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Introduction

Nonlinear control

Motivation: overcome limitations of controllers based on linearization
about an equilibrium (e.g. limited region of attraction)

Idea: Design nonlinear controllers

Some design procedures for NL controllers

Methods based on Lyapunov functions

Backstepping

Gain scheduling

Sliding mode control
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Introduction

Challenges of NL control

Differently from the linear case:

Methods tailored to classes of NL systems with specific structure

Methods do not always guarantee closed-loop global stability of a
desired equilibrium

It can be difficult to analyze controller robustness against
disturbances and/or parametric uncertainty
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Methods based on Lyapunov functions

Problem

ẋ = f (x , u), f (0, 0) = 0

Regulation problem: design u = k(x), k(0) = 0 such that the origin of the
closed-loop system is AS/GAS

ẋ = f (x , k(x))

Two possibilities

1 Fix u = k(x) and look for a Lyapunov function V (x) certifying
AS/GAS of the origin of the closed-loop system

2 Fix a candidate Lyapunov function V (x , u) and compute u = k(x)
such that V (x , k(x)) certifies AS/GAS of the origin of the closed-loop
system

Both approaches do not guarantee to find an appropriate control law⇒
trial and error
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Example

Problem

ẋ1 = −3x1 + 2x1x
2
2 + u

ẋ2 = −x3
2 − x2

Design a regulator such that the origin of the closed-loop system is AS

Approach 2: candidate Lyapunov function

V (x) =
1

2

(
x2

1 + x2
2

)
(is gpd, C1 and radially unbounded)

V̇ (x) = x1ẋ1 + x2ẋ2 = x1

(
−3x1 + 2x1x

2
2 + u

)
+ x2

(
−x3

2 − x2

)
=

= −3x2
1 − x2

2 + ux1︸︷︷︸
effect of the input

+ 2x2
1x

2
2︸ ︷︷ ︸

positive term

−x4
2

Look for u = k(x) such that V̇ is nd/gnd
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Example
Solution 1 (completing the square): u = k(x) = −x3

1

V̇ (x) = −3x2
1 − x2

2 + ux1 + 2x2
1x

2
2 − x4

2 =

= −3x2
1 − x2

2−x4
1 + 2x2

1x
2
2 − x4

2 =

= −3x2
1 − x2

2−
(
x2

1 − x2
2

)2
< 0, x 6= 0

Solution 2 (cancel terms without sign or with positive sign):
u = k(x) = −2x1x

2
2

V̇ (x) = −3x2
1 − x2

2 + ux1 + 2x2
1x

2
2 − x4

2 =

= −3x2
1 − x2

2−2x2
1x

2
2 + 2x2

1x
2
2 − x4

2 =

= −3x2
1 − x2

2 − x4
2 < 0, x 6= 0

Both control laws make the origin GAS (even GES: verify @ home)
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Example

Problem

ẋ1 = x3
2

ẋ2 = u

Design a regulator such that the origin of the closed-loop system is AS

We use the approach 2
1st trial: candidate Lyapunov function

V (x) =
1

2

(
x2

1 + x2
2

)
(is gpd, C1 and radially unbounded)

V̇ (x) = x1ẋ1 + x2ẋ2 = x1x
3
2 + x2u = x2

(
x2

2x1 + u
)
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Example

Choosing u = k(x) = −x2 − x2
2x1 one has

V̇ (x) = x2

(
x2

2x1 + u
)

= −x2
2

that is gnsd. Then, x̄ = 0 is stable. Is it also AS ?
Use global LaSalle theorem

R =
{
x : V̇ (x) = 0

}
=
{[

x1 0
]T
,∀x1 ∈ R

}
Compute M, the biggest invariant set in R

Σcl :

{
ẋ1 = x3

2

ẋ2 = −x2 − x2
2 x1

If x(0) ∈ R then ẋ1(0) = ẋ2(0) = 0 . Therefore M = R.

