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Course schedule

Two modules

one part on optimization and graphs (Raimondo)

one part on nonlinear systems (Ferrara)

Lectures

Thursday (9-11)
Friday (16-18)

I.aboratories

Dates to be announced




Course schedule

Website: http://sisdin.unipw.it/labsisdin/teaching/courses/ails/files/ails.php
- course schedule, slides, etc.

Otftice hours: by appointment

Dipartimento di Ingegneria Industriale e dell'Informazione
Davide M. Raimondo: floor F (davide.raimondo(@unipv.it)
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Textbook and exams

KF extbooks \

* W. L. Winston & M. Venkataramanan “Introduction to Mathematical Programming: Applications
and Algorithms”, 4th ed., Duxbury Press, 2002. ISBN: 0-534-35964-7
* S. Boyd & L. Vandenberghe, “Convex Optimization”, Cambridge University Press, 2004, ISBN

0521833787
* C. Vercellis “Ottimizzazione: Teoria, metodi, applicaziont”, McGraw-Hill,  2008. ISBN:
\_ 9788838664427 =

Exams: Closed-books closed-notes written exam on all course topics
The part on optimization & graphs lasts 2 hours. No graphic or programmable caleulators are allowed.
Date/time/room on the website of the Faculty of Engineering

Registration to exams: Through the university website.
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Identlﬁcatlon Further details in the course of IMAD (Prof. De Nicolao)

Objective: describe a system behaviour through a mathematical model starting from data.




Identlﬁcatl()ﬂ Further details in the course of IMAD (Prof. De Nicolao)

-} Objective: describe a system behaviour through a mathematical model starting from data.

Read JM et al. Novel coronavirus 2019-nCoV: early estimation ofheidemiological Earametersland epidemic predictions

", Figure 3. Epidemic predictions for (A) Wuhan, (B) selected Chinese cities and (C) selected
: countries. Uncertainty in estimated model parameters is reflected by 500 repeated
simulations with parameter values drawn randomly from the distribution of fit estimates.
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Identlﬁcatlon Further details in the course of IMAD (Prof. De Nicolao)

Given

a model structure, e.g. v = By + Bou + Bu?

a set of input-output data u;, y;,i = 1,..,m

Find the value of parameters [y, 55, f3 which provide the best
match between model and experiments.

Since measurements are usually affected by noise, here we
chose m >> 3.

The problem can be stated as an optimization:

ming g, g. Z@— By + Baw; + B3ui*))*

i=1data model




Identlﬁcatlon Further details in the course of IMAD (Prof. De Nicolao)

Let generalize the previous problem. Consider now n parameters and use the vector notation

=188 o BN Y W e W

The regressors (e.g. 1,u,u?) are predefined functions of the inputs. For each i = 1, ..., m, we
define X; as the vector containing all the n regressors (e.g. X;=[1 u; w;%]) and the matrix

[ X X2 o X
Xor Xoo - Xop
X = . . . .
L Xml X'mQ e X’mn ]

Then, we look for the parameters which provide the least square error 8= argming || X 3 — y||*

If prior knowledge is available, the problem above may be subject to constraints (e.g. 8 > 0).
©




Identification: design ot experiment

The Design of Experiment (DoE) procedure consists in designing an optimal input sequence
(experiment) able to enhance the parameters identifiability and reduce the estimation error.

Process

Accurate estimation!

Optimal input choice




Identification: design ot experiment

The optimal DOE is usually based on the Fisher Information Matrix F*(¢) = S 5(gb)TC’y_ 188(9)
¢ is the parameters vector
¢ is the experiment (i.e. the input sequence)

Cy 1s the covariance matrix of the measurements

The columns i =1,2, ..., Ny of the sensitivity matrix S°(¢) are given by

o _ Y (et +h g™} - 54(9)
G h

et e —— - - . Per—— - e — —— e e ——————— =



Identification: design ot experiment

The Fisher matrix is a lower bound for the parameters covariance matrix Cqsz: Ci > F(¢)~?

In order to minimize the uncertainty on the estimated parameter vector ¢, we minimize

for example the trace of the Fisher Matrix inverse

min Tr (Fﬁ(qg)_l) u(t)

It 1s an optimization problem!

