
Advanced automation and control
Optimization module

Prof. Davide M. Raimondo

Dipartimento di Ingegneria Industriale e dell’Informazione

Università degli Studi di Pavia

davide.raimondo@unipv.it

Acknowledgment: thanks to Andrea Pozzi, Diego Locatelli, Giacomo Saccani for their help with some of  the slides

mailto:Davide.raimondo@unipv.it


Course schedule

Lectures

• Thursday (9-11)

• Friday (16-18)

Laboratories

• Dates to be announced

Two modules

• one part on optimization and graphs (Raimondo)

• one part on nonlinear systems (Ferrara)



Website: http://sisdin.unipv.it/labsisdin/teaching/courses/ails/files/ails.php

- course schedule, slides, etc.

Office hours: by appointment

Dipartimento di Ingegneria Industriale e dell'Informazione

Davide M. Raimondo: floor F (davide.raimondo@unipv.it)

Course schedule

http://sisdin.unipv.it/labsisdin/teaching/courses/ails/files/ails.php
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Textbooks

• W. L. Winston & M. Venkataramanan “Introduction to Mathematical Programming: Applications

and Algorithms”, 4th ed., Duxbury Press, 2002. ISBN: 0-534-35964-7

• S. Boyd & L. Vandenberghe, “Convex Optimization”, Cambridge University Press, 2004, ISBN

0521833787

• C. Vercellis “Ottimizzazione: Teoria, metodi, applicazioni”, McGraw-Hill, 2008. ISBN:

9788838664427

Exams: Closed-books closed-notes written exam on all course topics 

The part on optimization & graphs lasts 2 hours. No graphic or programmable calculators are allowed.

Date/time/room on the website of  the Faculty of  Engineering

Registration to exams: Through the university website. 

Textbook and exams
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• Planning of  production processes
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Objective: describe a system behaviour through a mathematical model starting from data.



Identification

Given

• a model structure, e.g. 𝑦 = 𝛽1 + 𝛽2𝑢 + 𝛽3𝑢
2

• a set of input-output data 𝑢𝑖 , 𝑦𝑖 , 𝑖 = 1, … ,𝑚

Find the value of parameters 𝛽1, 𝛽2, 𝛽3 which provide the best

match between model and experiments.

Since measurements are usually affected by noise, here we

chose 𝑚 ≫ 3.

The problem can be stated as an optimization:

𝑚𝑖𝑛𝛽1,𝛽2,𝛽3 ෍

𝑖=1

𝑚

( 𝑦𝑖 − (𝛽1 + 𝛽2𝑢𝑖 + 𝛽3𝑢𝑖
2))2

data model

Further details in the course of  IMAD (Prof. De Nicolao)



Identification

Let generalize the previous problem. Consider now 𝑛 parameters and use the vector notation

𝛽 = 𝛽1 𝛽2 ⋯ 𝛽𝑛
𝑇 𝑦 = 𝑦1 𝑦2 ⋯ 𝑦𝑚 𝑇

The regressors (e.g. 1, 𝑢, 𝑢2) are predefined functions of the inputs. For each 𝑖 = 1,… ,𝑚, we

define 𝑋𝑖 as the vector containing all the 𝑛 regressors (e.g. 𝑋𝑖=[1 𝑢𝑖 𝑢𝑖
2]) and the matrix

Then, we look for the parameters which provide the least square error

Further details in the course of  IMAD (Prof. De Nicolao)



Identification: design of  experiment

The Design of Experiment (DoE) procedure consists in designing an optimal input sequence

(experiment) able to enhance the parameters identifiability and reduce the estimation error.

Optimal input choice

Process

Accurate estimation!



Identification: design of  experiment

The optimal DOE is usually based on the Fisher Information Matrix

• 𝜙 is the parameters vector

• 𝜉 is the experiment (i.e. the input sequence)

• 𝐶𝑦 is the covariance matrix of the measurements

The columns of the sensitivity matrix are given by



Identification: design of  experiment

In order to minimize the uncertainty on the estimated parameter vector ෠𝜙, we minimize

for example the trace of the Fisher Matrix inverse

𝑡𝑖
𝜉 𝑡𝑓

𝜉

𝜉 experiment𝑢(𝑡)

It is an optimization problem!