We can not conclude that the origin of Σcl is AS
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Example

ẋ1 = x3
2

ẋ2 = u

2nd trial: candidate Lyapunov function

V (x) =
1

2
x2

1 +
1

4
x4

2 (is gpd, C1 and radially unbounded)

V̇ (x) = x1ẋ1 + x3
2 ẋ2 = x3

2 (x1 + u)
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Example
Choosing u = k(x) = −x1 − x2 one has

V̇ (x) = x3
2 (x1 + u) = −x4

2

that is gnsd. Therefore x̄ = 0 is stable. Is it also AS ?
Use global LaSalle theorem

R =
{
x : V̇ (x) = 0

}
=
{[

x1 0
]T
,∀x1 ∈ R

}
Compute M, the biggest invariant set in R

Σcl :

{
ẋ1 = x3

2

ẋ2 = −x1 − x2

If x(0) ∈ R then ẋ1(0) = 0 and ẋ2(0) = −x1(0) . Therefore

M =
{[

0 0
]T}

.

We conclude that the origin of Σcl is GAS.
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Conclusions

Methods based on Lyapunov functions

Approach 2:

the choice of the Lyapunov function is critical

it works only in simple cases

Approach 1 suffers from similar drawbacks.

Problem

Is it possible to make the second approach systematic, at least for special
classes of NL systems ?
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Backstepping procedure

Features

Iterative algorithm for the controller design based on Lyapunov functions
for NL systems with a “triangular” structure.
At every iteration:

build a control law that stabilizes the origin of a suitable subsystem

build a Lyapunov function that certifies AS/GAS for the origin of the
subsystem
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Single-integrator backstepping

Problem

System under control

Σ :

{
ẋ1 = f (x1) + g(x1)x2, f (0) = 0, f and g in C1, x1 ∈ R
ẋ2 = u, x2 ∈ R (integrator)

Design u = k(x) such that x̄ = 0 is an AS equilibrium state of the
closed-loop system

Idea

The system is the cascade of two subsystems.

Design first a controller for the system with input x2 and state x1.
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Single-integrator backstepping

First step: stabilize the inner loop

Assume that for partial system

ẋ1 = f (x1) + g(x1)ṽ , ṽ : auxiliary input

one knows ṽ = φ1(x1), φ ∈ C1, φ1(0) = 0 such that x̄1 = 0 is an AS
equilibrium state for the closed-loop system

ẋ1 = f (x1) + g(x1)φ1(x1)

Assume also that a Lyapunov function V1(x1) certifying AS of x̄1 = 0 is
known.
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Single-integrator backstepping

Second step: backstepping

Compute the dynamics of the error in the control variable

Σ :


ẋ1 = f (x1) + g(x1)φ1(x1) + g(x1)(x2 − φ1(x1))︸ ︷︷ ︸

error

ẋ2 = u

Nonlinear change of coordinates:

η = x2 − φ1(x1), error

v = u − φ̇1(x1), new input
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Single-integrator backstepping

System in the new variables

Σnew :

{
ẋ1 = f (x1) + g(x1)φ1(x1) + g(x1)η

η̇ = v

Remarks

φ1 has been moved before the integrator = “backstepping”

v is such that for v̄ = 0, the state

[
x̄1

η̄

]
=

[
0
0

]
is an equilibrium state

(because φ1(0) = 0)

Ferrari Trecate (DIS) Nonlinear systems Advanced autom. and control 16 / 46



Single-integrator backstepping

Third step: stabilize the origin of the whole system

Build a candidate Lyapunov function V2(x1, η) for Σnew

V2(x1, η) = V1(x1) +
η2

2
(is pd)

V̇2(x1, η) = Dx1V1(x1) · ẋ1 + ηη̇ =

= Dx1V1(x1) · (f (x1) + g(x1)φ1(x1) + g(x1)η) + ηv =

= Dx1V1(x1) · (f (x1) + g(x1)φ1(x1))︸ ︷︷ ︸
V̇1(x1) that is nd

+Dx1V1(x1) · g(x1)η + ηv

Choosing v = −Dx1V1(x1) · g1(x1)− k̃η, k̃ > 0 one has

V̇2(x , η) = V̇1 − k̃η2

that is nd. Therefore the origin of Σnew is AS.
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Single-integrator backstepping

Remark

The origin
[
x̄1 η̄

]T
=
[
0 0

]T
of Σnew corresponds to the equilibrium[

x̄1 η̄ + φ1(x̄1)
]T

of the original system Σ and since φ1(x̄1) = 0 one has[
x̄1 η̄ + φ1(x̄1)

]T
=
[
0 0

]T
.