¢ experiment
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§
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Why optimization?

Useful in many contexts
Identification
Control

Management
Optimal placement/sizing
Resources allocation
Routing/redistribution problems

Planning of production processes




Control

Classic control Optimization-based control

‘I'Reference lReference

_— Output Optimizer

nput . Plant —2P2 o . Input Output

K(s) @ D Plant LN
A
A
Measurements
Measurements

The classic controller is replaced by an optimization algorithm that runs on-line




Optimization-based control

Optimization-based control

lReference
= =1 N _
Optimizer M T
Y Input Output
= b Plant BN O—)
RS -2 t-1 ot t+N
A
Measurements

The optimization uses predictions based on a model to optimize performance
(e.g. minimize costs, maximize return of investment, etc.)




Optimization-based control

Driving a car

minimize (distance from desired path)

subject to constrains on:
* car dynamics
* distance from leading car
* speed limitations

Further details in the course of
Industrial Control (Prof. Lalo Magni)
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Optimal placement/sizing

4 Choose the number and the location of a set of wind turbines in order to maximize the return f
of investment of a wind farm. Several elements need to be taken into account ?_
Calculated power curve . '
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Optimal placement/sizing

Energy Storage Systems (ESS) can help to cope with intermittent /
availability of renewable sources. However, fixed, maintenance, and
operating costs are a critical aspect that must be considered in the
optimal positioning and sizing of these devices

ﬁ ﬁ Factories

Renewable energy

Office buildings

< fr i -

(a) Estimated P* profiles from real load data.
Transmission and P et
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Why optimization?

Useful in many contexts
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Resources allocation

Demand Driven Employee Scheduling for the Swiss Market

C.N. Jones K. Nolde
Automatic Control Laboratory, Apex Optimization GmbH,
EPFL, Lausanne, c/o Automatic Control Laboratory,
Switzerland, ETH Zurich, 8092 Zurich,
colin. jones@epfl.ch Switzerland,

nolde@control.ee.ethz.ch

June 24, 2013

1 Introduction

Standard practice for Swiss refail chains is (o schedule employees so that the tolal number of
workers present in the store is approximately constant duning open hours. The number of shop-
pers, however, Muctuates throughout the day, which results in periods of under- andfor over-
stafling that in lwm reduces the electiveness of the workforce. This paper repors on a new
scheduling system that has been developed specifically for the Swiss markel by Apex Oplimica-
tion GmbH. The ool seeks o malch expecied customer demand o the number of sales stafl by
optimizing the shifls of the work force. The system has been successfully wsed by 38 small w
mid-sized retml stores of the Migros chain of Swilzerland over the past year, and the resulis of
this imitial implementation are reporied here.

Schedules are computed on a weekly basis, one or more weeks in advance. Each week, the
employees and/or store managers specily a wide range of store and employee-specific constraints
through a web-based interface. The system then formulates a mixed-inleger oplimization prob-
lem i order to select a shifi schedule that mimmizes over- and under-stafling agamnsi a predicied
customer demand profile, which has been estimated from past sales reconds.




Why optimization?
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Routing/redistribution problems

EURO Journal on Transportation and Logistics
August 2013, Volume 2, |ssue 3, pp 187-229

Static repositioning in a bike-sharing system:
models and solution approaches

Authors Authors and affiliations

Tal Raviv[~], Michal Tzur, Iris A. Forma

Abstract

Bike-sharing systems allow people to rent a bicycle at one of many automatic rental stations
scattered around the city, use them for a short journey and return them at any station in the
city. A crucial factor for the success of a bike-sharing system is its ability to meet the fluctuating
demand for bicycles and for vacant lockers at each station. This is achieved by means of a
repositioning operation, which consists of removing bicycles from some stations and
transferring them to other stations, using a dedicated fleet of trucks. Operating such a fleetin a
large bike-sharing system is an intricate problem consisting of decisions regarding the routes
that the vehicles should follow and the number of bicyeles that should be removed or placed at
each station on each visit of the vehicles. In this paper, we present our modeling approach to the
problem that generalizes existing routing models in the literature. This is done by introducing a
unique convex objective function as well as time-related considerations. We present two mixed
integer linear program formulations, discuss the assumptions associated with each, strengthen
them by several valid inequalities and dominance rules, and compare their performances ¢
through an extensive numerical study. The results indicate that one of the formulations is very
effective in obtaining high quality solutions to real life instances of the problem consisting of up
to 104 stations and two vehicles. Finally, we draw insights on the characteristies of good

solutions.




