula

Since from the Caley-Hamilton theorem one has  $\hat{A}^n + a_{n-1}\hat{A}^{n-1} + \cdots + a_1\hat{A} + a_0I = 0$ , it follows that

|                  | $(\tilde{a}_0 - a_0)$ | $(\tilde{a}_1 - a_1)$ | $(\tilde{a}_2 - a_2)$ | • • • | $(\tilde{a}_{n-1}-a_{n-1})$ |
|------------------|-----------------------|-----------------------|-----------------------|-------|-----------------------------|
|                  | x                     | x                     | x                     | • • • | x                           |
| $p^D(\hat{A}) =$ | :                     |                       |                       | ·     | :                           |
| , ( )            | x                     | X                     | X                     | • • • | x                           |
|                  | x                     | x                     | x                     | • • • | x                           |
|                  | x                     | x                     | x                     |       | x                           |

and therefore the controller  $\hat{K}$  we have computed before is given by

$$\hat{K} = -\begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} p^D(\hat{A})$$

### Proof of the Ackermann's formula

Since  $\hat{A} = TAT^{-1}$ ,  $T = \hat{M}_r M_r^{-1}$ ,  $K = \hat{K}T$  one has

$$\mathcal{K} = -\begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} p^{D}(\hat{A}) T =$$
(2)

$$= -\begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} T p^{D}(A) T^{-1} T =$$
(3)

$$= -\begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \hat{M}_r M_r^{-1} p^D(A)$$
(4)

For getting rid of  $\hat{M}_r$ , we observe that, since  $\hat{A}$  and  $\hat{B}$  are in canonical controllability form, one has

$$\hat{M}_r = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 1 & x \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 1 & \cdots & x & x \\ 0 & 1 & x & \cdots & x & x \\ 1 & x & x & \cdots & x & x \end{bmatrix}$$

Therefore,  $-\begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \hat{M}_r = -\begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix}$ .

# Solution to the EA problem

#### Remarks

- The EA algorithm can be generalized to MIMO systems.
- Closed-loop eigenvalues are usually chosen on the basis of performance requirements (for instance raising time, settling time and maximal overshoot of the closed-loop step response)

#### Generalization

If (A, B) is not reachable, using a controller u = Kx only reachable eigenvalues are modified. Therefore, in order to guarantee closed-loop asymptotic stability, it is necessary that unreachable eigenvalues have real part < 0.

#### Problem

$$\dot{x}_1 = x_1 + x_2 + u$$
$$\dot{x}_2 = u$$

Compute a state-feedback controller such that the closed-loop system has all eigenvalues equal to  $-2\,$ 

Desired closed-loop charachteristic polynomial

$$p^{D}(\lambda) = (\lambda + 2)^{2} = \lambda^{2} + \underbrace{4}_{\tilde{a}_{1}} \lambda + \underbrace{4}_{\tilde{a}_{0}}$$

Computation of  $M_r$ 

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} B = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow M_r = \begin{bmatrix} B \mid AB \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$

 $M_r$  is full rank  $\Rightarrow$  EA problem can be solved

Ferrari Trecate (DIS)

### Computation of $p_A(\lambda)$

$$p_{\mathcal{A}}(\lambda) = \det\left(\begin{bmatrix} \lambda - 1 & -1 \\ 0 & \lambda \end{bmatrix}\right) = \lambda^2 + \underbrace{(-1)}_{a_1} \lambda + \underbrace{0}_{a_0}$$

Build  $\hat{A}$ ,  $\hat{B}$ ,  $\hat{M}_r$  and T

$$\hat{A} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \quad \hat{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow \hat{M}_r = \begin{bmatrix} \hat{B} \mid \hat{A}\hat{B} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
$$T = \hat{M}_r M_r^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Build *K* 

$$\hat{K} = \begin{bmatrix} (a_0 - \tilde{a}_0) & (a_1 - \tilde{a}_1) \end{bmatrix} = \begin{bmatrix} 0 - 4 & -1 - 4 \end{bmatrix} = \begin{bmatrix} -4 & -5 \end{bmatrix}$$