Conclusion
The origin of the closed-loop system Σnew is AS using the controller
v = −Dx1V1(x1)g1(x1)− k̃η. In the original coordinates one gets

u − φ̇1(x1) = −Dx1V1(x1) · g1(x1)− k̃ (x2 − φ1(x1))

u= Dx1φ1(x1) · (f (x1) + g(x1)x2)︸ ︷︷ ︸
φ̇1(x1)=Dx1

φ(x1)·ẋ1

−Dx1V1(x1) · g1(x1)− k̃ (x2 − φ1(x1))︸ ︷︷ ︸
error

In particular, the last expression highlights it is not necessary to compute
derivatives of the function t 7→ φ1(x1(t)). The control law can be computed
using measurements of the state only.
We have sketched the proof of the following Lemma ...
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Single-integrator backstepping

Backstepping Lemma

Let z =
[
x1 · · · xj−1

]T
and consider the single-input system

Σ :

{
ż = f (z) + g(z)xj , f (0) = 0,

ẋj = u

Let φj−1(z) be an auxiliary control law of class C1 verifying φj−1(0) = 0 and such
that the origin of

ż = f (z) + g(z)φj−1(z) (1)

is AS. Moreover, let Vj−1(z) be a Lyapunov function certifying the AS of z̄ = 0 in

(1). Then, for all k̃j > 0, the control law

u = φj(z , xj) = φ̇j−1(z)− DzVj−1(z) · g(z)− k̃j (xj − φj−1(z))

is such that the origin of the closed-loop system is AS.
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Single-integrator backstepping

In addition

Vj(z , xj) = Vj−1(z) +
(xj − φj−1(z))2

2

is a Lyapunov function certifying the origin of the closed-loop system is AS

Σcl :

{
ż = f (z) + g(z)xj

ẋj = φj(z , xj)

Finally, if Vj−1(z) is gpd and radially unbounded and V̇j−1(z) is gnd, then
Vj(z , xj) has the same properties and the origin of Σ is GAS.

Remarks

Iterative construction procedure, starting from φj−1 and Vj−1, of the control
law φj and the Lyapunov function Vj

It is not necessary to compute the derivative of the signal t 7→ φ1(x1(t))
because

φ̇j(z) = Dzφj(z) · ż = Dzφj(z) · (f (z) + g(z)xj)
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Example

Problem

Σ :

{
ẋ1 = x2

1 − x3
1 + x2

ẋ2 = u

Design a regulator u = k(x) that makes the origin of the closed-loop
system AS

Is Σ in the right form for applying backstepping ?

Σ :

{
ẋ1 = f (x1) + g(x1)x2

ẋ2 = u

for f (x1) = x2
1 − x3

1 and g(x1) = 1. Moreover f (0) = 0.
The assumptions of the backstepping procedure are verified.
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Example

Σ :

{
ẋ1 = x2

1 − x3
1 + x2

ẋ2 = u

Stabilization of the origin of the subsystem

Σ1 : ẋ1 = x2
1 − x3

1 + ṽ , ṽ : auxiliary input

Choosing ṽ = φ1(x1) = −x2
1 − x1 such that φ1(0) = 0 and φ1 ∈ C1 one has

Σ1,cl : ẋ1 = −x1 − x3
1

and V1(x1) =
x2

1

2
(that is gpd, C1 and radially unbounded) verifies

V̇1 = x1 · ẋ1 = −x2
1 − x4

1

Since V̇1 is gnd, the origin of Σ1,cl is GAS
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Example

Σ :

{
ẋ1 = x2

1 − x3
1 + x2

ẋ2 = u

Stabilization of the origin of Σ: one applies the backstepping Lemma with
z = x1, j = 2, xj = x2. For k̃2 > 0 one gets

u = φ2(x1, x2) = φ̇1(x1)− Dx1V1(x1) · g(x1)− k̃2 (x2 − φ1(x1)) =

= (−2x1 − 1)
(
x2

1 − x3
1 + x2

)︸ ︷︷ ︸
φ̇1(x1)=Dx1φ1(x1)·(f (x1)+g(x1)x2)

−x1 − k̃2

(
x2 + x2

1 + x1

)