Routing/redistribution problems

The Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities...

: [ <X ? l; it v 3 1cq
Mo Bl S g e What is the shortest route that visits
Sea Mna@, K IE],J fiﬁ — g

each city once and only once?

Bramaﬂgv;ﬁ ig 'L“}E"eck
| mdd a.mburg

[ & remen  BERL)
)f"l Jé Hannoverg Ib POL. 2
_NETH. (I:d agdeburg

Duisburg

‘D 22 Larpzla \-@
lissaldorf
ACoIogna “Kasssl Dmsdan’

ED r Frankfurt r»\_\ ™
CZECH
REPUBLIC
LUX,

(e,

PO o ¢ o e o - i S St sy s sy omh st i s et 3 > s . o 3 e e N N S e N S T
5 22 4 L7 Lo



Routing/redistribution problems

The Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities...

The objective function 1s the
minimization of the cost of the path
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Resource allocation + routing

Assume to have n operators that need to perform m tasks of different duration at different locations

The objective is to decide
* which and how many tasks to assign at each operator.
* for each operator in which order and over which route to perform the tasks.
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.. We aim to minimize the overall execution time subject to working hours constraints. a
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Why optimization?

Useful in many contexts
Identification
Control
Management
Optimal placement/sizing
Resources allocation

Routing/redistribution problems

Planning of production processes




Planning of production processes

Investment
strategy
1
Management i
(dec%ions) Marketing
Human resources
p allocation
Proglg%tion Products
Control of
production
processes

Management science: optimal decisions for complex problems




Planning of production processes

Investment
strategy
Management Marketin
(decisions) g
Production
plan

Human resources
allocation

Control of
production
processes

Products

Management: decisions can be either “instinctive” or structured

P “Instinctive” decisions:
P Pros: rapidity and flexibility
P Cons: no quantitative model
I limited number of the alternatives

P limited understanding of decision criteria

F

Suboptimal
decisions

Drawbacks can be extremely critical if decisions are complex
(several alternatives / mutually dependent choices / limited resources)




Planning of production processes

Investment

strategy
Management .
(deC%ions) Marketing
Production
plan

Human resources
allocation

Control of
production
processes

Products

Management: decisions can be either “instinctive” or structured

P Structured decisions (based on a quantitative model):
P Pros:
P Better understanding of the problem
P consideration of all possible alternatives
P precise decision criteria
P optimal decisions can be tacken even for complex problems
B Cons: getting a mathematical model of a decision problem might be time and
resource consuming

P trade-off between time/resources for decision-making and benefits of
optimality. Very often optimality wins !



Example: product mix

A company manifactures two radio models (low-cost and high-end) and produces

two components
P Department A: antennas
P no more than 120h hours of production per day
P 1h of work for a low-cost antenna
P 2h of work for a high-end antenna
P Department B: cases
I no more than 90h hours of production per day
P 1h of work for a low-cost case
P 1h of work for a high-end case
The company has two assembly lines (1 radio=1 antenna + 1 case)
P Line 1: production of low-cost models. No more than 70 units/day
P Line 2: production of high-end models. No more than 50 units/day

e ——————————————————————————————————————————————



Example: product mix

1h low-cost

2h high-end
4 A
Department A Line 1
120 h/day) (70 units/day)
1h low-cost 1h high-end
A
Department B Line 2
(90 h/day) (50 units/day)

Profits: 20 Euro for a low-cost radio and 30 Euro for a high-end radio

Assuming the comﬁany will sell all the radios, which is the optimal number of
units, for each model, that must be prg)duced daily for maximizing the
revenue”

Optimal daily production plan = mix of two products



Example: product mix

1h low-cost 2h high-end
4 A
Department A Line 1
120 h/day) (70 units/day)
1h low-cost 1h high-end
A
Department B Line 2
(90 h/day) (50 units/day)

Instinctive (and greedy) manager: higher profits for high-end models & maximize
their production (50 units/day)

Department A: 100h for high-end antennas (50 antennas) & 20h for low-cost antennas
(20 antennas)

Department B: 50h for high-end cases (50 cases) & 20h for low-cost cases (20 cases)
Line 1: 20 low-cost radios per day
Line 2: 50 high-end radios per day

Daily profits: 20*20+50*30=1900 Euro. |s there any better solution ?



