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Preface

These lecture notes are a gentle introduction to the field of linear programming
with a numerically oriented perspective. They correspond to the coarse taught
by the author at the University of Pavia in March 2019. The goal was to
introduce graduate Engineering students to the field of numerical optimization.
In particular, these notes can be used by graduate students in Engineering, who
wish to go beyond a blind use of black-box routines, and by undergraduate
students in mathematics, who wish to get in touch with optimization problems.

The references that I used to write these lecture notes are [10], a standard
reference in the field of numerical optimization, and [5], where the reader can
find several Matlab implementation of many algorithms.

I would like to acknowledge Prof. Davide M. Raimondo, who gave me the
opportunity to teach this class in Pavia. I thank him for his careful reading of
these short notes and for providing many useful feedbacks.

March 2019,
Gabriele Ciaramella
gabriele.ciaramellauni-konstanz.de
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Chapter 1

Linear Programming

1.1 Linear programming problems

A linear programming (LP) problem in standard form is

min
x∈Rn

f(x) := c>x

s.t. Ax = b

x ≥ 0,

(1.1)

where A is an m by n matrix in Rm×n, with n,m two positive integers, b is a
vector in Rm, c is a vector in Rn. The solution x is in Rn and the inequality
x ≥ 0 is understood in an element-wise sense:

x ≥ 0 ⇔ (x)j ≥ 0 ∀j ∈ {1, . . . , n},

which means that each component (x)j of the vector x must be non-negative.
Clearly, A, b and c are given data. The function f : Rn → R defined as
f(x) := c>x is called cost function and it is linear in x.

We introduce the feasible set associated to (1.1):

F := {y ∈ Rn : Ay = b, y ≥ 0}. (1.2)

This is the set of all vectors in Rn that satisfies the constraints of (1.1). The
LP problem (1.1) is equivalent to

min
x∈F

f(x). (1.3)

Let us consider some examples to illustrate the concept of an LP problem and
its feasible set F .

Example 1 (The feasible set is a segment line). Consider the LP problem

(1.1) with A =
[
1 2

]
, b = 3 and c =

[
1 1

]>
. The linear system Ax = b

7
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Figure 1.1: The black thick line is the feasible set F . The red lines are the isolines of
the cost function f(x) = c>x. The value of f(x) decreases in the direction pointed by
the red arrow. The minimum of f(x) over F is clearly attained at x = (0, 3/2).

is equivalent to (x)2 = 3/2 − (x)1/2. Therefore, to guarantee that (x)2 ≥ 0,
(x)1 must be bounded by 3. Moreover, since x ≥ 0, (x)1 must be non-negative.
Hence, (x)1 ∈ [0, 3] and the feasible set is

F = {x ∈ R2 : (x)1 ∈ [0, 3], (x)2 = 3/2− (x)1/2}

and corresponds to the line segment shown in Figure 1.1 (black thick line). In
Figure 1.1 the red lines are the isolines of the cost function f(x) = c>x. In
particular, the isolines f(x) = 1 and f(x) = 6 are indicated by two arrows. The
isolines decrease in the direction pointed by the red arrow. Therefore, one can
easily see that the minimum of f(x) over F is clearly attained at x = (0, 3/2),
which is the unique solution to (1.1). To see it, one can also rewrite f(x) as a
function of the (x)1 component only by using that (x)2 = 3/2− (x)1/2:

f(x) = (x)1 + (x)2 = 3/2 + (x)1/2.

The minimum of this function for (x)1 ∈ [0, 3] is attained at (x)1 = 0. The
corresponding value of f at x = [0, 3/2]> is 3/2.

Example 2 (The feasible set is a single point). Consider the LP problem (1.1)

with A =

[
0 1
1 1

]
, b =

[
1 1

]>
and c =

[
1 1

]>
. Notice that the matrix A is

invertible (detA 6= 0). Therefore, the linear system Ax = b is uniquely solved

by x? = A−1b =
[
0 1

]>
. This vector satisfies the constraint x? ≥ 0. Since

x? is the unique vector that satisfies the constraint Ax = b, the feasible set F
contains only the point x?: F = {x?}. Moreover, it is clear that the minimum
of f(x) over F is x?.
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Figure 1.2: The black thick line is the feasible set F . The red lines are the isolines of
the cost function f(x) = c>x. The value of f(x) decreases in the direction pointed
by the red arrow. Notice that the cost function f(x) becomes negative and arbitrarily
small along the feasible set F , which indicates that the problem is unbounded and has
no solution.

Example 3 (The feasible set is empty). Consider the LP problem (1.1) with

A =
[
1 2

]
, b = −3 and c =

[
1 1

]>
. Notice that these data coincide with the

ones of Example 1, but we switched the sign of b. The linear system Ax = b
is equivalent to (x)2 = −3/2 − (x)1/2. This implies that for every (x)1 ≥ 0 it
holds that (x)2 ≤ −3/2 < 0. Therefore, there are no non-negative vectors in R2

that satisfy the constraint Ax = b. This means that the feasible set F is empty
and the LP problem has no solution.

Example 4 (The feasible set is a straight line). Consider the LP problem (1.1)

with A =
[
−2 1

]
, b = 1 and c =

[
1 −1

]>
. The linear system Ax = b is

equivalent to (x)2 = 1 + 2(x)1. This implies that (x)2 > 0 for every (x)1 ≥ 0.
Therefore, there the feasible set F is the straight line (x)2 = 1 + 2(x)1 with
(x)1 ≥ 0, which is depicted in Figure 1.2 with a black thick line. The LP
problem corresponding to this example is unbounded because f(x) = (x)1−(x)2 =
−(x)1 − 1 for any x ∈ F , which implies that limx→∞,x∈F f(x) = −∞. This
problem has therefore no solution.

Having studied the above examples, the next definition follows naturally.

Definition 1 (Infeasible and unbounded LP problems). An LP problem of the
form (1.1) is said to be infeasible if its feasible set F is empty (F = ∅).

An LP problem of the form (1.1) is said to be unbounded if there exists a
feasible sequence {xk}k∈N (xk ∈ F ) such that limk→∞ f(xk) = −∞.

Clearly infeasible and unbounded LP problems admit no solution.
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In several applications a LP problem is formulated in forms that look differ-
ent from the standard form (1.1). An LP problem in canonical form is

min
x∈Rn

f(x) := c>x

s.t. Ax ≤ b

x ≥ 0,

(1.4)

where we remark the sign “≤” in Ax ≤ b (instead of “=”). Another very
common form of LP problems is

min
x∈Rn

f(x) := c>x

s.t. Ax ≥ b,
(1.5)

where the constraint x ≥ 0 is missing. Other examples are also possible.
Luckily, these LP problems can be reformulated in standard form. Consider

problem (1.4). For any x ∈ Rn such that Ax ≤ b there exists a vector s ∈ Rm
such that

Ax + s = b.

This vector is called slack variable and is clearly non-negative

s = b−Ax ≥ 0,

where we used the constraint Ax ≤ b. Let us now introduce the variables

y =

[
x
s

]
∈ Rn+m and d =

[
c
0

]
∈ Rn+m,

and the matrix
Ã =

[
A I

]
∈ Rm×(n+m),

where I is the m×m identity matrix. The problem (1.4) is then equivalent to

min
y∈Rn+m

d>y

s.t. Ãy = b

y ≥ 0,

(1.6)

which is in standard form.
Now, we wish to formulate problem (1.5) in standard form. To do so, we

introduce the variables x+ and x− in Rn and rewrite any vector x ∈ Rn as
x = x+ − x− with x+ ≥ 0 and x− ≥ 0. Thus we write Ax ≥ b as

Ax+ −Ax− ≥ b.

As before, we can introduce a slack variable s ∈ Rm such that

Ax+ −Ax− − s = b
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with s ≥ 0. If we introduce the vectors

y =

x+

x−

s

 ∈ R2n+m and d =

 c
−c
0

 ∈ R2n+m,

and the matrix
Ã =

[
A −A I

]
∈ Rm×(2n+m),

where I is the m×m identity matrix, then problem (1.5) is then equivalent to

min
y∈R2n+m

d>y

s.t. Ãy = b

y ≥ 0,

which is in standard form.
Notice that when one formulates (1.4) or (1.5) in standard form the dimen-

sion of the unknown vector is augmented. In particular, transforming (1.4) in
standard form, the dimension n is augmented to n+m, while transforming (1.5)
in standard form, the dimension n is augmented to 2n+m.

Let us now give a very practical example/exercise of a classical LP problem
considered in engineering.

Exercise 1 (Product mix problem1). The product mix problem is

min
x1,x2

20x1 + 30x2

s.t. x1 ≤ 70

x2 ≤ 50

x1 + 2x2 ≤ 120

x1 + x2 ≤ 90

x1 ≥ 0

x2 ≥ 0.

(1.7)

As an exercise, the reader can rewrite (1.7) in standard and canonical forms.