Conclusions

u = φ2(x1, x2) is such that the origin of the closed-loop system is GAS. A
Lyapunov function that certifies this property is

V2(x1, x2) = V1(x1) +
(x2 − φ1(x1))2

2
=

x2
1

2
+

(
x2 + x2

1 + x1

)2

2
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Example: integrator cascade

Problem

Σ :

Σ1 :

{
ẋ1 = x2

1 − x3
1 + x2

ẋ2 = x3

ẋ3 = u

Design a regulator such that the origin of the closed-loop system is an AS
equilibrium

Remark: Σ1 is the same system of the previous example (with auxiliary input
ṽ = x3).

For z =
[
x1 x2

]T
, Σ is in the form

Σ1 :

{
ż = f (z) + g(z)x3

ẋ3 = u

for f (z) =

[
f1(z)
f2(z)

]
=

[
x2

1 − x3
1 + x2

0

]
and g(z) =

[
g1(z)
g2(z)

]
=

[
0
1

]
. Moreover

f (0) = 0 ⇒ the assumptions of the backstepping method are verified.
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Example: integrator cascade

Σ :

Σ1 :

{
ẋ1 = x2

1 − x3
1 + x2

ẋ2 = x3

ẋ3 = u

After a backstepping we know the origin of

Σ1,cl :

{
ẋ1 = x2

1 − x3
1 + x2

ẋ2 = φ2(x1, x2) = (−2x1 − 1)
(
x2

1 − x3
1 + x2

)
− x1 − k̃1

(
x2 + x2

1 + x1

)
is GAS, ∀k̃1 > 0.

Moreover, φ2(0) = 0 (by construction), φ2 ∈ C1 and a Lyapunov function
that certifies the global asymptotic stability of the origin is

V2(x1, x2) = V1(x1) +
(x2 − φ1(x1))2

2
=

x2
1

2
+

(
x2 + x2

1 + x1

)2

2
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Example: integrator cascade

Σ :

Σ1 :

{
ẋ1 = x2

1 − x3
1 + x2

ẋ2 = x3

ẋ3 = u

Stabilization of the origin of Σ. Apply the Backstepping Lemma with

z =
[
x1 x2

]T
, j = 3, xj = x3. For k̃2 > 0 one gets

u = φ3(z , x3) = φ̇2(z)− DzV2(z) · g(z)− k̃2 (x3 − φ2(z)) =

=
∂φ2

∂x1
ẋ1 +

∂φ2

∂x2
ẋ2 −

∂V2

∂x1
· g1(z)−

∂V2

∂x2
· g2(z)− k̃2 (x3 − φ2(z)) =

= (... computations ...)

The origin of the closed-loop system is GAS and a Lyapunov function
certifying this property is

V3(z , x3) = V2(z) +
(x3 − φ2(z))2

2
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Integrator cascade

Generalization of the previous example

Let z =
[
x1 · · · xj−1

]T
and consider the class of NL single-input

systems given by

Σ


Σn−1


Σj+1

 Σj

{
ż = f (z) + g(z)xj , f (0) = 0

ẋj = xj+1

ẋj+1 = xj+2
...

ẋn−1 = xn

ẋn = u

One can design a regulator stabilizing the origin of the closed-loop system
applying the backstepping method to Σj , Σj+1, Σj+2 etc. in a recursive
fashion
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Backstepping for more general classes of NL systems

Generalization

Let z =
[
x1 · · · xj−1

]T
and consider the single-input system

Σ :

{
ż = f (z) + g(z)xj , f (0) = 0,

ẋj = fj(z , xj) + gj(z , xj)u

where fj , gj ∈ C1 and gj 6= 0. Choosing

u =
1

gj(z , xj)
(uj − fj(z , xj))

nonlinearities in ẋj = · · · disappear and one gets

Σm :

{
ż = f (z) + g(z)xj , f (0) = 0,

ẋj = uj

Using the backstepping method one can design uj such that the origin of
the closed-loop system is AS.
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Backstepping for more general classes of NL systems

Therefore the origin of

Σ :

{
ż = f (z) + g(z)xj , f (0) = 0,

ẋj = fj(z , xj) + gj(z , xj)u

is AS using

u = φj(z , xj) =

=
1

gj(z , xj)

φ̇j−1(z)− DzVj−1(z) · g(z)− k̃j (xj − φj−1(z))︸ ︷︷ ︸
uj

−fj(z , xj)


and a Lyapunov function that certifies the AS of the origin of the

closed-loop system is

Vj(z , xk) = Vj−1(z) +
(xj − φj−1(z))2

2
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Backstepping for more general classes of NL systems

Strict-feedback form

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

...