The Fisher matrix is a lower bound for the parameters covariance matrix 𝐶𝜙
𝜉
:
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Control

Classic control Optimization-based control 

The classic controller is replaced by an optimization algorithm that runs on-line



Optimization-based control

Optimization-based control 

The optimization uses predictions based on a model to optimize performance 

(e.g. minimize costs, maximize return of  investment, etc.)



Optimization-based control

Driving a car

minimize (distance from desired path)

subject to constrains on:

• car dynamics

• distance from leading car

• speed limitations

• …

Further details in the course of  

Industrial Control (Prof. Lalo Magni)
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Optimal placement/sizing

Choose the number and the location of  a set of  wind turbines in order to maximize the return

of  investment of  a wind farm. Several elements need to be taken into account

Power Curve Wind distribution

Geographic information

Wake effect



Optimal placement/sizing

Energy Storage Systems (ESS) can help to cope with intermittent

availability of renewable sources. However, fixed, maintenance, and

operating costs are a critical aspect that must be considered in the

optimal positioning and sizing of these devices
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Resources allocation
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Routing/redistribution problems



Routing/redistribution problems

The Travelling Salesman Problem

Given a list of  cities and the distances between each pair of  cities…

What is the shortest route that visits 

each city once and only once?



Graph

node

arc

Routing/redistribution problems

The Travelling Salesman Problem

Given a list of  cities and the distances between each pair of  cities…

The objective function is the 

minimization of  the cost of  the path



Resource allocation + routing

Assume to have n operators that need to perform m tasks of  different duration at different locations

The objective is to decide

• which and how many tasks to assign at each operator.

• for each operator in which order and over which route to perform the tasks.

We aim to minimize the overall execution time subject to working hours constraints.

𝑇2𝑇1

𝑇3
𝑇4

𝑇5

𝑇6

𝑇7 𝑇8
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Planning of  production processes

Management science: optimal decisions for complex problems



Planning of  production processes



Planning of  production processes
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Example: product mix

Decisions taken by the 

smart manager are optimal

(profits cannot increase)



Example: product mix

How the manager came up 

with this plan ? How can 

we certify it is optimal ?



Optimization



Optimization

Mathematical formalization

+

optimization algorithms

Is it worth?



Optimization



Introduction to optimization

Optimization is also known as mathematical programming

• Programming means planning or building an action plan for solving a problem or taking a

decision

• Optimization falls in the fields of operations research and management science



Introduction to optimization

Standard form of a continuous optimization problem:



Introduction to optimization

Standard form of a continuous optimization problem:

Variables (optimization variables): 

Objective function (or cost):

Constraints:                                             ,

Feasible region:

Feasible point (also said feasible solution): 

(if  no constraints: unconstrained problem)



By convention, the standard form defines a minimization

problem.

A maximization problem can be treated by negating the

objective function.

Introduction to optimization

optimal solutions are the 

same for both problems



By convention, the standard form defines a minimization

problem.

A maximization problem can be treated by negating the

objective function.

Conversion from to in the constraints

Introduction to optimization

optimal solutions are the 

same for both problems

the feasible region

does not change



• is an optimal solution

(global minimum point) if

• is a local optimal solution

(local minimum point) if

Introduction to optimization



• is an optimal solution

(global minimum point) if

• is a local optimal solution

(local minimum point) if

Introduction to optimization

In the figure: ҧ𝑥1 and ҧ𝑥2 are respectively a local and the

global minimum point. 𝑓( ҧ𝑥2) is the optimal cost



Introduction to optimization

Optimal value (optimal cost)



• In some cases, the basic problem can be 

• infeasible (if            )  

• unbounded (if                                             )   

• Even if  the basic problem is feasible and bounded, optimal solutions could

• exist and be not unique (e.g. f (x) constant) 

• not exist e.g. 

Introduction to optimization

Optimal value (optimal cost)



No easy way to solve the basic problem in its full generality!