Exercise 2. Consider the following LP problem

min
x1,x2,x3

c1x1 + c2x2 + c3x3

s.t. x1 ≤ 70

a11x1 + a12x2 ≤ b1
a22x2 + a23x3 ≥ b2
a31x1 + a32x3 = b3

x1 ≥ 0

x2 ≤ 0.

(1.8)

Rewrite (1.8) in standard and canonical forms.
1The Product mix problem will be explained by Prof. Raimondo in his lectures.
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1.2 Geometry of feasible sets

In this section, we discuss geometrical properties of feasible sets. We begin by
defining hyperplanes.

Definition 2 (Hyperplane and supporting hyperplane). Let a ∈ Rn, a 6= 0 and
b ∈ R. The set

H := {x ∈ Rn : a>x = b}
is called hyperplane. Consider the half spaces

H+ := {x ∈ Rn : a>x ≥ b} and H− := {x ∈ Rn : a>x ≤ b}.

The boundary of H+ and H− is called supporting hyperplane.

We can now introduce the definitions of a polyhedron and a polytope.

Definition 3 (Polyhedron). A polyhedron in Rn is the intersection of a finite
(but positive) number of half spaces in Rn. If K is a polyhedron, then there
exists a matrix A ∈ Rm×n and a vector b ∈ Rm such that

K = {x ∈ Rn : Ax ≤ b}.

Definition 4 (Polytope). A polytope K is a bounded2 polyhedron.

Some examples of polyhedra and polytopes in R2 are given in Figure 1.3.
Three-dimensional examples are given in Figure 1.4. To create these plots the
reader can use the Matlab package ’MPT3’. To install this package it is suffi-
cient to download the file

install mpt3.m

from the website

https://www.mpt3.org/Main/Installation

and run it in Matlab. Once the installation is completed, one can easily plot
the polyhedron depicted in Figure 1.4 (right) by running the following Matlab
script.3.

A=[1 1 1/2; 1/2 -1/3 1];

b=[1;1/2];

A=[A;-eye(3)];

b=[b;zeros(3,1)];

polyh=Polyhedron(’A’,A,’b’,b);

figure();

set(gca,’FontSize’,22);

plot(polyh);

xlabel(’$$(\bf x)_1$$’,’interpreter’,’latex’,’FontSize’,20);

ylabel(’$$(\bf x)_2$$’,’interpreter’,’latex’,’FontSize’,20);

zlabel(’$$(\bf x)_3$$’,’interpreter’,’latex’,’FontSize’,20);

view(70,45);

2Bounded means that there exists a ball B of finite radius such that K ⊂ B.
3Notice that, if one simply copy/pastes the script in Matlab there could be a error due to

the symbol of the apostrophe that must be replaced with “ ’ ”
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Figure 1.3: Four examples of polyhedra obtained as the intersection of half spaces.
Arrows indicate half spaces. Solid thick black lines and hatch filling represent the
polyhedra. Top left: an unbounded polyhedron obtained as the intersection of two
half spaces. Top right: a bounded polyhedron (a polytope) obtained as the intersection
of four half spaces. Bottom left: an unbounded polyhedron (the straight thick black
line) obtained as the intersection of three half spaces. Bottom right: a polyhedron
given by a point and obtained as the intersection of three half spaces.

The polyhedra depicted in Figure 1.4 (left and middle) can be obtained similarly.
Let us now consider some remarks.

Remark 1.

• A polytope is a convex set.

• The feasible set of an LP problem is a polyhedron; see, e.g., (1.5).

• Let A ∈ Rm×n and b ∈ Rm define the polyhedron K := {x ∈ Rn : Ax ≤
b}. The pair (A,b) that induces K is not unique:

– If Ã and b̃ are obtained by row permutations of A and b, then {x ∈

Figure 1.4: Examples of three-dimensional polytopes.
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Figure 1.5: Polyhedron K of Example 5. The polyhedron K is obtained as the in-
tersection of the half spaces corresponding to the constraints (c1) and (c2). Notice
that the constraint (c3) is redundant because the intersection of the three half spaces
corresponding to (c1), (c2) and (c3) is equal to the intersection of the half spaces
corresponding to (c1) and (c2).

Rn : Ãx ≤ b̃} = K.

– The pair (αA,αb) for any α > 0 defines K.

• A constraint in Ax ≤ b is redundant if K does not change when this
constraint is removed. See Example 5.

Example 5. Consider the matrix A =

[−2 1
1 −1
−1 −1

]
and the vector b =

[
0
−1
0

]
and

the polyhedron K = {x ∈ Rn : Ax ≤ b}. The inequality constraint Ax ≤ b is
equivalent to

(c1) (x)2 ≤ 2(x)1,

(c2) (x)2 ≥ (x)1 + 1,

(c3) (x)2 ≥ −(x)1.

If one draws the three half spaces defined via the three inequalities (c1), (c2)
and (c3), then one obtains the picture given in Figure 1.5. It is clear from the
picture that the intersection of the three half spaces is equal to the intersection
of the two half spaces induced by (c1) and (c2). This means that the constraint
(c3) is redundant.



1.2. GEOMETRY OF FEASIBLE SETS 15

Figure 1.6: Left: a disk. Any point on the boundary of the disk is an extreme point.
Middle: a cone. The only extreme point is indicated by the black point and corresponds
to the corner point of the cone. Right: a polygon. The four corner points are extreme
points.

Definition 5 (Extreme points of a set). Let S ⊂ Rn be a convex set. A point
z ∈ S is called extreme point if there are no two points x, y ∈ S different from
z such that z belongs to the segment xy.

Example 6 (Extreme points). We consider three examples corresponding to
the three pictures given in Figure 1.6. In Figure 1.6 (left) we consider a disk.
Any point on the boundary of the disk does not lie on a segment line connecting
any other two points of the disk. Therefore, any point on the boundary of the
disk is an extreme point.

In Figure 1.6 (middle) we consider a cone. The only extreme point of this
cone is the corner point. For any other point z in the cone (and on its boundary)
one can always find two other points x and y such that z lies on the segment
xy.

In Figure 1.6 (right) we consider a polygon. Clearly, the extreme points of
this polygon are the four corner points.

Remark 2.

• A polyhedron has a finite number (zero is possible) of extreme points and
they are called vertexes.

• Let P be a polytope. Every point x ∈ P is a convex combination of the
vertexes of P 4, that is x can be written as

x =

k∑
j=1

λjvj ,

where k is the number of vertexes of P , vj are the vertexes of P for

j = 1, . . . , k, and λj are non-negative numbers such that
∑k
j=1 λj = 1.

4Notice that a polytope is a convex set (see Remark 1). There-
fore this result follows from the famous Carathéodory’s theorem; see, e.g.,
https://en.wikipedia.org/wiki/Carath%C3%A9odory%27s theorem (convex hull)
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Figure 1.7: Isocost lines of f(x) = c>x with c = [ 1 1 ]>.

1.3 Graphical solution of two-dimensional LP
problems

In R2 one can solve a LP problem using a graphical method. To do so, we need
the following definition.

Definition 6 (Isocost lines). Consider an LP problem in the form (1.1). The
isocost lines are the isolines (or the contour lines) of the cost function f(x) =
c>x. In particular, the isocost line corresponding to a value α ∈ R is the set

Tα = {x ∈ R2 : f(x) = α}.

Different values of α induce different isocost lines.

Let us give an example of isocost lines.

Example 7 (Isocost lines). Consider the cost function f(x) = c>x with c =[
1 1

]>
(as in Example 1). The isocost line corresponding to a given α ∈ R is

the set of points Iα ⊂ R2 such that f(x) = α, which is equivalent to

{x ∈ R2 : (x)2 = α− (x)1}.

For example, for α = 1, the isoline I1 is the line obtained by the equation
(x)2 = 1 − (x)1}, that is a straight line with negative slope that intersects the
vertical axis at the point ((x)1, (x)2) = (0, 1). The isocost lines of f(x) are
depicted in Figure 1.7.

The graphical method for solving a two-dimensional LP problem can be
summarized by the following steps:
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Figure 1.8: Step 2 (left) and Step 3 (right) of the graphical method. The gray region
represents the feasible set F .

1. Draw the feasible set F .

2. Draw the isocost lines.

3. Identify the solution(s).

Example 8 (Graphical method). Consider the LP problem

min
x∈Rn

f(x) := c>x

s.t. Ax ≤ b,

where A =

[−2 1
1 −2
−1 1

]
, b =

[
0
0
−3

]
and c =

[
1
1

]
. To apply the graphical method,

one must perform the Step 1 and draw the isocost lines for f(x) = c>x. This is
exactly what we have done in Figure 1.7. The Step 2 consists in drawing on top
of the isocost lines the feasible set F . This is done in Figure 1.8 (left). Once
isocost lines and feasible set F are obtained, one can easily identify the minima
of f(x) on F , which correspond to the points where the feasible set F intersects
the isocost line having minimal value. In our example, the segment depicted
with a thick black line in Figure 1.8 (right) is the set of minima. The value of
f(x) corresponding to any minima is f(x) = 3.

