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Control schemes: output feedback

NL system
x = f(x, u)
y = h(x, u)
Output feedback
»° u y

—» Controller

t

y
\J

System

e y°(t): setpoint
@ u(t): control variable

Output feedback: the controller uses the setpoint and a measure of the
output to compute the control variable.
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Control schemes: state feedback
State feedback

—» Controller » System [—»

f P

State feedback: the controller uses the setpoint and a measure of the state
for computing the control variable.

v

Pros

Since y = h(x, u) the output can only contain less information than the
state. Therefore, state feedback usually guarantees better performances.

v

Cons

The state must be measured and this is not always the case. Otherwise
the state must be estimated from measurements of u and y.

v
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Control schemes

Control problems:
@ Regulation: make a desired equilibrium state AS
@ Tracking: make the system output track, according to given criteria,
special classes of setpoints y°

In both problems disturbances must be also attenuated or rejected.

Taxonomy of controllers
@ Static: the controller is a static system (e.g. proportional control
u(t) = k(y(t) = y°(t))

e Dynamic: the controller is a dynamic system (e.g. PID controllers)

v

Topics that will be covered in this class

Mainly static state-feedback controllers for NL invariant and SISO
systems

v
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Stabilization of the origin

Regulation problem
System
x = f(x, u)

Design the control law u(t) = k(x(t)) k : R™ — R such that the origin of
the closed-loop system

x = f(x, k(x))
is an AS equilibrium state

Stabilization of a generic equilibrium (X, )

0=f(x,0)
Define the variables X = x — x and & = u — u. Define also

f(x,0) = f(x+ X, 0+ U). Then one has

% = f(x, )

where £(0,0) = 0 (i.e. we are in the previous case)

4
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Stabilization of the origin

If we design @i(t) = k(X(t)) stabilizing the origin of the system in the new
variables, the controller

u=0+0=0+k(X) =0+ k(x —X)

stabilizes the equilibrium state x of the original system

Remarks

@ Several industrial systems are designed to work around a nominal
operation point (x, ) that must be stabilized by the controller

@ Stabilization of the origin is also at the core of the design of
controllers for tracking problems

@ For the sake of simplicity, in most cases we will neglect the presence
of disturbances
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State-feedback controllers - LTI systems

Multi-input LTI system
x = Ax+ Bu, x(t) €eR", u(t)eR™
Control law (stabilizing x = 0)
u(t) = Kx(t), K eR™": to be designed

Closed-loop system: x=(A+ BK) x

Eigenvalue Assignment (EA) problem

Compute, if possible, K such that the eigenvalues of A+ BK take
prescribed values (real or in complex conjugate pairs)
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Solution to the EA problem

Theorem
The EA problem can be solved if and only if the LTI system is reachable

v

Review
The system x = Ax + Bu is reachable if and only if the matrix
M, = [ B|AB|AZB|--- |A”_IB]

has maximal rank.
@ M,: reachability matrix

@ Terminology: the pair (A, B) is reachable
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Solution to the EA problem - single input
Definition

Let u(t) € R. The pair (A, B) is in the canonical controllability form if

0 1 o .. 0 [0 ]
0 0 1 ... 0 0
A=| o B=1|:],b#0
0 0 0 1 0
L —dap —4di1 —az -+ —dp-1 i | b i

Remarks

e If (A, B) is the canonical controllability form, then M, has maximal
rank by construction

@ Let pa(A) be the charachteristic polynomial of A. By construction,
one has

paA(N) = A"+ ap_ 1A+ A+ ag

v
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Solution to the EA problem - single input

@ Structure of the canonical controllability form

5(1 = X2
X2 = X3 ) _

+ chain of n — 1 integrators
Xp—1 = Xp

Xn = a(x) + bu < the input acts on x,

where a(x) = —apx1 — a1x2 — ... — ap—1Xpn
Idea
If the LTI system is in the canonical controllability form, choose
1 1.
u= E(—a(x)) —I-Eu

this cancels a(x)

such that the auxiliary input & assigns the closed-loop eigenvalues
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Solution to the EA problem - single input

Algorithm
Let (A, B) be in canonical controllability form

@ For given desired closed-loop eigenvalues 5\1, 5\2, el Xn, build up the
polynomial

PP =(A=2)A=X2) - (A=An) = A"+ 3, A" 13 A+ 5

o Use

1 ~
u = (~alx) +3(x))

where 3(x) = —3px1 — 31x2 — ... — 3p—1Xp-
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Solution to the EA problem - single input

Closed-loop system

).(1 = X2
: chain of n — 1 integrators
Xp—1 = Xp

Xp = 3(x)

The matrix A is in the canonical controllability form: by construction
pP()\) is the closed-loop characteristic polynomial

Matrix K (gain matrix)

1 -
u= B(—a(x) +3(x)) =

1
= B((ao —3d0)x1 + (a1 —31)x2+ -+ (an—1 — 3n—1) Xa) = Kx

with K = % [(ao = 50) (31 = 51) .- (an,1 = 5,7,1)]

v
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Solution to the EA problem - single input

How to solve the EA problem if the LTI system is not in the canonical
controllability form 7

Lemma
If (A, B) is reachable, there is an invertible matrix T such that the
equivalent system

h Y

X =

K+Bu, A=TAT !,B=TB

where X = Tx, is in the canonical controllability form with b = 1.