Example: product mix

1h low-cost 2h high-end
A A
Department A Line 1
120 h/day) (70 units/day)
1h low-cost 1h high-end
A
Department B Line 2
(90 h/day) (50 units/day)

Smart manager: 60 low-cost models and 30 high-end models

Department A: 60h for high-end antennas (30 antennas) & 60h for low-cost antennas (60

antennas)
Department B: 30h for high-end cases (30 cases) &> 60h for low-cost cases (60 cases)

Line 1: 60 low-cost radios per day
Line 2: 30 high-end radios per day

Daily profits: 60*20+30*30=2100 Euro



Example: product mix

1h low-cost 2h high-end

4 A

Department A

120 h/day)

1h low-cost 1h high-end

A

Department B
(90 h/day)

Line 1
(70 units/day)

Line 2
(50 units/day)

Decisions taken by the
smart manager are optimal
(profits cannot increase)

Smart manager: 60 low-cost models and 30 high-end models

Department A: 60h for high-end antennas (30 antennas) > 60h for low-cost antennas (60

antennas)

Department B: 30h for high-end cases (30 cases) & 60h for low-cost cases (60 cases)

Line 1: 60 low-cost radios per day

Line 2: 30 high-end radios per day
Daily profits: 60*20+30*30=2100 Euro




Example: product mix

1h low-cost 5h high-end
4 A
Department A Line 1
120 h/day) (70 units/day)
: How the manager came u
1h low-cost 1h high-end : : g P
A with this plan ? How can
. we certify it is optimal ?
Department B Line 2 y P
(90 h/day) (50 units/day)

Smart manager: 60 low-cost models and 30 high-end models

Department A: 60h for high-end antennas (30 antennas) & 60h for low-cost antennas (60
antennas)

Department B: 30h for high-end cases (30 cases) & 60h for low-cost cases (60 cases)

Line 1: 60 low-cost radios per day

Line 2: 30 high-end radios per day

Daily profits: 60*20+30*30=2100 Euro
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Optimization

Mathematical formalization
_I_

optimization algorithms

Is 1t worth?
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Introduction to optimization

Optimization 1s also known as mathematical programming

Programming means planning or building an action plan for solving a problem or taking a
decision

Optimization falls in the fields of operations research and management science




Introduction to optimization

Standard form of a continuous optimization problem: o )
minimize f(z)
subject to  g;(z) <0, i=1,---,m
h%(iﬂ):[}, i:]-a"'ap
G J
= = §



Introduction to optimization

Standard form of a continuous optimization problem: (o A
minimize f(z)
subject to  g;(z) <0, i=1,---,m
h?‘, (113) — 05 1= ) » P
. N : T \_ J
Variables (optimization variables): @ = [z, - , 2]
Obijective function (or cost): f: R" — R
Constraints: ¢; - R" - R,i=1,---, m Ry R™ - R.2=1.--- .,p (if no constraints: unconstrained problem)
Feasible region: X = {z € R" : g1(2) <0, ,gm(z) <0, hy(x) =0, hy(x) = 0}

Feasible point (also said feasible solution): € X
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Introduction to optimization