1.4 Bases and basic feasible points

In what follows, we consider the LP problem (1.1) and assume that m < n and
that the matrix A is full row rank (rankA = m), otherwise the system contains
redundant rows, or is infeasible, or defines a unique point.
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We shall see that the solutions to (1.1) (or at least some of them) can be
characterized in terms of basic feasible points.

Definition 7 (Basic feasible point, basis, basis matrix). A vector x ∈ Rn is a
basic feasible point if it is feasible (x ∈ F ) and if there exists a subset S of the
index set {1, 2, . . . , n} ⊂ N such that

• S contains exactly m indexes,

• j /∈ S ⇒ (x)j = 0 and

• the matrix B defined as B = [Aj ]j∈S is non-singular, where A is the jth

column of A.

A set S satisfying these properties is called a basis and the corresponding matrix
B is called basis matrix.

Example 9 (Basic feasible point). Consider the polyhedron K = {x ∈ R3 :
Ax = b, x ≥ 0}, where A = [1 1 −1] and b = 1. Clearly n = 3 and m = 1.
We wish to find the basic feasible points in K. Definition 7 says that, a subset
S to be a basis must contain exactly m elements. Moreover, the corresponding
vector can have non-zero components only if their index is an element in S.
Therefore, there are only three vectors that are candidates to be basic feasible
points:

S = {1}, v =

α1

0
0

 , S = {2}, w =

 0
α2

0

 , S = {3}, z =

 0
0
α3

 ,
where α1, α2 and α3 must be determined. Notice also that the matrix B corre-
sponding to these three possibilities is a non-zero scalar, hence invertible. Since
a basic feasible point must be feasible, we can determine the values αj by requir-
ing that v, w and z satisfy the constraint Ax = b:

Av = b⇒ α1 = 1, Aw = b⇒ α2 = 1, Az = b⇒ α3 = −1.

Hence, we have

v =

1
0
0

 , w =

0
1
0

 , z =

 0
0
−1

 .
Notice that v ≥ 0 and w ≥ 0, but (z)3 = −1 < 0. Therefore, only v and w
are feasible. We have obtained that the basic feasible points are v and w. Let
us draw the polyhedron K and the two points v and w. To do so, we use the
Matlab script

n=3; m=1;

A=[1 1 -1];

b=ones(m,1);

polyh=Polyhedron(’A’,-eye(n),’b’,0*ones(n,1),’Ae’,A,’be’,b);

figure();
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Figure 1.9: Polyhedron K considered in Example 9 and the two basic feasible points
v (black circle) and w (blue circle).

set(gca,’FontSize’,22);

plot(polyh);

hold on;

plot(1,0,’bo’,’LineWidth’,2,’MarkerSize’,12);

plot(0,1,’ko’,’LineWidth’,2,’MarkerSize’,12);

[X,Y] = meshgrid([0:.25:5]);

Z = X+Y;

contour(X,Y,Z,30);

colormap(’jet’);

colorbar;

xlabel(’$$({\bf x})_1$$’,’interpreter’,’latex’,’FontSize’,20);

ylabel(’$$({\bf x})_2$$’,’interpreter’,’latex’,’FontSize’,20);

zlabel(’$$({\bf x})_3$$’,’interpreter’,’latex’,’FontSize’,20);

view(115,15);

which produces the picture given in Figure 1.9. We can clearly see that the two
basic feasible points v and w are the two vertexes of the polyhedron K.

Consider now the LP problem minx∈K f(x) := c>x with c> = [1 1 0]. The
function f(x) is constant with respect to (x)3 and its isolines are depicted in
Figure 1.9. By comparing the set K, the two basic feasible points v and w, and
the isolines of f(x), we observe that the two basic feasible points are two minima
for the considered LP problem.

In Example 9, we computed the basic feasible points of a given polyhedron
K. We also noticed that these points are two solutions of an LP problem and
vertexes of K. Is this a coincidence? The answer is given by the following
theorems.

Theorem 1 (Fundamental theorem of linear programming). Let A be a full
row rank matrix in Rm×n (with m < n). It holds that
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• If (1.1) has a non-empty feasible set, then there is at least one basic feasible
point.

• If (1.1) has solutions, then at least one such solution is a basic feasible
(optimal) point.

• If (1.1) is feasible and bounded, then it has an optimal solution.

Proof. See [10, Theorem 13.2].

Theorem 1 says that, if (1.1) is feasible and bounded, then there exist solu-
tions (minimizers) and among them at least one point is a basic feasible point.
This is an important remark that will be used to define numerical algorithms
for solving (1.1).

Theorem 2 (Basic feasible points and vertexes). Let A be a full row rank
matrix in Rm×n. All basic feasible points for (1.1) are vertexes of the feasible
polyhedron

K = {x ∈ Rn : Ax = b, x ≥ 0}

and viceversa.

Proof. See [10, Theorem 13.3].

An important property when studying the convergence of a numerical algo-
rithm is the so-called degeneracy of a basic feasible point.

Definition 8 (Degeneracy). A basis S is said to be degenerate if (x)j = 0 for
some j ∈ S, where x is the basic feasible point corresponding to S. A linear
program is said to be degenerate if it has at least one degenerate basis.

Let us now give some further remarks about a basis and its corresponding
feasible point. Consider a basis S and the corresponding basis matrix B ∈
Rm×m. By definition, the matrix B must be invertible. Therefore, the (unique)
feasible point x corresponding to S can be computed by solving the linear system
Bv = b and then setting for j = 1, . . . , n

(x)j =

{
0 if j /∈ S,
(v)i if j ∈ S and Bi = Aj ,

(1.9)

where Bi and Aj denote the ith and jth columns of B and A. Notice that the
vector x constructed as in (1.9) satisfies the constraint Ax = b. To see it, let
us define the set Sc := {1, . . . , n} \ S, the vectors

xS = [(x)j ]j∈S ∈ Rm and xN = [(x)j ]j∈Sc ∈ Rn−m

and the matrix
N = [Aj ]j∈Sc ∈ Rn×(n−m).

Clearly, xN = 0 because of (1.9). We can then compute

b = BxS = BxS +NxN = Ax.
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Suppose to have a given subset S (of exactly m elements) of the index set
{1, . . . , n}. How can we verify whether S is a basis or not? One can follow the
simple procedure:

1. Construct the matrix B corresponding to S: B = [Aj ]j∈S .

2. Check the regularity of B (clearly if B is not invertible, then S is not a
basis).

3. Solve the system Bv = b.

4. Assemble the vector x as in (1.9).

5. Verify the non-negativity of x (clearly, if x has some negative elements,
then S is not a basis).

Example 10 (Basic feasible point). Consider the matrix A =

[
1 0 2
0 1 3

]
and

the vector b =

[
2
3

]
. Is the subset S = {1, 3} of the index set {1, 2, 3} a basis?

Let us answer to this question by following the above procedure. The matrix
B corresponding to S is

B =
[
A1 A3

]
=

[
1 2
0 3

]
.

This matrix is invertible (detB = 3). We can then solve the system Bv = b

and get v =

[
0
1

]
. Now, we use (1.9) to define x:

x =

(x)1

(x)2

(x)3

 =

(v)1

0
(v)2

 =

0
0
1

 ,
where we used that the index 2 is not in S. Notice that x ≥ 0, hence this is a
basic feasible point. Moreover, (x)1 = 0 with 1 ∈ S, which implies that S is a
degenerate basis.

1.5 KKT system for LP problems

The KKT system5 corresponding to the LP (1.1) is

A>λλλ+ s = c, (1.10)

Ax = b, (1.11)

x ≥ 0, (1.12)

s ≥ 0, (1.13)

(x)j(s)j = 0 for j = 1, . . . , n, (1.14)

5KKT stays for Karush-Kuhn-Tucker. These are the surnames of William Karush, Harold
W. Kuhn, and Albert W. Tucker, who introduced this optimality system.
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where λλλ ∈ Rm and s ∈ Rn. The KKT system (1.10)-(1.14) is an optimality
system. If x? ∈ Rn is a solution to (1.1), then there exist two vectors s? ∈ Rn
and λλλ? ∈ Rm such that the triple (x?,λλλ?, s?) solves the system (1.10)-(1.14).
This is a necessary optimality condition.

The vectors s and λλλ are called Lagrange multipliers. In particular, s is
the Lagrange multiplier corresponding to the constraint x ≥ 0, and λλλ is the
Lagrange multiplier corresponding to Ax = b. In general, the meaning of La-
grange multipliers can be briefly explain as follows. The value of each Lagrange
multiplier tells us something about the sensitivity of the optimal value of the
cost function f(x) to the presence of the constraint. To put it another way,
the value of the Lagrange multiplier indicates how hard the function f(x) is
“pushing” or “pulling” against the particular constraint; see [10].

The last condition (1.14) can be also written as

x>s = 0. (1.15)

Notice that (1.15) and (1.14) are equivalent if (1.12) and (1.13) hold.
For general optimization problems the KKT system represents only a nec-

essary optimality condition. However, it turns out that for LP problems, the
KKT system is also a sufficient optimality condition.