• Need of  numerical algorithms

• Often, only local optimal solutions can be computed

Introduction to optimization



Convex optimization



A convex optimization problem is an optimization problem in which

• the feasible set is a convex set

• the objective function is a convex function.

Convex programming



Definition: given two points , the set

is a segment joining and

Definition: the set is convex if

one has

Convex set

is convex



Proposition (try to prove it at home): the intersection of two convex sets is a convex set.

Note: the proposition implies that the empty set is also a convex set.

Attention: the union of two convex sets is not convex in general!

Convex sets



Convex cone

Note: in the definition of convex set, was set equal to (and therefore the sum of

was equal to 1). A convex cone is a convex set but not all convex sets are convex cones.



Definition: a function is convex if is convex and, for all

and one has

Convex functions



Definition: a function is convex if is convex and, for all

and one has

Note: is concave if – is convex

Convex functions

Convex examples



All norms are convex

Convex functions
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Convex functions



If 𝑔𝑖 are convex 𝑖 = 1,… ,𝑚, and ℎ𝑖 are affine (ℎ𝑖=𝑐
𝑇𝑥 + 𝑏), 𝑖 = 1,… , 𝑝, what can we say about

the feasible set?

Theorem: let be a convex function and take any .

Then, the level set is convex.

Convex functions and sets



Theorem: let be a convex function and take any .

Then, the level set is convex.

Convex functions and sets



If 𝑔𝑖 are convex 𝑖 = 1,… ,𝑚, and ℎ𝑖 are affine (ℎ𝑖=𝑝
𝑇𝑥 + 𝑞), 𝑖 = 1,… , 𝑝, what can we say about

the feasible set?

Theorem: let be an affine function (ℎ𝑖=𝑝
𝑇𝑥 + 𝑞)

and take any . Then, the set is convex.

Convex functions and sets



Convex functions and sets

Key corollary

Consider the optimization problem

If 𝑔𝑖 are convex 𝑖 = 1,… ,𝑚, and ℎ𝑖 are affine (ℎ𝑖=𝑝
𝑇𝑥 + 𝑞), 𝑖 = 1,… , 𝑝 then the feasible

region is convex. Moreover, if f(x) is also convex, then the optimization problem is convex.

Proof: the proof follows from the previous theorem and the fact that convexity is preserved by

intersection.



A convex optimization problem is an optimization problem in which

• the feasible set is a convex set

• the objective function is a convex function.

Remark: the optimization problem {max𝑓 𝑥 : 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1, … ,𝑚, ℎ𝑖 𝑥 = 0, 𝑖 = 1,… , 𝑝}

is not a convex program even if 𝑓, 𝑔𝑖 are convex and ℎ𝑖 are affine. Indeed, it is equivalent to

{−𝑚𝑖𝑛−𝑓 𝑥 : 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… ,𝑚, ℎ𝑖 𝑥 = 0, 𝑖 = 1, … , 𝑝}

where the function −𝑓 𝑥 is concave.

Notable exception: 𝑓 𝑥 linear is both convex and concave

Convex programming



Fundamental theorem of  convex programming

Important property of convex programs

Theorem: consider the following convex programming problem

and denote with 𝑋 the feasible set. If ෤𝑥 ∈ 𝑋 is a local optimal solution for the problem above,

then ෤𝑥 is a (global) optimal solution.



Proof  of  the theorem



Proof  of  the theorem



A convex function , is continuous in the interior of

Convexity and smoothness

Continuity is needed! If  we don’t have it → not convex
. 

If  we do have it, then, how do we check convexity?



Differentiable convex functions



Differentiable convex functions

of  one real variable

Given a non-trivial interval Ι ⊆ ℝ and a function 𝑓: Ι → ℝ, differentiable in the

interior of Ι, 𝑓 is convex in Ι if and only if 𝑓′ is an increasing function in Ι

(i.e. not empty and not reduced to a point)

(i.e. when x1 < x2 then f(x1) ≤ f(x2))

This condition can be verified more easily in practice

than the one in the previous slide (see the examples).



Twice differentiable convex functions



Continuous but not differentiable convex

multi-variable functions

Non-differentiable functions do not have gradients at each point of the domain, but the

existence of a supporting hyperplane can be used to check convexity.