: SR, minimize xr
By convention, the standard form defines a minimization f(z)

problem. subject to  g;(z) <0, i=1,---,m

hi(zr)=0, i=1,---,p

A maximization problem can be treated by negating the max f(z) = — min — f(z)

objective function. reX reX

optimal solutions are the
same for both problems
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Introduction to optimization
By convention, the standard form defines a minimization minimize f(z)
problem subject to g;(x) <0, i=1,---,m
. h(il?):O i:]-,"',p
A maximization problem can be treated by negating the max f(z) = — min — f(z)
objective function. reX reX

optimal solutions are the

: : S same for both problems
Conversion from < to > in the constraints

{33 cR" - g(a:) > 0} _ {ZL‘ c R™ - —g(:z:) < 0} - the feasible region

does not change




Introduction to optimization

minimize f(z)

subject to  g;(z) <0, i=1,---.m
hi(r) =0, i=1,---,p

/ 2™ € X is an optimal solution \

(global minimum point) 1f

f2®) < f(x), Ve e X
T € X 1s alocal optimal solution

(local minimum point) 1f

Qwo:vxex,nx—zu<g:»f(5:)gf(xy

4
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\
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Introduction to optimization

minimize f(z) i
Subject tD 9‘1(1}') S O? ?r — ]_’ ... ’m 9L
h3($)205 Z‘:]_’...’p gL

(N

[ 2™ € X is an optimal solution \ T 5l

(global minimum point) 1f all

il
fa®) < f(x), Vo e X il

T € X is alocal optimal solution 1 | ,
ol i ; ;

(local minimum point) 1f BB RiE 5 < S CE

HA

Qg >0:Ve e X, ||z —Z|| <e= f(z) < f(:cy In the figure: X1 and X, are respectively a local and the
% global minimum point. f(X,) is the optimal cost &

BIPS o o - e s e 3 = 2 s < ) i
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Introduction to optimization

minimize J(7) Optimal value (optimal cost) |
subject to  g;(z) <0, i=1,---.m | | | .
hi(r) =0, i=1,---,p @: inf{f(z): g1(z) <0, . gm(x) <0, hy(z)=0,---  hp(z) =0} |

{6
©




Introduction to optimization

minimize f(z) Optimal value (optimal cost)

subject to  g;(z) <0, i=1,---.m

hi(x) =0, i=1,---,p @: inf{f(z): qn(z) <0, ,gm(z) <0,hi(z)=0,---

In some cases, the basic problem can be
infeasible (if X =) p" = o
unbounded (if Vk <03z e X : f(z) <k) p"=—00

Even if the basic problem is feasible and bounded, optimal solutions could
exist and be not unique (e.g / (x) constant)

not exist e.o. mine® rc R ‘
& <0

)
=M ol
s y i & o &t > et ) - §
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Introduction to optimization

minimize f(z)

subject to  g;(z) <0, i=1,---.m
hi(r) =0, i=1,---,p

No easy way to solve the basic problem 1n its full generality!

Need of numerical algorithms

Often, only local optimal solutions can be computed

| @

P o o s s e



Convex optimization



Convex programming

A convex optimization problem is an optimization problem in which
the feasible set is a convex set

the objective function is a convex function.




Convex set

42
Definition: given two points 2,y € R’} the set y
Ty={dx+(1—=Ny: Ae[0,1]} -
is a segment joining & and Y %
. -
0 X1
Definition: the set X C R" is convex if O <A>
T AUB
v, Y€ X eneh Ty € X convex not convex _polyhedron not convex
(without the boundary
convex

R"™ i
1s convex




Convex sets

[Proposition (try to prove it at home): the intersection of two convex sets is

a convex set. ]

Note: the proposition implies that the empty set 1s also a convex set.

ea

AN B convex AN B = & convex AU B not convex
AN B convex

Attention: the union of two convex sets is not convex in general!

)

t
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Convex cone

X C R" is a convex cone if given any z,y € X and any A, u > 0

Az +py € X x

Geometrically: x,y € X — 'pie slice’” between z,y C X T

Note: in the definition of convex set, /¢ was set equal to (1 — A) (and therefore the sum of

A, [t was equal to 1). s A convex cone is a convex set but not all convex sets are convex cones.

i
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Convex functions

Definition: a function f : R™ — R is convex if dom( f) is convex and, for all =,y € dom( f)

and A € [0,1] onehas f(Ax + (1 —Ny) < Af(z)+ (1 —N)f(y)

e
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Convex functions

Definition: a function f : R™ — R is convex if dom( f) is convex and, for all =,y € dom( f)

and A € [0,1] onehas f(Ax + (1 —Ny) < Af(z)+ (1 —N)f(y)