Theorem 3 (Sufficient optimality condition). The KKT system (1.10)-(1.14)
is a sufficient condition, in the sense that, if there exists a triple (x?,λλλ?, s?) ∈
Rn ×Rm ×Rn that satisfies (1.10)-(1.14), then x? is a global solution to (1.1).

Proof. We first compute

c>x? = (A>λλλ? + s?)>x? = (λλλ?)>Ax? + (s?)>x?

= b>λλλ? + (s?)>x? = b>λλλ?,

where we used (1.10), (1.11) and (1.15). We have then obtained that

c>x? = b>λλλ?. (1.16)

Now, we consider any other feasible point x̄ ∈ Rn (which clearly satisfies Ax̄ = b
and x̄ ≥ 0) and write

f(x̄) = c>x̄ = (A>λλλ? + s?)>x̄ = b>λλλ? + x̄>s? ≥ b>λλλ?, (1.17)

where (1.10), Ax̄ = b, x̄ ≥ 0 and s? ≥ 0 are used. Using (1.17) and (1.16), we
obtain

f(x̄) ≥ b>λλλ? = c>x? = f(x?).

This means that no feasible point can have a lower objective value than f(x?).
Hence, x? is a global minimum for (1.1).



Chapter 2

Numerical methods for LP
problems

In Section 1.4, we studied the important results: Theorem 1 and Theorem 2.
These say that in principle one could compute all the basic feasible points for
the LP problem (1.1), evaluate the value of the cost function f at these points,
and find a solution. This naive strategy is computationally unfeasible, because
it would require the computation of all basic feasible points (all the vertexes of
the polyhedron)! The number of basic feasible points is bounded from above by
the quantity

(
n
m

)
= n!

m!(n−m)! , that is the total number of possible combinations

of m (out of n) columns of A used to build possible basic matrices B. For this
reason, we need numerical methods that are capable to solve LP problems more
efficiently. In this chapter, some of the most famous algorithms for the solution
of LP problems are described: simplex methods and interior-point methods.

2.1 The simplex method

The simplex method1 was invented by George B. Dantzig in 1946; see, e.g.,
[3, 9, 10]. During 1946, G. B. Dantzig was working for the US Army Air Force
when his colleagues challenged him to mechanize the planning process to distract
him from taking another job. Dantzig himself explain it in [4]:

In 1946 I was the Mathematical Advisor to the U.S. Air Force
Comptroller. I had just formally completed my Ph.D. and was look-
ing for an academic position. In order to entice me into not taking
another job, colleagues challenged me to see what could be done to
mechanize the planning process. I was asked to find a way to more
rapidly compute a time-staged deployment, training and logistical
supply program.

1The name of the algorithm is derived from the concept of a simplex and was suggested
by T. S. Motzkin [9, Comment 2.2], even if simplices are not actually used in the method.

23
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Figure 2.1: George Bernard Dantzig (Born: November 8, 1914 Portland, Oregon -
Died: May 13, 2005 Stanford, California.

From this challenge, Dantzig created the probably most famous numerical algo-
rithm for the solution of LP problems. For his work, he is sometimes considered
the “father of linear programming” [1]. After Dantzig’s work, several variants
of the simplex method have been developed. The one that we consider in this
section is sometimes known as the revised simplex method .

The main idea of the simplex method is that all its iterates are basic feasible
points for (1.1) and therefore vertexes of the polyhedron K = {x ∈ Rn : Ax =
b, x ≥ 0}. The simplex method “explores” the set of vertexes of K while
minimizing the cost function f(x) = c>x. More precisely: the simplex method
creates a sequence {xk}k∈N of vectors xk ∈ Rn that are basic feasible points for
(1.1) and such that f(xk+1) ≤ f(xk) for any k. Indeed the goal is to obtain
strict inequality f(xk+1) < f(xk) in most of the iterations. In other words,
the simplex method generates a path on the polyhedron K while minimizing f
along this path. Since each iterate xk is a basic feasible point, it is natural to
see that the simplex method works on the basis S: at each iteration an index is
removed from S and another one is added to it in order to create a new basic
feasible point xk+1 such that f(xk+1) ≤ f(xk).

Let us describe the method in more details. Consider a basis S (see Definition
7), its complement

Sc := {1, . . . , n} \ S

and the matrices

B := [Aj ]j∈S and N := [Aj ]j∈Sc ,

where Aj is the jth column of the matrix A. Now, recalling the KKT system
(1.10)-(1.15) and the Lagrange multiplier s, we partition the vectors x, s and c
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as

xB := [(x)j ]j∈S xN := [(x)j ]j∈Sc ,

sB := [(s)j ]j∈S sN := [(s)j ]j∈Sc ,

cB := [(c)j ]j∈S cN := [(c)j ]j∈Sc .

Using the KKT condition (1.11), we write

Ax = BxB +NxN = b,

which allows us to compute xB and xN as

xB = B−1b, xN = 0. (2.1)

Since S is a basis, B is invertible and xB ≥ 0. Therefore, the vectors xB and
xN satisfy (1.11) and (1.12). Now, we choose s to satisfy (1.14) by setting

sB = 0, (2.2)

which clearly implies that x>s = x>BsB + x>NsN = 0. The remaining vectors λλλ
and sN can be found using (1.10):

A>λλλ+ s = c ⇔

{
B>λλλ = cB ,

N>λλλ+ sN = cN ,

where we used that sB = 0. Since B is invertible we can compute

λλλ = B−>cB (2.3)

and
sN = cN −N>λλλ. (2.4)

The vectors x, s and λλλ constructed using (2.1)-(2.4) satisfy (1.10), (1.11), (1.12)
and (1.14), but not necessarily the non-negativity condition (1.13), that is s ≥ 0.
Indeed, if sN ≥ 0, then s ≥ 0. This means that we have found an optimal triple
(x, s,λλλ) and we can terminate our search. If this is not the case, we must update
the basis S by choosing an entering index and a leaving index . Assume now that
S is non-degenerate (see Definition 8). Entering and leaving index are chosen
as follows. Since sN is not non-negative there exists an index q ∈ Sc such that
(s)q < 0. We wish to add this index to S and at the same time find a leaving
index p ∈ S such that the new basis S+ := (S ∪ {q}) \ {p} corresponds to a
new basic feasible point x+ satisfying f(x+) ≤ f(x). To do so, we consider the
following partitioning of x+

x+
B = [(x+)j ]j∈S , x+

Ñ
= [(x+)j ]j∈Sc\{q} and (x+)q,

and the matrix Ñ = [Aj ]j∈Sc\{q}. Now, we allow the qth component of x+,
that is (x+)q, to increase from zero, while the components xÑ are fixed to zero.
Since we wish that x+ remains feasible while increasing (x+)q, we compute

b = Ax+ = Bx+
B +Aq(x

+)q + Ñx+

Ñ
= Bx+

B +Aq(x
+)q.
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(x)1

(x)3

(x)2

P1

P3

P2

x+

Figure 2.2: Polyhedron K of Example 11. The points P1 = [1 0 0], P2 = [0 1 0] and
P3 = [0 0 1

2
] are the three vertexes of K. The point x coincides with the vertex P1.

If one increases from zero the component (x+)1, then x+ moves along the edge of K
that is the segment line connecting P1 with P3.

Using this equality and Ax = b with xN = 0 (x is feasible), we obtain

Bx+
B +Aq(x

+)q = Ax+ = b = Ax = BxB .

By multiplying left- and right-hand sides by B, one gets

x+
B = xB − (x+)qB

−1Aq. (2.5)

Geometrically, this means that we are increasing (x+)q and moving x+ along
an edge of the polyhedron K toward another vertex (basic feasible point). An
example of such situation is explained in the following example.

Example 11 (Moving a point from a vertex along an edge). Consider the
polyhedron K = {x ∈ R3 : Ax = b, x ≥ 0}, where A = [1 1 2] and b = 1.
This polyhedron has three vertexes: P1 = [1 0 0], P2 = [0 1 0] and P3 = [0 0 1

2 ];
see Figure 2.2. Consider the basis S = {3}, which corresponds to the basic
feasible point x = P3 having component xB = (x)3 = 1/2, and to the basis
matrix B = A3 = 2 (clearly invertible with B−1 = 1/2). Let us choose q = 1 as
entering index. We have that Aq = A1 = 1 and using (2.5) that

(x+)3 = x+
B = xB − (x+)qB

−1Aq = (x)3 − (x+)1B
−1A1 = 1/2− (x+)1/2.

Hence

x+ =

 (x+)1

0
1/2− (x+)1/2

 .
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As (x+)1 increases from zero, the point x+ moves along the edge P1P3 toward
the vertex P1. Clearly, the maximum possible increase of (x+)1 is equal to 1,
because for (x+)1 > 1 the component (x+)3 is negative, hence not feasible.