The vector 𝑔 ∈ ℝ𝑛 corresponding to a supporting hyperplane is called subgradient.

Definition: The subgradient of 𝑓: Ι → ℝ, Ι ⊆ ℝ𝑛, at 𝑥 ∈ Ι is a vector 𝑔 ∈ ℝ𝑛, such that

𝑓 𝑦 ≥ 𝑓 𝑥 + 𝑔𝑇 𝑦 − 𝑥 , ∀𝑦 ∈ Ι

The set of all subgradients is called the subdifferential of the function at 𝑥.



Continuous but not differentiable convex

multi-variable functions

A function 𝑓: Ι → ℝ is convex if and only if it has a non-empty subdifferential

for any 𝑥 ∈ Ι.

The theorem establishes that a

function is convex if and only if a

subgradient exists at every point



Continuous but not differentiable convex

functions of  one real variable

Consider a non-trivial interval Ι ⊆ ℝ and a function 𝑓: Ι → ℝ, continuous in

the interior of Ι. If 𝑓 is convex in Ι, then, the limits

lim
𝑥→𝑥0

∓

𝑓 𝑥 − 𝑓(𝑥0)

𝑥 − 𝑥0

exist for all 𝑥0 ∈ Ι 1. In particular, if 𝑥0 is inside the domain Ι, then both left

(𝑙−) and right (𝑙+) limits exist, are finite and such that 𝑙− ≤ 𝑙+

It extends the concept of  𝑓′ being an increasing function to the case of  non differentiable 𝑓.

1 For the extremes only one of  them makes sense.



Classification of  convex optimization problems

Linear Program (LP): affine objective and constraint functions

Constraints expressed in matricial form



Classification of  convex optimization problems

Example of LP constraints



Classification of  convex optimization problems

Quadratic Program (QP): quadratic objective function and affine constraint functions

Not always convex!! For convexity it is required that matrix P is positive semidefinite.

Same constraints of the LP.

More general than LP (a QP with P=0 is an LP).



Classification of  convex optimization problems

Quadratically Constrained Quadratic Program (QCQP)

Quadratic objective function quadratic inequality constraints and affine equality constraints

Convex if matrices 𝑃0, 𝑃𝑖, 𝑖 = 1, … ,𝑚 are positive semidefinite.

More general than QP (it is a QP if 𝑃𝑖=0, 𝑖 = 1,… ,𝑚).



Classification of  convex optimization problems

Examples of convex QCQP constraints: 2-dimensions



Classification of  convex optimization problems

Examples of convex QCQP constraints: 3-dimensions



Classification of  convex optimization problems

Second-Order Cone Programming (SOCP)

Linear cost and second-order cone constraints and affine equality constraints

It is always convex

OK.. but what is the meaning of «second-order cone» constraints?



Classification of  convex optimization problems

Norm cone

Note: 𝑥1, 𝑥2, 𝑡 are all variables



Second-order cone constraints

It is a second order norm cone where variable t has

been restricted to be

The feasible set is given by the projection onto the 

original coordinates x of  the intersection between the

cone and the equality constraint.

Classification of  convex optimization problems



Second-order cone constraints

It is a second order norm cone where variable t has

been restricted to be

The feasible set is given by the projection onto the 

original coordinates 𝑥 of  the intersection between the

cone and the equality constraint.

Classification of  convex optimization problems



Second-Order Cone Programming (SOCP)

Let recall the SOCP formulation

More general constraints than a QCQP. It is a QCQP

when is equal to 0.

There is also a way to formulate the quadratic cost of

QP/QCQP in the SOCP formulation!

Classification of  convex optimization problems



Classification of  convex optimization problems

Semi-Definite Program (SDP): it is always a convex program

Linear cost, positive semi-definite cone constraints and affine equality constraints

Linear cost w.r.t. the variables of  the matrix X (the same holds for the equality constraints!) 



Classification of  convex optimization problems

Positive semi-definite cone constraints



Classification of  convex optimization problems

Positive semi-definite cone constraints

A further example with also affine equality constraints

SDP has more general constraints than a SOCP.