Computation of T

B
Arz[é
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Solution to the EA problem - single input

Algorithm

Given A, B and the desired closed-loop charachteristic polynomial

PP =2"+ 3, 02" 3 A+ 5

© compute M, and verify that (A, B) is reachable
© compute

pa(A) = A"+ a, 1 A" a4 ap
@ build? /A4 B and I\A/I,. Compute T = I\A/I,M,_1
O build’? K = [(a0 — 30) (a1—31) -+ (an-1— 3n-1)]
© compute K = KT an set u= Kx

2A and B are in the canonical controllability form with b = 1. For the
computation it is enough to know pa(A).
bController design in the coordinates X.
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Ackermann’s formula
In the previous algorithm one can avoid the use of X coordinates and
design directly the controller K as a function of A and B.

Theorem
Let (A, B) be a reachable pair and let

PP(A) = A"+ 3, 1A+ BN+ B

be the desired closed-loop polynomial. Then, the controller u = Kx such
that the charachteristic polynomial of A+ BK is pP()) is given by

K=-[00 - 1]M'pP(A) (1)

v

Equation (1) is called the Ackermann'’s formula ]
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Proof of the Ackermann's formula

Being A in in the canonical controllability form, one can verify that the

first row of Al 1 < i< nis composed by zero entries except the entry in
position (1,7 + 1) thatis 1

0
0
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Proof of the Ackermann's formula

Since from the Caley-Hamilton theorem one has
A"+ a, A" 4+ ... 4 ajA+ agl =0, it follows that

(3o —a0) (B1—a1) (32—a2) - (3n—1—an-1)
pP(A) =

and therefore the controller K we have computed before is given by

K=-[10 - 0]p°(A)
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Proof of the Ackermann's formula

Since A = TATL, T = M,Mfl, K = KT one has

K=-[1 0 - 0]pP(A)T = (2)
=—[1 0 - 0]TPP(A)TIT= (3)
=—[1 0 - 0] MM 1p°(A) (4)

For getting rid of M,, we observe that, since A and B are in canonical
controllability form, one has

0 0 O 0 1
0 0 O 1 x
i, = Do :
0 0 1 X X
0 1 x X X
1 X X X
Therefore, — [1 0 oM =—1[0 0 1]
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Solution to the EA problem

Remarks
@ The EA algorithm can be generalized to MIMO systems.

@ Closed-loop eigenvalues are usually chosen on the basis of
performance requirements (for instance raising time, settling time and
maximal overshoot of the closed-loop step response)

Generalization

If (A, B) is not reachable, using a controller u = Kx only reachable
eigenvalues are modified. Therefore, in order to guarantee closed-loop
asymptotic stability, it is necessary that unreachable eigenvalues have real
part < 0.
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Example

Problem
X1 =x1+x0+u
)'<2 =u

Compute a state-feedback controller such that the closed-loop system has
all eigenvalues equal to —2

Desired closed-loop charachteristic polynomial

D(y\) — 2 _ 2
pPrAN)=(A+2)"=X"+_4 A+ _4

3 EN

Computation of M,

=l o o[- w-tore1-[1

M, is full rank = EA problem can be solved
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Example

Computation of pa(A)
pa()) = det <[A_ 1 _ID =M+ (-1)A+_0
0 A ~——

Build A, B, M, and T

Build K

R:[(ao—go) (31—51)]:[0—4 —1—4]:[—4 —5]
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Example

Build K

Check the result
11 1 9
A+ BK = [0 0] + [1] (-3

Eigenvalues of A+ BK: A1 = \p = =2
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Example

Using Ackermann's formula

K=-[0 1]M71pP(A)

pP(A) = A2 4 4A+ 41 = [9 5]

N

SRR I

k==To ][y i]=1-% -
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Regulation based on linearization

Regulation problem

Syst
ystem T x=f(x,u) £(0,0)=0, feC

Design the control law u(t) = k(x(t)) such that (x,7) = (0,0) is an AS
equilibrium for the closed-loop system.

Controller design based on linearization
Linarization of X about x =0, 1 =0

Yiin: 0x = Adx + Béu
If (A, B) is reachable, design du = Kdx that stabilizes the origin of X,.
For the closed-loop system

Yo x=fy(x)=f(x,Kdx + ) = f(x, Kx)
X = 0 is an equilibrium state.
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Regulation based on linearization

Stability analysis for the closed-loop system
Linearization of X about x =0

7l i - 6x = Dyf(x, u) 00X + Duf(x,u)| _ Kdox = (A+ BK)dx

u=0 u=0
All eigenvalues of A+ BK have real part < 0 = the origin of X ji, is AS
= the origin of ¥ is AS.