Let us now compute

f(x+) = c>x+ = c>Bx+
B + (c)q(x

+)q

= c>BxB − (x+)qc
>
BB
−1Aq + (c)q(x

+)q

= c>BxB − (x+)qλλλ
>Aq + (c)q(x

+)q

= c>BxB − (x+)q((c)q − (s)q) + (c)q(x
+)q

= c>BxB + (x+)q(s)q

= c>x + (x+)q(s)q = f(x) + (x+)q(s)q,

where we used (2.5) to get the second line, (2.3) to get the third line, (2.4) to
get the fourth line, and xN = 0 to get the sixth line. The previous equality
gives us

f(x+) = f(x) + (x+)q(s)q. (2.6)

Since (s)q < 0 and (x+)q ≥ 0, increasing (x+)q ≥ 0 means that the function
f(x+) decreases. Indeed, increasing (x+)q by keeping x+

Ñ
= 0 implies that some

of the components of x+
B decrease. How much should we increase (x+)q? Clearly,

Equation (2.6) says that the more (x+)q increases the more f(x+) decreases.
However, we want to keep x+ feasible. For this reason, we can increase (x+)q
till one component of x+

B becomes zero. A further increase of (x+)q would make
x+ infeasible. In other words, we increase (x+)q and move x+ along an edge
of K till another vertex is reached; see also Example 11 and Figure 2.2. Notice
that this procedure is possible because we assumed S to be non-degenerate,
otherwise some components of xB could be zero (x would be a degenerate basic
feasible point) and no increase from zero of (x+)q would be possible.

Now, if we denote by p the index of the component of x+
B that became zero,

then p is the leaving index. We can now update the basis S by adding q and
removing p, and then repeat the procedure. The process of adding and removing
indexes is sometimes called pivoting .

How to chose the entering index q if there are more components of sN with
negative value? There are different heuristic choices described in the literature;
see, e.g., [10, 3]. For example, one can choose the index q corresponding to the
most negative component of sN . Another possible choice is the minimal index
i of (x)i that corresponds to a negative component (s)i.

How to choose the leaving index p? Recalling (2.5) and defining d := B−1Aq,
we obtain

x+
B = xB − (x+)qd,

which allows us to write that

(x+
B)i

(d)i
=

(xB)i
(d)i

− (x+)q for i such that (d)i > 0.
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Now, we choose the index p as

p = arg min
i:(d)i>0

(xB)i
(d)i

.

This choice corresponds to the maximum value of (x+)q that still guarantees
the feasibility of x+. Notice that if d ≤ 0, then we have

x+ = x− (x+)qd ≥ 0 ∀(x+)q ≥ 0.

Hence, we can arbitrarily increase (x+)q (hence decrease f) and move x+ along
an edge of the polyhedron without encountering any new vertex! This means
that the problem is unbounded (see Definition 1). For this reason, if d ≤ 0,
then we stop the algorithm.

We are now ready to state the simplex algorithm:

Algorithm 1 (Simplex Algorithm)

Require: The matrix A and the vectors b and c. A basis S and the corresponding ba-
sis matrix B. The complement Sc and the corresponding matrix N . A maximum
number of iterations kmax.

1: for k = 1:kmax do
2: Solve BxB = b and get xB .
3: Set xN = 0.
4: Solve B>λλλ = cB and get λλλ.
5: Compute sN = cN −N>λλλ.
6: If sN ≥ 0, then break (optimal point found).
7: Select entering index q ∈ Sc such that (s)q < 0.
8: Solve Bd = Aq and get d.
9: If d ≤ 0, then break (the problem is unbounded).

10: Select leaving index p as p = arg mini:(d)i>0
(xB)i
(d)i

.
11: Update S, Sc, B and N .

12: end for

One can prove that the simplex method converges.

Theorem 4 (Convergence of the simplex method). If the LP problem is bounded
and non-degenerate, then the simplex method terminates at a basic feasible point.

Proof. See [10, Theorem 13.4].

A Matlab implementation of the simplex algorithm is the following.

function [x,x_iter,S] = simplex(A,b,c,indB,maxit)

ind = 1:length(c); % construct initial basis matrix

indN = ind;

B = A(:,indB);

indN(indB) = [];

N = A(:,indN);

x_iter=[];
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for it=1:maxit

cB=c(indB); cN=c(indN); % extract the two components of c

[L,U,P]=LUdec(B); % compute LU-factorization of B

xB=U\(L\(P*b)); % construct the vector xB

x_iter=[x_iter,zeros(length(c),1)];

x_iter(indB,it)=xB;

f = c’*x_iter(:,it);

fprintf(’it= %3.0d | f= %5.3e \n’,it, f);

lam = P’*(L’\(U’\cB)); % compute the Lagrange multiplier

sN = cN-N’*lam; % pricing step

if sN >=0 % check optimality

break;

end

msN=min(sN); % pivoting: select entering index

enter=min(indN(sN==msN));

Aq=A(:,enter); % compute d

d=U\(L\(P*Aq));

if d <= 0 % check unboundedness

disp(’Warning: the problem is unbounded!’);

break;

end

ratio=(xB./d).*(d>0)+1e8*ones(size(xB)).*(d<=0); % pivoting: select exiting index

xq=min(ratio);

exitt=min(indB(ratio==xq)); % the "min" is used in case the basis is degenerate

indB(indB==exitt)=enter; % update the basis

indN(indN==enter)=exitt;

B=A(:,indB); N=A(:,indN);

end

x=x_iter(:,end);

S=indB;

end

Here, the function [L,U,P]=LUdec(B) is given in Section 2.3. To test this
algorithm, one can run the following Matlab script.

% Example Nocedal-Wright (page 371)

A = [ 1 1 1 0 ; 2 0.5 0 1 ];

b = [ 5 ; 8 ];

c = [ -4 ; -2 ; 0 ; 0 ];

n = length(c);

ind = 1:n; indN = ind;

indB = [3,4]; % initial basis

[x,x_iter,S] = simplex(A,b,c,indB,10); % simplex method ...

% plot ...

polyh=Polyhedron(’A’,-eye(n),’b’,zeros(n,1),’Ae’,A,’be’,b);

figure();

[X,Y] = meshgrid([0:.25:5]);

Z = c(1)*X+c(2)*Y;

contour(X,Y,Z,30); colorbar;

hold on;

plot(polyh.projection(1:3));
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view(70,25);

xlabel(’x_1’); ylabel(’x_2’); zlabel(’x_3’);

hold on

plot3(x(1),x(2),x(3),’*k’);

for j=1:size(x_iter,2)

plot3(x_iter(1,j),x_iter(2,j),x_iter(3,j),’ob’);

txt = [’it=’ num2str(j)];

text(x_iter(1,j)+0.2,x_iter(2,j)+0.2,x_iter(3,j)+0.2,txt,’FontSize’,14);

end

figure();

contour(X,Y,Z,30); colorbar;

hold on;

plot(polyh.projection([1,2,4]));

view(50,50);

xlabel(’x_1’); ylabel(’x_2’); zlabel(’x_4’);

hold on;

plot3(x(1),x(2),x(4),’*k’);

for j=1:size(x_iter,2)

plot3(x_iter(1,j),x_iter(2,j),x_iter(4,j),’ob’);

txt = [’it=’ num2str(j)];

text(x_iter(1,j)+0.2,x_iter(2,j)+0.2,x_iter(4,j)+0.2,txt,’FontSize’,14);

end

figure();

plot(polyh.projection([1,2]));

grid on;

xlabel(’x_1’); ylabel(’x_2’);

contour(X,Y,Z,30); colorbar;

hold on;

plot(x(1),x(2),’*k’);

for j=1:size(x_iter,2)

plot(x_iter(1,j),x_iter(2,j),’ob’);

txt = [’it=’ num2str(j)];

text(x_iter(1,j)-0.15,x_iter(2,j)+0.25,txt,’FontSize’,14);

end

This script solves a simple LP problem in 3 iterations and plots the pictures
shown in Figure 2.3. These pictures show the three iterations performed by the
simplex algorithm. Each iteration is a vertex of the polyhedron (represented
in red) and the solution is marked with a ‘∗’ marker. Each figure shows the
projection of the 5-dimensional geometry onto different subspaces. The colored
lines are the isolines of the function f(x). It is clear that the simplex method
generates a sequence of vertexes (basic feasible points) that converges to the
solution to the problem.

An important question arises: how should we choose an initial basis/basic
feasible point to start the simplex algorithm? The answer is in Section 2.2.
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Figure 2.3: Example of iterations of the simplex algorithm. At each iteration the
algorithm visits a vertex of the polyhedron. The minimum is computed at iteration
3. The three figures represent the projections of the 5-dimensional geometry onto
different subspaces. Top left: projection onto the coordinates (x)1, (x)2 and (x)3.
Top right: projection onto the coordinates (x)1, (x)2 and (x)4. Bottom: projection
onto the coordinates (x)1 and (x)2.

2.2 The two-phase strategy

The problem of finding an initial point and a basis to start the simplex method
is not trivial and can be quite expensive. One of the most used strategies to
tackle this problem is the so-called two-phase strategy that we describe in this
section.