Classification of  convex optimization problems

SDP programs can be used to find polynomial Lyapunov functions for polynomial systems!!

Quartic Lyapunov function

ቊ
ሶ𝑥 𝑡 = −𝑥 𝑡 + 𝑦 𝑡

ሶ𝑦 𝑡 = 0,1𝑥 𝑡 − 2𝑦 𝑡 − 𝑥 𝑡 2 − 0,1𝑥 𝑡 3



Semidefinite programming has recently emerged to

prominence because it admits a new problem type

previously unsolvable by convex optimization

techniques and because it theoretically subsumes

other convex types.

We can solve SDPs and their subsets efficiently

with suitable methods!

Classification of  convex optimization problems

If the variables must also verify we have integer programming (mixed-integer

programming if only a subset of the variables is constrained to integer values).

Extensions (convexity is lost! Further details in future lectures)



Checking convexity: examples

Example 1



Checking convexity: examples
1. Indicate if  the cost function is convex

∇2𝑓 =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1 𝜕𝑥2

𝜕2𝑓

𝜕𝑥2 𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2

= 
0.5 0
0 18

The cost function is twice differentiable. Thus we can compute the Hessian matrix and check if it is

semidefinite positive.

Since the eigenvalues of ∇2𝑓 are both positive (ℷ1 = 0.5, ℷ2 = 18), we can conclude that the Hessian

matrix is positive definite and therefore the cost function is a convex function

Example 1



Checking convexity: examples
1. Indicate if  the cost function is convex

Moreover we can see that the cost function is also a quadratic function, where

𝑥 =
𝑥1
𝑥2

𝑄 =
0.25 0
0 9

c=
−3
0

𝑓 𝑥 = 𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥

Example 1

And Q ≥ 0 thus proving convexity.



In this example, one can rewrite 𝑔𝑖 𝑥 = 𝑥𝑇𝑄𝑖𝑥 + 𝑑 with

Checking convexity: examples
2. Depict the feasibility domain of  the problem

൝
𝑥1
2 + 𝑥2

2 ≤ 10

𝑥1
2 + 𝑥2

2 ≥ 3
= ൝

𝑥1
2 + 𝑥2

2 − 10 ≤ 0

−𝑥1
2 − 𝑥2

2 + 3 ≤ 0
= ቊ

𝑔1(𝑥) ≤ 0
𝑔2(𝑥) ≤ 0

Example 1. We now rewrite the inequality constraints in the standard form 𝑔𝑖(x) ≤ 0

𝑄1 =
1 0
0 1

𝑄2 =
−1 0
0 −1

Convexity of 𝑔𝑖 𝑥 → convex feasible set. The viceversa is not guaranteed.

What can we do?

Looking at the figure and using the definition of  convex set 

we see the set is not convex!

→ 𝑔2(𝑥) is not a convex function. 



Checking convexity: examples
3. Indicate if  the optimisation problem is convex

The optimisation problem is a convex problem if

• 𝑓 𝑥 is a convex function (we minimize!) and the feasible set is convex.

Since the feasibility domain is not convex, the optimisation problem is NOT convex.

• Note: it is a non-convex QCQP!

Example 1



Checking convexity: examples

Example 2



Checking convexity: examples
1. Indicate if  the cost function is convex

Cost function f(x)

𝑚𝑎𝑥𝑥∈𝑋 − 𝑓 𝑥 → 𝑚𝑖𝑛𝑥∈𝑋𝑓(𝑥)

Example 2

𝑑 𝑓(𝑥)

𝑑𝑥
= ቊ

2𝑥, 𝑥 ≤ 0.5
1, 𝑥 ≥ 0.5

𝑓 𝑥 is a continous function. Moreover 𝑓 is differentiable:

Since 𝑓′(x) is an increasing function in its domain→ 𝑓 is convex.

𝑓−
′ 0.5 = 𝑓+

′ 0.5 = 1



ቊ
0 ≤ 𝑥 ≤ 1
𝑥 ≥ 0

Convexity of 𝑔𝑖 𝑥 → convex feasible set. The viceversa is not guaranteed.