[Note: f is concave if - [ is convex] / Convex examples \

f(x)

()

-~ [

1)

convex concave neither
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All norms are convex

Convex functions

&}1‘1115 in R™

.

called [,-norm) of vector x = (¢, ---

n 1/p
el = (z )
=1

Let p > 1 be a real number. The p-norm (also

L) 1S

<

/




Convex functions

All norms are convex

2l =
&31‘1115 in R™ \ i=1

Let p > 1 be a real number. The p-norm (also

xI;

called [,-norm) of vector x = (z1,--- . x,) is

n 1/p

< p = ; e -
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All norms are convex

Convex functions

&31"1115 in R™

Let p > 1 be a real number. The p-norm (also

called [,-norm) of vector x = (xy,--- . x,) Is

<

n 1/p

; ;P /

D)
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minimize f(z)

Convex functions and sets | suiect to ()0 =t

If g; are convex i = 1,...,m, and h; are affine (h;=c’x + b), i = 1, ..., p, what can we say about

the feasible set?

18(x)

Theorem: let |g; : R™ — R be a convex functionfand take any ¢ € R.

Then, the level set X, = {x € R" : g;(z) < ¢} _is convex.

Proof: Pick x,y € X, and A € [0, 1] and consider z = Az + (1 — A)y: we have to show that z € X.. From the
convexity of g; one has that g;(z) < Agi(z) + (1 — \)gi(y). Since z,y € X, one has

gi(z) < Agi(z) + (1 = A)gi(y) L Ae+ (L =A)e=c

that implies z € X,.
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minimize f(z)

Convex functions and sets |sbiectto st <o i=tm

hz(ﬂ?):O, i:lj...’p

Theorem: let |g; : R™ — R be a convex functionfand take any ¢ € R. )

Then, the level set X, = {x € R" : g;(x) < ¢} is convex.

/ The norm ball B = {z : ||z — z.||, <1} is a convex set \
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minimize f(z)

Convex functions and sets |sbictto a@ <o i=t.m

hz‘(i?):o, i:lj...’p

If g; are convex i = 1,...,m, and h; are affine (h;=pTx + q), i = 1, ..., p, what can we say about
the feasible set?

Theorem: let|h; : R™ — R be an affine function| (h;=p’x + q)

-
&

5

&

S

and take any ¢ € R . Then, the set X, = {x € R" : h;j(x) = ¢} is convex.

Proof: Pick z,y € X, and A € [0,1] and consider z = Az + (1 — A)y: we have to show that z € X,.
Since x,y € X, one has

hz(z) = h,z-()\x + (1 — )\)y)

pT(Az + (1= Ny) +4¢
ApT(x) + (1 = A)pT(y) + ¢

A(hi(x) —q) + (L = A)(hi(y) — q) +4q
= Me—g)+(1=A)(c—q)+qg=c




Convex functions and sets

Key corollary
Consider the optimization problem
minimize f(x)

i=1---.,m

subject to gz( ) <
p— 'i:l}.-- :lp

0,
0,

If g; are convex i = 1,..,m, and h; are affine (h;=p’x+q), i =1,...,p then the feasible
region is convex. Moreover, if f(x)is also convex, then the optimization problem is convex.

Proof: the proof follows from the previous theorem and the fact that convexity is preserved by
intersection.




Convex programming

A convex optimization problem is an optimization problem in which
the feasible set is a

the objective function is a

Remark: the optimization problem {max f(x): g;(x) < 0,i =1, ...,m, h;(x) =0,i =1, ..., p}
is not a convex program even if f, g; are convex and h; are affine. Indeed, it is equivalent to
{—-min—f(x):9;(x) <0,i=1,....m, h(x) =0,i =1, ...,p}

where the function —f(x) is concave.

Notable exception: f(x) linear is both convex and concave

le



Fundamental theorem of convex programming

Important property of convex programs

Theorem: consider the following convex programming problem

minimize f(x)

subject to gl( ) <0, .
:U i:1,°",p

and denote with X the feasible set. If X € X is a local optimal solution for the problem above,

then X is a (global) optimal solution.