The two-phase strategy solves the LP problem (1.1) in two phases. In Phase
1, an auxiliary LP problem is set up based on the data of (1.1) and solved
using the simplex algorithm of Section 2.1. The auxiliary problem is designed
in a way that an initial basis is trivial to find and the solution provides a basic
feasible point for (1.1) (or for an equivalent problem). In Phase 2, a second
LP problem similar to (1.1) is solved using the solution to the Phase-1 problem
as initial guess for a possibly modified simplex algorithm. A solution to the
Phase-2 problem will coincide with a solution to the original problem (1.1).
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2.2.1 Phase 1

We introduce the auxiliary problem

min
x∈Rn, z∈Rm

e>z

s.t. Ax + Ez = b

x ≥ 0

z ≥ 0,

(2.7)

where A ∈ Rm×n and b ∈ Rm are the same as in (1.1), z ∈ Rm is an artificial
vector of variables, e = [1 . . . 1]> ∈ Rm, and E ∈ Rm×m is a diagonal matrix
whose diagonal entries are

Ejj =

{
+1 if (b)j ≥ 0,

−1 if (b)j < 0,

for j = 1, . . . ,m. Notice that the matrix E is invertible and the point y =

[
x
z

]
∈

Rn+m with x = 0 and (z)j = |(b)j |, for j = 1, . . . ,m, is a basic feasible point
for (2.7). This point corresponds to the basis S = {n + 1, n + 2, . . . , n + m} ⊂
{1, 2, . . . , n+m}, which contains only indexes associated to the artificial variable
z. The corresponding basis matrix is B = E. Using the basis S one can initialize
the simplex algorithm of Section 2.1 and solve (2.7).

Notice that since e ≥ 0 and x ≥ 0, any global solution to (2.7) must corre-
spond to f(x) ≥ 0 (and clearly satisfy the KKT system (1.10)-(1.15)). We have
the following result.

Theorem 5 (Solutions of the auxiliary problem). The auxiliary problem (2.7)
has a global solution (x?, z?) corresponding to an optimal objective value of zero
(e>z? = 0) if and only if the original problem (1.1) is feasible.

Proof. Assume that there is a pair (x̂, ẑ) that is feasible for (2.7) and such that
e>ẑ = 0. We must have that ẑ = 0 (since e>ẑ = 0) and x̂ ≥ 0, and hence
b = Ax̂ + Eẑ = Ax̂. Therefore, x̂ is a feasible point for (1.1).

Assume that x̂ is a feasible point for (1.1). The pair (x̂, 0) is feasible for
(2.7) and optimal with an objective value of zero.

Theorem 5 allows us to study the solution that we obtain by solving (2.7)
using the simplex method. The simplex method finds a solution ((x?, z?),λλλ?, s?)
to the KKT system (1.10)-(1.15). Theorem 3 guarantees that (x?, z?) is a global
solution to (2.7). Therefore, this solution must correspond to an optimal objec-
tive value of zero, which is only possible if z? = 0. This argument says that, if
the simplex method finds a solution to (2.7) with a non-zero z, then the global
solutions to (2.7) correspond to a non-zero objective value. Hence, Theorem 5
guarantees that in this case the original problem (1.1) is not feasible! If this un-
favorable situation occurs, then we must stop our numerical procedure, because
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our original problem is not well defined. In case this unfavorable situation does
not occur, we have obtained an initialization for the Phase 2.

Let us discuss a final issue before describing the Phase 2. Assume that the
simplex method found a solution to (2.7) corresponding to a zero objective value
and hence to a pair ŷ = (x̂, ẑ) with ẑ = 0. This optimal solution is associated
to a basis S (recall that the simplex algorithm actually iterates on the basis S).
Even if ẑ = 0, the optimal basis can still contain some indexes that correspond
to the variable z! This is shown in Example 12.

Example 12 (Degenerate Phase-1 problem). Consider problem (1.1) with

A =

[
1 1 2
0 1 3

]
, b =

[
2
3

]
,

and some vector c. The corresponding Phase-1 problem (2.7) is obtained by
introducing the artificial variable z ∈ R2 and the matrix

E =

[
1 0
0 1

]
.

In this case, if we introduce the variable y =

[
x
z

]
, the matrix Ã = [AE] and the

vector c̃ =

[
0
e

]
∈ Rn+m, the auxiliary problem (2.7) is equivalent to

min
y∈Rn+m

c̃>y

s.t. Ãy = b

y ≥ 0.

(2.8)

Notice that this problem is degenerate. To see the degeneracy, consider the subset

S = {3, 5} of the index set {1, 2, 3, 4, 5}. The matrix B =
[
Ã3 Ã5

]
=

[
2 0
3 1

]
is

invertible and allows us to compute yB = B−1b =

[
1
0

]
. Therefore, the vector

y = [0 0 1 0 0]> satisfies Ãy = b and y ≥ 0. This shows that y is a basic feasible
point and S a degenerate basis. Notice that S contains the index j = 5, which
corresponds to an index of the artificial variable z: (y)5 = (z)2.

One can solve (2.8) using the simplex algorithm of Section 2.1 with the ini-
tialization

S = {4, 5}, y =

[
x
z

]
=

[
0
b

]
.

To do that, one can run the following Matlab script.

% example of degenerate Phase-1 problem

A = [ 1 1 2 ; 0 1 3 ];

b = [ 2 ; 3 ];
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E = [ 1 0 ; 0 1 ];

At = [ A , E ];

ct = [ 0; 0; 0; 1; 1 ];

indB = [4,5]; % initial basis

[x,x_iter,S] = simplex(At,b,ct,indB,10);

S

which produces the following result:

it= 1 | f= 5.000e+00

it= 2 | f= -1.665e-16

S =

3 5

These results mean that the simplex algorithm found a global solution in two
iterations. The optimal objective value is zero (hence z = 0) and corresponds
to the optimal basis S = {3, 5}. Clearly, even if the optimal solution satisfies
z = 0, the optimal basis contains the index j = 5, which corresponds to (z)2.

2.2.2 Phase 2

The Phase 2 consists in solving a second auxiliary problem, that is

min
x∈Rn,z∈Rm

c>x

s.t. Ax + z = b

x ≥ 0

0 ≤ z ≤ 0.

(2.9)

Notice that a solution to (2.9) must have z = 0 and that (2.9) is equivalent to
(1.1). Clearly, a solution to the Phase-1 problem (2.7) is a basic feasible point
for (2.9). This Phase-1 solution is used to initialize a simplex algorithm for the
solution of (2.9). Due to the two-side constraint 0 ≤ z ≤ 0, one can not use
directly the algorithm described in Section 2.1. Luckily, it is possible to slightly
modify the simplex method of Section 2.1 to obtain an algorithm that is capable
to take into a account general two-side constraint z` ≤ z ≤ zu, where z` and zu
are lower- and upper-bound vectors, and solve (2.9); see, e.g., [2, Section 5.2].

What is the reason for the “weird” constraint 0 ≤ z ≤ 0? At a first look
this constraint seems meaningless. If the solution to the Phase-1 problem is a
basic feasible point with basis S that contains indexes corresponding only to
components of the x variable, then the constraint 0 ≤ z ≤ 0 is meaningless and
one can remove the variable z from (2.9), which becomes then equal to (1.1).
However, if the solution to the Phase-1 problem is a basic feasible point with
basis S that contains at least one index corresponding to the artificial variable
z (see Example 12), then this artificial variable must be retained to use the
Phase-1 solution as initial guess for Phase 2; see, e.g., [10] for further details.
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2.3 Solving linear systems in the simplex algo-
rithm

Each iteration of the simplex algorithm requires the solution of three linear
systems:

BxB = b, B>λλλ = cB and Bd = Aq.

How should one solve these problems? There are many different algorithms for
the efficient solution of linear systems; see, e.g., [5] and references therein. In
the simplex algorithm one computes at the first iteration the LU-decomposition
of the matrix B and use it to solve the three above linear systems. Once the
first iteration is completed, the basis matrix B is updated and the column that
corresponds to the leaving index is replaced by the column of A corresponding
to the entering index. Therefore, the new basis matrix B+ differs from the old
one by only one column. This allows one to perform only an update of the
LU-decomposition, which must not to be entirely recomputed at each iteration;
see [10] and references therein. To better understand this procedure, let us first
recall the LU-decomposition.

2.3.1 LU-decomposition

Consider a linear system BxB = b and assume that the LU-decomposition
B = LU is known, where L is a lower-triangular matrix and U is an upper-
triangular matrix. Using this factorization, one can compute the solution xB
by first solving the triangular system Ly = b by forward substitution, and
then solving the triangular system UxB = y by backward substitution. How to
compute the LU-decomposition?

Let us consider a simple example of a 4× 4 matrix B:

B =


××× ××× ××× ×××
××× ××× ××× ×××
××× ××× ××× ×××
××× ××× ××× ×××

 ,
where the symbol “×××” indicates a possibly non-zero entry. The idea is to find
some matrices Lj ∈ R4×4 that when multiplied with B are capable to cancel
the elements below the diagonal of B. To be more precise, we wish to find three
matrices L1, L2 and L3 in R4×4 such that

××××××××××××
××××××××××××
××××××××××××
××××××××××××


︸ ︷︷ ︸
B(0):=B

L1−−→


××××××××××××
0 ×××××××××
0 ×××××××××
0 ×××××××××


︸ ︷︷ ︸
B(1):=L1B(0)

L2−−→


××××××××××××
0 ×××××××××
0 0 ××××××
0 0 ××××××


︸ ︷︷ ︸
B(2):=L2B(1)

L3−−→


××××××××××××
0 ×××××××××
0 0 ××××××
0 0 0 ×××


︸ ︷︷ ︸
B(3):=L3B(2)

.