#### Build K

$$K = \hat{K}T = \begin{bmatrix} -\frac{9}{2} & -\frac{1}{2} \end{bmatrix}$$

Check the result

$$A + B\mathcal{K} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} -\frac{9}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -3.5 & 0.5 \\ -4.5 & -0.5 \end{bmatrix}$$
Eigenvalues of  $A + B\mathcal{K}$ :  $\lambda_1 = \lambda_2 = -2$ 

Using Ackermann's formula

$$\mathcal{K} = -\begin{bmatrix} 0 & 1 \end{bmatrix} M_r^{-1} \rho^D(A)$$

$$\rho^D(A) = A^2 + 4A + 4I = \begin{bmatrix} 9 & 5\\ 0 & 4 \end{bmatrix}$$

$$M_r = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 1 & 0 \end{bmatrix} \implies M_r^{-1} = \begin{bmatrix} 0 & 1\\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

$$\mathcal{K} = -\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 4\\ \frac{9}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{9}{2} & -\frac{1}{2} \end{bmatrix}$$

# Regulation based on linearization

### Regulation problem

System

$$\Sigma: \dot{x} = f(x, u) \quad f(0, 0) = 0, \ f \in \mathcal{C}^1$$

Design the control law u(t) = k(x(t)) such that  $(\bar{x}, \bar{u}) = (0, 0)$  is an AS equilibrium for the closed-loop system.

#### Controller design based on linearization

Linarization of  $\Sigma$  about  $\bar{x}=$  0,  $\bar{u}=$  0

$$\Sigma_{lin}: \dot{\delta x} = A\delta x + B\delta u$$

If (A, B) is reachable, design  $\delta u = K \delta x$  that stabilizes the origin of  $\Sigma_{lin}$ . For the closed-loop system

$$\Sigma_{cl}: \dot{x} = f_{cl}(x) = f(x, K\delta x + \bar{u}) = f(x, Kx)$$

 $\bar{x} = 0$  is an equilibrium state.

# Regulation based on linearization

Stability analysis for the closed-loop system Linearization of  $\Sigma_{cl}$  about  $\bar{x} = 0$ 

$$\Sigma_{cl,lin}: \dot{\delta x} = D_x f(x, u) \Big|_{\substack{x=0\\u=0}} \delta x + D_u f(x, u) \Big|_{\substack{x=0\\u=0}} K \delta x = (A + BK) \, \delta x$$

All eigenvalues of A + BK have real part  $< 0 \Rightarrow$  the origin of  $\Sigma_{cl,lin}$  is AS  $\Rightarrow$  the origin of  $\Sigma_{cl}$  is AS. Computation of a region of attraction of  $\bar{x} = 0$ : as in the indirect Lyapunov method

# Flowchart of the procedure



#### Problem

$$\dot{x} = x^2 + u$$

Design a state-feedback controller that makes  $\bar{x}=0$  AS and compute a region of attraction

Linearization about the equilibrium  $\bar{x} = 0$  and  $\bar{u} = 0$ 

$$\Sigma_{lin}: \dot{\delta x} = 2\bar{x}\delta x + \delta u \quad \Rightarrow \quad \dot{\delta x} = \delta u$$

 $\Sigma_{lin}$  is reachable: design  $\delta u = K \delta x$  such that  $\Sigma_{lin}$  is AS.

$$\delta x = K \delta x \quad \Rightarrow \quad \text{pick } K < 0, \text{ e.g. } K = -1$$

#### Computation of a region of attraction Closed-loop system

$$\Sigma_{cl}$$
:  $\dot{x} = f_{cl}(x) = f(x, Kx) = x^2 - x$ 

Decomposition:

$$\Sigma_{cl}$$
:  $\dot{x} = (A + BK)x + g(x)$ , where  $A + BK = -1$ ,  $g(x) = x^2$ 