Proof of the theorem

The goal is to show f(X) < f(y) Vy € X.

Fix y € X, y # X and let I.(X) be a neighborhood

of X such that z € I.(X) = f(X) < f(z). Pick X
z € X such that z € Xy, z € I(X) and z # %.

Such a z exists because

z=A+(1-N)y

and
@ choosing A sufficiently close to 1 guarantees z € /.(X)

@ choosing A\ # 1 guarantees z # X

e —————————————— ———————————



Proof of the theorem

Then,

f(x) < f(z) =f(Ax+(1—-X)y) <

~——

local optimizer
< Af(X 1 —A)f
< AM(X)+ (1= A)f(y)

f convex

From the last inequality one has

(1 - NF(%) < (1= NF(y) = f(%) < ()
A #£1




Convexity and smoothness

[A convex functior f : X — R. X C R" is continuous in the interior of X ]

‘f(x)

Continuity is needed! If we don’t have it = not convex

If swe do have it, then, how do we check convexity?




Differentiable convex functions

~N

( ; O
. . . N . ) = df ﬁf df
Gradient of f R =R Vf(lj B [@;1‘.1 Do o dr.,,

T
] evaluated at

First order Taylor approximation at xo: f(z) ~ f(xo) + Vf(z0)T(z — x0) $

First order condition: for f differentiable (i.e. its gradient exists at each point of

dom [, which is open) f is {:-.onvcx| if and only if |dum f is convex and

fy) 2 flx) + Vi) (y—x)

(y)

flz) + Vf(z) (y — x)

holds for all z,y € dom f. A

{o




Differentiable convex functions
of one real variable

(i.e. not empty and not reduced to a point)

v
Given a non-trivial interval | € R and a function f:1 = R, differentiable in the

interior of I, f is convex in [ if and only if f' is an increasing function in I

T

1.e. when x, < x, then f(x,) < f(x
1 2 1 2

This condition can be verified more easily in practice
than the one in the previous slide (see the examples).




Twice differentiable convex functions

Hessian of a twice differentiable function:

Second order Taylor approximation at xg: f(z) ~ f(zo) + Vf(z0)T(

V2 f(x) =

Ori0x,

9% f 9% f
ﬁzf Ox10xo
0% f 2’f
Ors0xy ox3
a%f a*r
| Oz, 014 Or,0xo

o2 f

9% f

Oradx,

i_}E‘E

ozr2
1

i

for all z € domf, V2 f(z) = 0

(
Second order condition: for f twice differentiable, f is convex

if and only if

evaluated at =

.

{1 Q@
-;] Z

r—x)+ 5(-.1’- — 20)TV? f(x0)(x — x0)




Continuous but not differentiable convex
multi-variable functions

Non-differentiable functions do not have gradients at each point of the domain, but the
existence of a supporting hyperplane can be used to check convexity.

The vector g € R" corresponding to a supporting hyperplane is called subgradient.

Definition: The subgradient of f:1 = R, [ € R" at x € lis a vector g € R", such that

Y

f=2fl)+g"(y—x),vy€l

| The set of all subgradients is called the subdifferential of the function at Xx. 2
\&” =8




Continuous but not differentiable convex
multi-variable functions

A function f:1 > R is convex if and only if it has a non-empty subdifferential
for any x € L.

3 /- The theorem establishes that a
o . function is convex if and only if a

subgradient exists at every point

s r og _ v v s R P =

o 2 4 9 2 4 06 1 2 3 a4 5 @




Continuous but not differentiable convex
functions of one real variable

Consider a non-trivial interval | € R and a function f:I = R, continuous in
the interior of I. If f is convex in I, then, the limits

e A )
im

x—>x(‘|)' X — Xp

exist for all xo € I''. In particular, if X is inside the domain [, then both left
(I_) and right (1) limits exist, are finite and such that [_ < [

It extends the concept of f’ being an increasing function to the case of non differentiable f.

() ' For the extremes only one of them makes sense. @
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Classification of convex optimization problems

Linear Program (LP): affine objective and constraint functions

minimize f(x)

: minimize c¢Tx +d
subject to  gy(z) <0, i=1,---,m subject to r—h




Classification of convex optimization problems
E