ẋn = fn(x1, . . . , xn) + gn(x1, . . . , xn)u

where fi (0) = 0 and gi 6= 0, i = 1, . . . , n.

Remarks[
x̄1 x̄2 · · · x̄n

]T
= 0 is an equilibrium state for ū = 0

Knowing a state-feedback φ1(x1), φ1 ∈ C1, φ1(0) = 0 and a Lyapunov
function V1(x1) certifying the asymptotic stability of the origin of the
closed-loop system

ẋ1 = f1(x1) + g1(x1)φ1(x1)

one can apply the backstepping procedure in a recursive fashion
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Backstepping for more general classes of NL systems

Strict-feedback form

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

...

ẋn = fn(x1, . . . , xn) + gn(x1, . . . , xn)u

where fi (0) = 0 and gi 6= 0, i = 1, . . . , n.

One gets for j > 1 and k̃j > 0 the auxiliary control laws

φj(x1, . . . , xj) =
1

gj

φ̇j−1 − Dx1,...,xj−1Vj−1 ·

 g1

...
gj−1

− k̃j (xj − φj−1)− fj


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Backstepping for more general classes of NL systems

and the partial Lyapunov functions

Vj(x1, . . . , xj) = Vj−1(x1, . . . , xj−1) +
(xj − φj−1(x1, . . . , xj−1))2

2

Finally, if φ2, . . . , φn−1 are of class C1, the controller u = φn(x1, . . . , xn)is such

that the origin of the closed-loop system is AS.

Remark

Systems in strict-feedback form have special “controllability” properties
because, under weak assumptions, the regulation problem can be solved.

Limitations

At each step the function φj must be differentiable with continuity. If in
some iteration this does not hold, the method stops and it does not
provide a control law.
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Example: magnetic levitation

Model

mÿ = −Dẏ + mg −
i2

2(1 + y)2

mg: gravity force

−Dẏ : damping force (D > 0)

− i2

2(1+y)2 : electromagnetic force

For m = 1, D = 1, y1 = y , y2 = ẏ1 and input i2,
ẏ1 = y2

ẏ2 = g − y2 −
i2

2 (1 + y1)2

Problem

Design a controller such that
[
ȳ1 ȳ2

]T
=
[
1 0

]T
is an AS equilibrium

state of the closed-loop system.
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Example: magnetic levitation
Change of coordinates such that the origin is an equilibrium state for zero
input
Computation of the equilibrium input

ẏ1 = y2

ẏ2 = g − y2 −
i2

2 (1 + y1)2

⇒


0 = ȳ2

0 = g − ȳ2 −
ī2

2 (1 + ȳ1)2

⇒ ī2 = 8g

Define x1 = y1 − 1, x2 = y2, u = i2 − 8g and obtain

Σ :


ẋ1 = x2 =f1(x1) + g1(x1)x2

ẋ2 = g − x2 −
u + 8g

2 (1 + x1 + 1)2
=f2(x1, x2) + g2(x1, x2)u

The system is in strict-feedback form with f1(x1) = 0, g1(x1) = 1,
f2(x1, x2) = g − x2 − 8g

2(2+x1)2 , g2(x1, x2) = − 1
2(2+x1)2 . Moreover g2 6= 0

and f1(0) = f2(0, 0) = 0
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Example: magnetic levitation

Σ :


ẋ1 = x2 =f1(x1) + g1(x1)x2

ẋ2 = g − x2 −
u + 8g

2 (2 + x1)2
=f2(x1, x2) + g2(x1, x2)u

Stabilization of the origin of Σ1 : ẋ1 = ṽ1

Choose ṽ1 = φ1(x1) = −x1 (it verifies φ1(0) = 0 and φ1 ∈ C1).