Choose (arbitrarily) Q = 1 and solve  $(A + BK)^{T}P + P(A + BK) = -Q$ 

$$-2P = -1 \quad \Rightarrow \quad P = \frac{1}{2}$$

Choose (arbitrarily) 
$$\gamma < \frac{\lambda_{min}(Q)}{2\lambda_{max}(P)} = 1$$
. For instance  $\gamma = \frac{1}{2}$ 

Let r be such that  $x \in B_r(0) \Rightarrow ||g(x)|| < \gamma ||x||$ .

$$\|g(x)\| < \gamma \|x\| \Rightarrow x^2 < \frac{1}{2}|x| \Rightarrow r \leq \frac{1}{2}$$

Every interval

$$\Omega_l = \left\{ x : \frac{1}{2}x^2 < l \right\}$$

included in  $B_r(0)$  is a region of attraction

One has 
$$\Omega_l = (-\sqrt{2l}, \sqrt{2l})$$
 and, for  $r = \frac{1}{2}$ , one has the constraint  $\sqrt{2l} \le r = \frac{1}{2}$ . Then, for  $l = \frac{1}{8}$ , a region of attraction is  $\Omega_l = (-\frac{1}{2}, \frac{1}{2})$ 

Since we are dealing with a first-order system, from the graph of  $f_{cl}(x)$  one can easily show that  $(-\infty, 1)$  is the maximal region of attraction



Damped pendulum  

$$\dot{\theta}_1 = \theta_2$$
  
 $\dot{\theta}_2 = -\theta_2 - \sin(\theta_1) + \tau, \quad \tau = \text{input}$ 

#### Problem

Design a state-feedback controller such that

- the state  $\bar{x} = \begin{bmatrix} \frac{\pi}{3} & 0 \end{bmatrix}^{T}$  is an AS equilibrium for the closed-loop system
- ullet the linearized system about  $\bar{x}$  has two eigenvalues equal to -1

Compute also a region of attraction of the equilibrium.



Damped pendolum  $\dot{\theta}_1 = \theta_2$  $\dot{\theta}_2 = -\sin(\theta_1) - \theta_2 + \tau, \quad \tau = \text{input}$ 

Equilibrium input  $\bar{\tau}$ 

$$0 = -\sin\left(\frac{\pi}{3}\right) + \bar{\tau} \quad \Rightarrow \quad \bar{\tau} = \sin\left(\frac{\pi}{3}\right)$$

Change of variables such that the origin is an equilibrium state for zero input:  $x_1 = \theta_1 - \frac{\pi}{3}$ ,  $x_2 = \theta_2$ ,  $u = \tau - \overline{\tau}$ 

$$\Sigma: \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\sin(x_1 + \frac{\pi}{3}) - x_2 + u + \sin(\frac{\pi}{3}) \end{cases}$$

Linearization of  $\boldsymbol{\Sigma}$  about the origin

$$\Sigma_{lin}: \begin{cases} \dot{\delta x_1} = \delta x_2\\ \dot{\delta x_2} = -\cos(\frac{\pi}{3})\delta x_1 - \delta x_2 + \delta u \end{cases} \Rightarrow A = \begin{bmatrix} 0 & 1\\ -\frac{1}{2} & -1 \end{bmatrix}, B = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

Design of the EA controller for  $\Sigma_{\textit{lin}}$ 

• Desired closed-loop charachteristic polynomial

$$p^{D}(\lambda) = (\lambda + 1)^{2} = \lambda^{2} + \underbrace{2}_{\widetilde{a}_{1}} \lambda + \underbrace{1}_{\widetilde{a}_{0}}$$