Checking convexity: examples
2. Depict the feasibility domain of  the problem

ቊ
𝑔1(𝑥) = log(𝑥) ≤ 0

𝑔2 𝑥 = −𝑥 ≤ 0

However, if  we analyze 𝑔1(𝑥) we actually get, from 1 and 2

The feasibility domain is the interval set 0 1 . An interval set is a convex set. 

The feasible domain is convex! 

Example 2

0 1

linear (thus convex)

Concave → Not convex



Checking convexity: examples
3. Indicate if the optimisation problem is convex

• Cost function is a convex function (w.r.t. minimization)

• The feasibility domain is convex

Example 2

Optimisation problem is convex!



Checking convexity: examples

Example 3



Checking convexity: examples
1. Indicate if the cost function is convex

Cost function f(x)

Example 3

Since 𝑓′ is an increasing function we can conclude that 𝑓 is convex.

𝑓 𝑥 is a continous function ∀𝑥 ∈ 𝑋 ≡ ℝ and differentiable

𝑑𝑓(𝑥)

𝑑𝑥
= ቊ

2𝑥 , 𝑥 ≤ 0

3𝑥2, 𝑥 ≥ 0
𝑓−
′ 0 = 𝑓+

′ 0 = 0



Checking convexity: examples
2. Depict the feasibility domain

Feasibility domain

Let depict the set. The feasibility domain is in 1D (the only variable is x)

and is characterized by separated points (red dots in the figure).

Using the definition of convex set, every segment connecting two points

of the set should be contained in it → The set is not convex!

Example 3: in this example we have only equality constraints h x = 0

In the absence of  inequality constraints, if ℎ𝑖 𝑥 are affine → convex feasible set. 

The viceversa is not guaranteed.

cos 𝑥 is not affine! What can we do?



Checking convexity: examples
3. Indicate if  the optimisation problem is convex

Since the feasibility domain is not a convex set, the optimisation problem is NOT  convex!

Feasibility domain

Cost function f(x)

Example 3



Checking convexity: examples

𝑚𝑖𝑛 𝑓 𝑥
cos 𝑥 = 0

𝑓 𝑥 = ቊ
𝑥2, 𝑥 ≤ 0

𝑥3 − 1, 𝑥 ≥ 0

Consider the following optimisation problem:

Example 4



Checking convexity: example

Cost function f(x)

𝑓 𝑥 is a discontinous function→ cost function NOT CONVEX

The feasibility domain is the same of  Example 3 → NOT convex 

Example 4 𝑚𝑖𝑛 𝑓 𝑥
cos 𝑥 = 0

𝑓 𝑥 = ቊ
𝑥2, 𝑥 ≤ 0

𝑥3 − 1, 𝑥 ≥ 0

Since both the cost function and the feasibility set are not convex, 

the optimization problem is not convex!



Checking convexity: examples

Consider the following linear optimisation problem:

max 24𝑥1 + 18𝑥2

𝑠. 𝑡. 𝑥1 + 𝑥2 ≤ 40
4𝑥1 + 2𝑥2 ≤ 132
2𝑥1 + 4𝑥2 ≤ 140

Example 5



Checking convexity: examples

1. Indicate if the cost function is convex

Since the optimisation problem is a maximisation

problem we have to convert it into a minimisation

problem:

m𝑖𝑛 −24𝑥1 − 18𝑥2

𝑥1 + 𝑥2 ≤ 40
4𝑥1 + 2𝑥2 ≤ 132
2𝑥1 + 4𝑥2 ≤ 140

𝑠. 𝑡.

Example 5



Checking convexity: examples

1. Indicate if the cost function is convex

𝑓 𝑥1, 𝑥2 = −24𝑥1 − 18𝑥2

The cost function is continous in its domain. It is a linear

function in the variables 𝑥1, 𝑥2 and therefore convex.

Since it is twice differentiable, we could also compute the

Hessian matrix

∇2𝑓(𝑥1, 𝑥2) =
0 0
0 0

Its eigenvalues are null (ℷ1,2 = 0) → the Hessian is positive

semidefinite → the cost function is a convex function

Example 5

(To prove convexity, we could also check if 𝑓′(x) is an increasing function)



Checking convexity: examples
2. Depict the feasibility domain 

3. Indicate if the optimisation problem is convex

The feasible set is the intersection (in green) of the halfspaces

defined by the single constraints (halfspaces).