The origin of ẋ1 = −x1 is GAS and a Lyapunov function certifying this
property is

V1(x1) =
1

2
x2

1 → V̇1(x1) = −x2
1
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Example: magnetic levitation

Σ :


ẋ1 = x2 =f1(x1) + g1(x1)x2

ẋ2 = g − x2 −
8g

2 (2 + x1)2
−

u

2 (2 + x1)2
=f2(x1, x2) + g2(x1, x2)u

Stabilization of the origin of Σ. If

u = φ2(x1, x2) = −

(
−g + x2 +

8g

2 (2 + x1)2

)
2 (2 + x1)2 − 2ṽ2 (2 + x1)2

(2)

one has ẋ2 = ṽ2. Using the backstepping Lemma one gets, for k̃2 > 0,

ṽ2 = φ̇1(x1)− Dx1V (x1) · g1(x1)− k̃2 (x2 − φ1(x1)) =

= −x2 − x1 − k̃2 (x1 + x2)

and the Lyapunov function

V2(x1, x2) = V1(x1) +
1

2
(x2 − φ1(x1))2 =

1

2
x2

1 +
1

2
(x1 + x2)2

certifies the origin is GAS (Is it also GES ? Check @ home ...)
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Example: magnetic levitation

Model 
ẏ1 = y2

ẏ2 = g − y2 −
i2

2 (1 + y1)2

Controller for the original system
Recalling that i2 = u + 8g, x1 = y1 − 1, y2 = x2, from (2) one gets

i2 = 2 (1 + y1)2

(
g − y2 −

8g

2 (1 + y1)2 +
(

1 + k̃2

)
(y1 + y2 − 1)

)
+ 8g

and for the closed-loop system the desired equilibrium is AS.
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Example

Problem - LTI system

Σ :


ẋ1 = x2 =f1(x1) + g1(x1)x2

ẋ2 = x3 =f2(x1, x2) + g2(x1, x2)x3

ẋ3 = x1 + x2 − x3 + u =f3(x1, x2, x3) + g3(x1, x2, x3)u

Using the backstepping method design a controller such that the origin of
the closed-loop system is AS

Remarks The system is in the canonical controllability form. It is also in
strict-feedback form with

f1(x1) = f2(x1, x2) = 0

f3(x1, x2, x3) = x1 + x2 − x3

g1(x1) = g2(x1, x2) = g2(x1, x2, x3) = 1
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Example

Σ :


ẋ1 = x2 =f1(x1) + g1(x1)x2

ẋ2 = x3 =f2(x1, x2) + g2(x1, x2)x3

ẋ3 = x1 + x2 − x3 + u =f3(x1, x2, x3) + g3(x1, x2, x3)u

Stabilization of the origin of Σ1 : ẋ1 = ṽ1

Choose ṽ1 = φ1(x1) = −k̃1x1, k̃1 > 0 (one has φ1(0) = 0 and φ1 ∈ C1)

The origin of ẋ1 = −k̃1x1 is GAS.

Lyapunov function: V1(x1) =
1

2
x2

1 → V̇1(x1) = −k̃1x
2
1
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Example

Σ :


ẋ1 = x2 =f1(x1) + g1(x1)x2

ẋ2 = x3 =f2(x1, x2) + g2(x1, x2)x3

ẋ3 = x1 + x2 − x3 + u =f3(x1, x2, x3) + g3(x1, x2, x3)u

Stabilization of the origin of Σ2

Σ2 :

{
ẋ1 = x2

ẋ2 = ṽ2

Applying the backstepping Lemma, for k̃2 > 0 one gets

ṽ2 = φ2(x1, x2) = φ̇1(x1)− Dx1V1(x1) · g1(x1)− k̃2 (x2 − φ1(x1)) =

= −k̃1x2︸ ︷︷ ︸
Dx1

φ1·ẋ1

−x1 − k̃2

(
x2 + k̃1x1

)
= −

(
k̃2k̃1 + 1

)
x1 −

(
k̃1 + k̃2

)
x2

and V2(x1, x2) = V1(x1) +
1

2
(x2 − φ1(x1))2 =

1

2
x2

1 +
1

2

(
x2 + k̃1x1

)2

certifies

the origin of the closed-loop system is GAS.
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Example