• Computation of M<sub>r</sub>

$$M_r = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

 $M_r$  is full rank  $\Rightarrow$  the EA problem can be solved

• Computation of  $p_A(\lambda)$ 

$$p_{A}(\lambda) = \det \left( \begin{bmatrix} \lambda & -1 \\ \frac{1}{2} & \lambda+1 \end{bmatrix} \right) = \lambda^{2} + \underbrace{(1)}_{a_{1}} \lambda + \underbrace{\frac{1}{2}}_{a_{0}}$$

• Canonical controllability form: build  $\hat{A}$ ,  $\hat{B}$ ,  $\hat{M}_r$  and T

$$\hat{A} = \begin{bmatrix} 0 & 1\\ -\frac{1}{2} & -1 \end{bmatrix} = A, \ \hat{B} = \begin{bmatrix} 0\\ 1 \end{bmatrix} = B \Rightarrow \hat{M}_r = M_r$$
$$T = \hat{M}_r M_r^{-1} = I$$

• Design of  $\hat{K}$  and  $K = \hat{K}T$  (verify @ home with Ackermann's formula)

$$\hat{K} = \begin{bmatrix} (a_0 - \tilde{a}_0) & (a_1 - \tilde{a}_1) \end{bmatrix} = \begin{bmatrix} \frac{1}{2} - 1 & 1 - 2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -1 \end{bmatrix}$$
(5)  
$$K = \hat{K}$$
(6)

#### Controller

$$\delta u = K \delta x = -\frac{1}{2} \delta x_1 - \delta x_2 \implies u = \delta u + \bar{u} = -\frac{1}{2} x_1 - x_2$$

# Computation of the region of attraction Closed-loop system

$$\Sigma_{cl}:\begin{cases} \dot{x}_1 = x_2\\ \dot{x}_2 = -\sin(x_1 + \frac{\pi}{3}) - x_2 - \frac{1}{2}x_1 - x_2 + \sin(\frac{\pi}{3}) = \\ = -\sin(x_1 + \frac{\pi}{3}) - \frac{1}{2}x_1 - 2x_2 + \sin(\frac{\pi}{3}) \end{cases}$$

Decomposition:  $\Sigma_{cl}$ :  $\dot{x} = (A + BK)x + g(x)$  where

$$A + BK = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}, \quad g(x) = \begin{bmatrix} 0 \\ -\sin(x_1 + \frac{\pi}{3}) + \frac{1}{2}x_1 + \sin(\frac{\pi}{3}) \end{bmatrix}$$

Choose (arbitrarily) Q = I and solve  $(A + BK)^{T}P + P(A + BK) = -Q$ 

$$\begin{bmatrix} 0 & -1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} + \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

(... computed previously ...) 
$$P = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \Rightarrow$$
 eigenvalues:  $1 \pm \frac{\sqrt{2}}{2}$ 

Choose (arbitrarily) 
$$\gamma < \frac{\lambda_{min}(Q)}{2\lambda_{max}(P)} = \frac{1}{2+\sqrt{2}}$$
. For instance  $\gamma = \frac{1}{4}$ .

#### Conclusions

Let r be such that  $x \in B_r(0) \Rightarrow \|g(x)\| < \gamma \|x\|$ .

$$|g(x)|| < \gamma ||x|| \Rightarrow \left\| \begin{bmatrix} 0 \\ -\sin(x_1 + \frac{\pi}{3}) + \frac{1}{2}x_1 + \sin(\frac{\pi}{3}) \end{bmatrix} \right\| < \frac{1}{4} ||x||$$

Every ellipsoid

$$\Omega_{I} = \left\{ \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} : \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \frac{1}{2} \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} < I \right\}$$

included in  $B_r(0)$  is a region of attraction

### Control law for the original system

$$au = u + \overline{\tau} = Kx + \sin\left(\frac{\pi}{3}\right) = \begin{bmatrix} -\frac{1}{2} & -1 \end{bmatrix} \begin{bmatrix} \theta_1 - \frac{\pi}{3} \\ \theta_2 \end{bmatrix} + \sin\left(\frac{\pi}{3}\right)$$