Computation of a region of attraction of x = 0: as in the indirect
Lyapunov method
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Flowchart of the procedure

Open-loop system

x = f(x,u), £f(0,0)=0

|
Linearized open-loop system
ox = Adx + Bou

|

Controller design: du = Kdx

[

Closed-loop system
x = f(x, Kx)
1

Linearized closed-loop system
ox = (A+ BK)dx

Analysis of the region of
—] attraction of x = 0 for
the closed-loop system
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Example

Problem
x=x’>+u

Design a state-feedback controller that makes x = 0 AS and compute a
region of attraction

Linearization about the equilibrium x =0 and o =0
Yin: Ox =2%0x +0u = Ox=4du
> jin is reachable: design du = Kéx such that ¥, is AS.

ox =Kox = pick K<0, eg K=-1
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Example

Computation of a region of attraction
Closed-loop system

Yo x=fy(x) = f(x, Kx) = x? — x

Decomposition:

Y1 x=(A+ BK)x + g(x), where A+ BK = —1, g(x) = x*

Choose (arbitrarily) Q = 1 and solve (A+ BK)TP + P(A+ BK) = —Q

1
2P=-1 = P==
2
)\min(Q) 1
Choose (arbitrarily) v < —————- = 1. For instance v = =
( ) 2Amax(P) 2
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Example
Let r be such that x € B,(0) = |lg(x)|| < v|Ix]|.

N

1
lgCIl <llxll = x* < Slx| = r<

1,
Q, = XZEX <

included in B,(0) is a region of attraction

Every interval

1
One has Q; = (—v/21,+/2]) and, for r = 5 one has the constraint
11

1 1
V2Ii<r= > Then, for | = g a region of attraction is Q; = (—5, E)

Since we are dealing with a first-order system, from the graph of f,(x) one
can easily show that (—oo, 1) is the maximal region of attraction
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Example

Damped pendulum

01 =02

0 = —0y —sin(01) + 7, T = input

o

Problem

Design a state-feedback controller such that

o the state X = [3 O]T is an AS equilibrium for the closed-loop system

@ the linearized system about X has two eigenvalues equal to —1
Compute also a region of attraction of the equilibrium.
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Example

Damped pendolum
01 = 0>
6, = —sin(01) — 62+ 7, T =input

X2

Equilibrium input 7
0 sin (ﬂ) +7 = T=sin <F>
= —sin (= T T =sin|—=
3 3
Change of variables such that the origin is an equilibrium state for zero

input: X1=01—%,X2:l92, u=7-—7T

X1:X2
X9 . ™ T
Xo = —sin(xy + 5) —xo+ u+sm(§)
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Example

Linearization of ¥ about the origin

(SIX]_ = (5X2

0 1 0
Tin i { = A= , B=
i Oxp = — cos(%)dxl — 0x2 +du [—% _1] [J

Design of the EA controller for ¥,

@ Desired closed-loop charachteristic polynomial

D _ 2 _ 2
PPO) = (A +17 =0+ 2 A+ 1
ail a0

o Computation of M,

e tola0)-[0 ]

M, is full rank = the EA problem can be solved

Ferrari Trecate (DIS) Nonlinear systems Advanced autom. and control 32 /36



Example
e Computation of pa(\)

pa(A) = det (B A_+11D — 24 (1) A+

@ Canonical controllability form: build /2\ é I\Aﬂr and T

2\:[01 1J:A,B:[O =B= M =M,
-1 -

T=MM?*=1

e Design of K and K = KT (verify @ home with Ackermann’s formula)

K=[(ao—3%) (a—3)]=[1-1 1-2]=[-1 -1]

K=K

@ Controller

1
5UZK5X:—§5X1—5X2 = u:5u—|—L_l:—§x1—X2
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Example

Computation of the region of attraction
Closed-loop system

5(1 = X2
. . ™ 1 LT
Yol = —sin(x; + g) XXX + S|n(§) =
. T, 1 .
= —sin(x; + §) X 2x7 —|—sm(%)
Decomposition: L : X = (A+ BK)x + g(x) where
0

A+ BK = {_1 _12] , 8(x) = [_ sin(xq + g)(—)i— x4 Si”(g)]

Choose (arbitrarily) Q =/ and solve (A+ BK)TP + P(A+ BK) = —Q
0 —1||pu P2 | |P11 P12 0 1]_|-1 0
1 =2| |p12 p2 p12 p2| |—-1 -2 0 -1
1131

(... computed previously ...) P = = [1 1

V2
> } = eigenvalues: 1+ —
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Example

)\min(Q) 1

Choose (arbitraril < = )
( NS rm(P) 2542

1
For instance v = T

Conclusions

Let r be such that x € B,(0) = ||lg(x)]| < 7l|x]|-

—sin(xy + 3) + %xl + sin

leColl <l = || ’ )| <3

Every ellipsoid

{0 3 30

included in B,(0) is a region of attraction
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Example

Control law for the original system

_ . ™ 01— Z . ™
T=u+7=Kx+sin (§> =[-3 -1] [ 0, 3] + sin (§>
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