Looking at the pic, the set is convex: the segment connecting any

two points inside the green region is entirely contained in the set.

Convex feasibility domain + convex cost function and minimization problem→ The problem is CONVEX!

Example 5: the inequality functions 𝑔𝑖 𝑥 are affine → they are convex→ the feas. set is convex!

m𝑖𝑛 −24𝑥1 − 18𝑥2

𝑥1 + 𝑥2 − 40 ≤ 0
4𝑥1 + 2𝑥2 − 132 ≤ 0
2𝑥1 + 4𝑥2 − 140 ≤ 0

𝑠. 𝑡.



Example 6:

𝑑 𝑓(𝑥)

𝑑𝑥
= ቊ

2𝑥, 𝑥 ≤ 0.5
−1, 𝑥 ≥ 0.5

𝑓(𝑥) = ቊ
𝑥2, 𝑥 ≤ 0.5
−𝑥 + 0.75, 𝑥 ≥ 0.5

What if the cost function is not differentiable?

Checking convexity: examples

Differently from Example 2, 𝑓 is not differentiable in its domain

𝑓−
′ 0.5 = 1 ≠ 𝑓+

′ 0.5 = −1

So that we cannot rely on conditions based on differentiability for checking convexity

However, we can use the condition for continuous but not differentiable functions→ convex if  𝑓−
′ ≤ 𝑓+

′

It does not hold for x = 0.5! Therefore, the function is not convex! (Visible in this case also graphically)



Example 7:

𝑑 𝑓(𝑥)

𝑑𝑥
= ቊ

2𝑥, 𝑥 ≤ 0.5
2𝑥 − 2, 𝑥 ≥ 0.5

𝑓(𝑥) = ቊ
𝑥2, 𝑥 ≤ 0.5

𝑥2 − 2𝑥 + 1, 𝑥 ≥ 0.5

Still, 𝑓 is not differentiable in its domain

𝑓−
′ 0.5 = 1 ≠ 𝑓+

′ 0.5 = −1

Checking convexity: examples
What if the cost function is not differentiable?

As before we cannot rely on conditions based on differentiability for checking convexity and we have to 

use the condition for continuous but not differentiable functions → convex if  𝑓−
′ ≤ 𝑓+

′

It does not hold for x = 0.5! Therefore, the function is not convex! (Visible in this case also graphically)



Example 8:

𝑑 𝑓(𝑥)

𝑑𝑥
= ቐ

5

3
𝑥 −

25

6
, 𝑥 ≤ 0

2𝑥, 𝑥 ≥ 0

𝑓 is not differentiable in its domain

𝑓−
′ 0 = −

25

6
≠ 𝑓+

′ 0 = 0

Checking convexity: examples

𝑓(𝑥) = ቐ

5

6
𝑥2 −

25

6
𝑥, 𝑥 ≤ 0

𝑥2, 𝑥 ≥ 0

What if the cost function is not differentiable?

We cannot rely on conditions based on differentiability for checking convexity!!



We can use the condition for continuous but not differentiable functions→ convex if 𝑓−
′ ≤ 𝑓+

′

It does hold for x = 0!

Is this enough? No. The condition needs to hold everywhere.

However, since

• for 𝑥 < 0 the function is convex

• for 𝑥 > 0 the function is convex

• for 𝑥 = 0 𝑓−
′ ≤ 𝑓+

′

One can conclude that the function is convex! (Visible in this case also graphically)

𝑓−
′ 0 = −

25

6
≤ 𝑓+

′ 0 = 0

Example 8:

Checking convexity: examples
What if the cost function is not differentiable?

𝑓(𝑥) = ቐ

5

6
𝑥2 −

25

6
𝑥, 𝑥 ≤ 0

𝑥2, 𝑥 ≥ 0

𝑑2𝑓(𝑥)

𝑑𝑥2
= ቐ

5

3
, 𝑥 < 0

2, 𝑥 > 0