ẋ1 = x2 =f1(x1) + g1(x1)x2

ẋ2 = x3 =f2(x1, x2) + g2(x1, x2)x3

ẋ3 = x1 + x2 − x3 + u =f3(x1, x2, x3) + g3(x1, x2, x3)u

Check: closing the loop around Σ2 one gets a system in canonical
controllability form

Σ2,cl :

 ẋ1 = x2

ẋ2 = −
(
k̃2k̃1 + 1

)
x1 −

(
k̃1 + k̃2

)
x2

The closed-loop characteristic polynomial is

χ(λ) = λ2 + (k̃1 + k̃2)λ+
(
k̃2k̃1 + 1

)
and it always has roots with real part < 0 if k̃1 > 0 and k̃2 > 0 (it is a

second-order polynomial and all coefficients are nonzero and with the same
sign).

Choosing k̃1 and k̃2 one assigns, implicitly, the closed-loop eigenvalues
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Example

Σ :


ẋ1 = x2 =f1(x1) + g1(x1)x2

ẋ2 = x3 =f2(x1, x2) + g2(x1, x2)x3

ẋ3 = x1 + x2 − x3 + u =f3(x1, x2, x3) + g3(x1, x2, x3)u

Stabilization of the origin of Σ. If

u = φ3(x1, x2, x3) = −x1 − x2 + x3 + ṽ3 (3)

one has ẋ3 = ṽ3. Using the backstepping lemma one gets, for k̃3 > 0

ṽ3 = φ̇2(x1, x2)− Dx1,x2V2(x1, x2) ·
[

g1(x1)
g2(x1, x2)

]
− k̃3 (x3 − φ2(x1, x2)) = ...

= −x1

(
k̃2

1 + k̃1 + k̃1k̃2k̃3 + k̃3 + 1
)
− x2

(
2k̃1 + k̃2 + k̃3k̃1 + k̃2k̃1 + 1

)
+

− x3

(
k̃1 + k̃2 + k̃3

)
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Example

ṽ3 = −x1

(
k̃2

1 + k̃1 + k̃1k̃2k̃3 + k̃3 + 1
)

︸ ︷︷ ︸
a0

−x2

(
2k̃1 + k̃2 + k̃3k̃1 + k̃2k̃1 + 1

)
︸ ︷︷ ︸

a1

+

− x3

(
k̃1 + k̃2 + k̃3

)
︸ ︷︷ ︸

a2

Closed-loop system

Σcl :


ẋ1 = x2

ẋ2 = x3

ẋ3 = −a0x1 − a1x2 − a2x3

Closed-loop characteristic polynomial: χ(λ) = λ3 + a2λ
2 + a1λ+ a0

Remarks

Closed-loop eigenvalues have real part < 0 but they depend on k̃1, k̃2 and k̃3 in a
nontrivial way. This is due to the fact that backstepping partially fixes the shape
of the Lyapunov function certifying AS of the origin.
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Example

Lyapunov function for the closed-loop system

V3(x1, x2, x3) =
1

2
x2

1 +
1

2
(x2 − φ1(x1))2 +

1

2
(x3 − φ2(x1, x2))2
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Conclusions

Controller design through backstepping

One of the few existing methods for design controllers for NL systems
NL in a systematic way

Applicable only to systems with a special structure (strict-feedback)

There are several generalizations to different classes of systems (e.g.
to multi-input systems)

Limitations of backstepping

If the system is in strict-feedback form one has to cancel nonlinearities. If
canceling is approximate (because, for instance, the nominal model is not
precise) stability of the origin is no longer guaranteed.

Remedies

There are variants of the method that avoid canceling or make it in a
“robust” fashion.
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Course conclusions - theory

Goals

Provide basic tools for the analysis of NL systems
I Second-order systems: analysis of state trajectories in the

neighborhood of an equilibrium, closed orbits
I Stability of an equilibrium: Lyapunov theory

Provide some methods for controlling NL systems through
state-feedback

I LTI systems: eigenvalue assignment
I Regulation problems: controller design based on the linearized system
I Tracking: integral control
I Regulation: backstepping

... but the main aim was to give an idea of the difficulties that one
has to face in the analysis and control of nonlinear systems (I hope
the whole story was not too boring :-)

Next lectures

Exam preparation exercises !
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