Now, we set U := B(3) and notice that

U = L3L2L1B (2.10)
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is an upper-triangular matrix. Which are the matrices Lj that allow us to
perform the above transformation? In Rm×m these matrices are given by

Lj =



1
. . .

1
1

−`j+1,j 1
...

. . .

−`m,j 1


, (2.11)

which is an identity matrix up to the jth column, where the entries `k,j are
given by

`k,j =
B

(j−1)
k,j

B
(j−1)
j,j

,

for k = j + 1, . . . ,m (assuming that B
(j−1)
j,j 6= 0). For example, the L2 matrix

in our 4× 4 example is

L2 =


1 0 0 0
0 1 0 0
0 −`3,2 1 0
0 −`4,2 0 1

 .
The matrices Lj have the following important properties.

Theorem 6 (Properties of the matrices Lj). For j = 1, . . . ,m−1, it holds that

L−1
j =



1

. . .

1
1

`j+1,j 1
...

. . .

`m,j 1


, L−1

1 L−1
2 · · ·L

−1
m−1 =


1
`2,1 1
...

. . .
. . .

`m,1 · · · `m,m−1 1

 .

Proof. See, e.g., [11].

This theorem says that the inverses L−1
j are very easy to compute and that

the product L−1
1 L−1

2 · · ·L
−1
m−1 is a lower-triangular matrix. If we use this result

for our example, define L = L−1
1 L−1

2 L−1
3 , and recall (2.10), we obtain

L3L2L1B = U ⇔ B = L−1
1 L−1

2 L−1
3 U = LU,

which is the LU-decomposition of the matrix B. This result can be generalized
to get an LU-decomposition of a matrix B ∈ Rm×m:

B = L−1
1 L−1

2 · · ·L
−1
m−1U = LU.
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The existence of an LU-decomposition of a matrix B (with invertible factors
L and U) is guaranteed if some fair assumptions are satisfied; see, e.g., [6,
Corollary 3.4.5].

In the previous procedure, we tacitly assumed that B
(j−1)
j,j 6= 0. Unfortu-

nately, this condition is not always satisfied and if it happens that B
(j−1)
j,j = 0,

then we must introduce extra steps in the above process. The idea is to permute
two rows of the matrix B(j−1) before multiplying it by a matrix Lj :

××××××××××××
0 0 ××××××
0 ×××××××××
0 ×××××××××


︸ ︷︷ ︸

B(1)

P1−→


××××××××××××
0 ×××××××××
0 0 ××××××
0 ×××××××××


︸ ︷︷ ︸
B̃(1):=P1B(1)

L2−−→


××××××××××××
0 ×××××××××
0 0 ××××××
0 0 ××××××


︸ ︷︷ ︸
B(2):=L2B̃(1)

,

where P1 is the permutation matrix that swaps second and third rows. The idea
of this permutation is to obtain a matrix B̃j−1 whose diagonal element B̃j−1

j,j is
non-zero. This permutation process is also known as pivoting . Indeed, the rows
to be permuted can be chosen in several efficient ways; see, e.g., [5, 11]. If the
previous process is repeated till an upper-triangular matrix U is obtained, one
gets

U = Ln−1Pn−1Ln−2Pn−2 · · ·L1P1B.

A direct calculation shows that

U = L̃n−1L̃n−2 · · · L̃1Pn−1Pn−1 · · ·P1B,

where

L̃n−1 = Ln−1,

L̃n−2 = Pn−1Ln−2P
−1
n−1,

L̃n−2 = Pn−1Pn−2Ln−3P
−1
n−2P

−1
n−1,

...

It is possible to show that the matrices L̃j have the same (triangular) structure

of Lj and the matrix L := (L̃n−1L̃n−2 · · · L̃1)−1 is lower triangular. Hence, by
defining P := Pn−1Pn−1 · · ·P1 we obtain the decomposition

PB = LU.

A Matlab function that allows one to compute this decomposition is the fol-
lowing.

function [L,U,P] = LUdec(A)

% LUdec : LU-decomposition of a square matrix A: PA=LU

% Input : A - a square matrix (of size n)

% Output: L - lower-triangular matrix of size n
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% U - upper-triangular matrix of size n

% P - permutations matrix of size n

n = size(A,1); % size of A

P = eye(n); % initialize P

L = zeros(n); % initialize L

for k=1:n

j=(k-1)+find(abs(A(k:n,k))==max(abs(A(k:n,k)))); % find the pivot

if A(j,k)==0

disp(’the matrix A is singular!’);

break

elseif j~=k

A([j k],:)=A([k j],:); % pivot swap

L([j k],:)=L([k j],:);

P([j k],:)=P([k j],:);

end

L(k,k)=1;

for p=k+1:n

L(p,k)=A(p,k)/A(k,k);

for q=k+1:n

A(p,q)=A(p,q)-L(p,k)*A(k,q);

end

end

end

U = triu(A); % U is the upper triangular part of A

end

Clearly, if some permutations are needed and the decomposition of B is
B = P>LU , then the solution to the linear system BxB = b is achieved by first
computing z = Pb and then solving Ly = z and UxB = y.

2.3.2 The LU-decomposition in the simplex algorithm

Each iteration of the simplex algorithm requires the solution of three linear sys-
tems characterized by the same basis matrix B. Moreover, this matrix changes
from one iteration to another by only one column. This fact is essential for an
efficient numerical implementation of the simplex algorithm: one computes the
LU-decomposition of B only at the first iteration of the simplex procedure, and
then only updates the decomposition in the subsequent iterations.

Assume that the LU-decomposition of B is known, that is we have computed
the two factors L and U such that B = LU (we assume for simplicity that
P = I). Consider the updated matrix B+ that differs from B by only one
column:

B = [B1 · · · Bj · · ·Bm] B+ = [B1 · · · Aq · · ·Bm].

Here the column Bj is replaced by the column Aq. The key step is to notice
that

U = L−1B = [L−1B1 · · · L−1Bj · · · L−1Bm]
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is an upper-triangular matrix, while the matrix

Ũ = L−1B+ = [L−1B1 · · · L−1Aq · · · L−1Bm]

has the form

Ũ =



××× · · · ××× · · · ×××
. . .

...
...

××× · · · ×××
...

. . .
...

××× ×××

 ,

which is not upper triangular only because of the jth column given by L−1Aq.

However, to transform Ũ into an upper-triangular matrix is easy and compu-
tationally cheap. To do so, one can perform a cyclic permutation by mov-
ing the jth column of Ũ to the last column position and moving the columns
j + 1, j + 2, . . . ,m one position to the left. Formally, this is possible via the
action of a permutation matrix P :

ŨP> = [L−1B1, · · · L−1Bj−1, L
−1Aq, L

−1Bj+1, · · · L−1Bm]P>

= [L−1B1, · · · L−1Bj−1, L
−1Bj+1, · · · L−1Bm, L

−1Aq].

If we apply the same permutations to the rows of this matrix, we obtain a matrix
of the form

PŨP> =



××× · · · ××× · · · ×××
. . .

...
...

××× · · · ×××
. . .

...
××× · · · ×××

 ,

which is not upper triangular only because of the last row. Now, the LU-
decomposition of the matrix B+ can be easily achieved by a matrix L̃ which is
lower triangular and differs form the identity only in the last row. We have

L̃PL−1B+P> = U+ ⇒ B+ = LP>L̃−1U+P.

We wish to remark that this factorization does not require the explicit calcula-
tion of the product LP>L̃−1U+P , but the factors are used one after the other
in the solution process of the linear system B+x+

B = b. For more details see,
e.g., [10] and references therein.

2.4 Interior-point methods

The simplex method is very efficient in many practical cases. However, there
are problems on which this algorithm performs very poorly. It can happen that
it visits every single vertex of the polyhedron before reaching an optimal point!
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An example of such pathological situations was presented by Klee and Minty in
[7].

A class of more efficient methods was then developed. These are the so-called
interior-point methods. In this chapter, we will focus on a particular subclass
of interior-point strategies, the so-called primal-dual methods.

Interior-point methods are completely different from the simplex method.
Each interior-point iteration is in general expensive to compute and can make
significant progress toward a solution, while the simplex method usually requires
a larger number of inexpensive iterations. Geometrically speaking, the simplex
method works on the boundary of the feasible polyhedron, testing a sequence
of vertexes until a minimum is found. Interior-point methods approach the
boundary only in the limit. They may approach a solution either from the
interior or from the exterior of the feasible region, but they never lie on the
boundary of this region.

In what follows, we first describe the general idea of a primal-dual method
and then focus on feasible primal-dual methods, that are interior-point method
generating feasible iterates, and infeasible primal-dual methods, that correspond
to infeasible iterates.

To describe a general primal-dual method, we consider the LP problem (1.1)
and the corresponding KKT system (1.10)-(1.14). In what follows, we assume
that the matrix A is full row rank (as we did for the simplex method).

Primal-dual methods find solutions (x?,λλλ?, s?) to (1.10)-(1.14) by apply-
ing variants of Newton’s method to the three equalities of the KKT system
and modifying the approximation obtained at each iteration in order to satisfy
strictly the inequality conditions x ≥ 0 and s ≥ 0.

Let us rewrite (1.10)(1.14) as

G(x,λλλ, s) :=

A>λλλ+ s− c
Ax− b
XSe

 = 0

x ≥ 0, s ≥ 0,

where

X := diag
(
(x)1, . . . , (x)n

)
∈ Rn×n, S := diag

(
(s)1, . . . , (s)n

)
∈ Rn×n,

and e = [1 . . . 1]> ∈ Rn. To apply Newton’s method to the root problem

G(x,λλλ, s) = 0,

given an approximation (x0,λλλ0, s0) we must solve the Newton linear system

J(x0,λλλ0, s0)

∆x
∆λλλ
∆s

 = −G(x0,λλλ0, s0) (2.12)

to compute the direction (∆x,∆λλλ,∆s), and then update the approximation
(x0,λλλ0, s0) as

(x+,λλλ+, s+) = (x0,λλλ0, s0) + (∆x,∆λλλ,∆s). (2.13)
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In (2.12), J(x0,λλλ0, s0) is the Jacobian matrix of G : Rn × Rm × Rn → Rn ×
Rm × Rn at (x0,λλλ0, s0), that is

J(x,λλλ, s) =

0 A> I
A 0 0
S 0 X

 ∈ R(2n+m)×(2n+m),

with I the n× n identity. In (2.12), G(x0,λλλ0, s0) represents the residual of the
root problem at (x0,λλλ0, s0):

G(x0,λλλ0, s0) =

 rc
rb

X0S0e

 ,
where

rc = A>λλλ0 + s0 − c, rb = Ax0 − b.

Each iteration of Newton’s method consists in solving the linear system (2.12)
and updating the current approximation as in (2.13). This is a full Newton step.

Usually, a full Newton step would violate the bounds x ≥ 0 and s ≥ 0. For
this reason, interior-point methods perform a so-called line-search along the
Newton direction (∆x,∆λλλ,∆s) to obtain a step-length α ∈ (0, 1] and compute
the new approximation as

(x+,λλλ+, s+) = (x0,λλλ0, s0) + α(∆x,∆λλλ,∆s).

The parameter α must be computed so that x+ > 0 and s+ > 0. This property
is the origin of the term interior-point. Clearly, if x0 > 0 and s0 > 0, then one
can find a sufficiently small α in (0, 1] such that x+ > 0 and s+ > 0. On the
other hand, we would like to have α as big as possible to produce a significant
improvement toward a solution. The easiest way to compute α is to perform a
so-called backtracking : one starts with α = 1, computes (x+,λλλ+, s+) and verify
the conditions x+ > 0 and s+ > 0. If these are satisfied, then the value of
α is accepted, if not then the value of α is reduced (e.g., divided by 2). This
procedure is repeated until a value of α such that x+ > 0 and s+ > 0 is found.

Often, the “pure” Newton direction, that is the solution to the Newton
system 0 A> I

A 0 0
S 0 X

∆x
∆λλλ
∆s

 =

 −rc
−rb
−XSe

 , (2.14)

does not allow one to make much progress toward a solution, because the re-
sulting step-length α is very small. For this reason, most primal-dual methods
use a less aggressive Newton direction that does not solve (2.14) exactly. Let us
introduce the so-called duality measure

µ =
1

n
x>s,
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where n is the size of the vectors x and s, and the following modified Newton
system 0 A> I

A 0 0
S 0 X

∆x
∆λλλ
∆s

 =

 −rc
−rb

−XSe + σµe

 , (2.15)

where σ ∈ [0, 1] is called centering parameter . When σ > 0, it is usually possible
to take a larger step α along the direction defined by (2.15).

We are now ready to sketch a general primal-dual algorithm given by Algo-
rithm 2. Notice that we denoted σ and α by σk and αk to indicate that their

Algorithm 2 (General Primal-Dual Algorithm)

Require: The matrix A and the vectors b and c. An initial guess (x0,λλλ0, s0) such
that x0 > 0 and s0 > 0. A maximum number of iterations kmax.

1: for k = 0:kmax do
2: Choose σk ∈ [0, 1].
3: Compute µk = 1

n
(xk)>sk.

4: Solve the linear system (2.15): 0 A> I
A 0 0
Sk 0 Xk

∆xk

∆λλλk

∆sk

 =

 −rkc
−rkb

−XkSke + σkµke

 .
5: Compute a step-length αk and the new approximation

(xk+1,λλλk+1, sk+1) = (xk,λλλk, sk) + αk(∆xk,∆λλλk,∆sk)

such that xk+1 > 0 and sk+1 > 0.
6: If some stopping criterion is satisfied, then break.

7: end for

values can change in the iterations. The choice of σk and αk influences strongly
the performance of the method; see, e.g., [10] for further details.

An example of Matlab implementation of Algorithm 2 is given in the fol-
lowing script.

% Example Nocedal-Wright (page 371)

A = [ 1 1 1 0 ; 2 0.5 0 1 ];

b = [ 5 ; 8 ];

c = [ -4 ; -2 ; 0 ; 0 ];

n = length(c);

m = length(b);

e = ones(n,1);

x0 = 4*ones(n,1);

s0 = ones(n,1);

l0 = 4*ones(m,1);

sigma = 0.01;

M = zeros(2*n+m);

M(1:n,n+1:n+m) = A’;

M(1:n,n+m+1:2*n+m) = eye(n);
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M(n+1:n+m,1:n) = A;

x = x0; s = s0; l = l0;

mu = (x’*s)/n;

v = [x;l;s];

x_iter = x;

for j=1:30

M(n+m+1:2*n+m,1:n) = diag(s);

M(n+m+1:2*n+m,n+m+1:2*n+m) = diag(x);

rhs = - [ A’*l+s-c ; A*x-b; diag(s)*x - sigma*mu*e ];

d = M\rhs;

alpha = 1;

for k=1:30 % backtracking for computing alpha

v_new = v + alpha*d;

if min(v_new(1:n))>0 && min(v_new(n+m+1:2*n+m))>0

break

end

alpha = alpha/2;

end

v = v + alpha*d;

x = v(1:n); l = v(n+1:n+m); s = v(n+m+1:2*n+m);

x_iter = [x_iter,x];

mu = (x’*s)/n; f = c’*x;

fprintf(’j= %3.0d | mu= %5.3e | f= %5.3e | alpha= %5.3e |\n’,j, mu, f, alpha);

if mu<1e-6

break

end

end

This script solves the same LP problem that we have solved using the simplex
method in Section 2.1 and Figure 2.3. The primal-dual method needs 11 iter-
ations to converge. Notice that, for this very small-dimensional example, the
primal-dual method performs less good than the simplex method. However,
as we will see in the next sections, this is not in general the case for higher-
dimensional problems, on which primal-dual methods outperform the simplex
method.

In Figure 2.4, the first 4 iterations and the last iteration are depicted. It is
clear that the method generates a sequence that converges by approaching the
boundary from the exterior of the feasible polyhedron. If the same experiment
is repeated using the initial guess

x0 = 4*ones(n,1);

s0 = 4*ones(n,1);

l0 = 4*ones(m,1);

then one would obtain the results depicted in Figure 2.5, which shows a com-
pletely different behavior. Already at iteration 2, the method computes an ap-
proximation that lies in the feasible polyhedron, and the sequence approaches
the minimum from the interior of the feasible set.

The two different behaviors shown in Figures 2.4 and 2.5 suggest that two
different kinds of primal-dual methods can be developed using Algorithm 2.



44 CHAPTER 2. NUMERICAL METHODS FOR LP PROBLEMS

Figure 2.4: Example of iterations of the interior-point algorithm. This is the same ex-
ample described in Figure 2.3. Notice that at each iteration the algorithm corresponds
to a point outside the feasible region (red area). The boundary of the polyhedron is
approached only in the limit.

These are described in the next two subsections.

2.4.1 Feasible primal-dual methods

Although practical implementations of interior-point methods do not require the
initial guess to be a feasible point, most of the historical development of theory
and algorithms assumed that these conditions are satisfied [10]. In general, the
requirement for a feasible initial guess could be quite restrictive, but it allows
the development of efficient feasible methods.

In order to define feasible primal-dual methods, we introduce the primal-dual
strictly feasible set

F 0 := {(x,λλλ, s) ∈ Rn × Rm × Rn : Ax = b, A>λλλ+ s = c, x > 0, s > 0},

and the set

N−∞(γ, µ) := {(x,λλλ, s) ∈ F 0 : (x)i(s)i ≥ γµ, i = 1, 2, . . . , n}

for some γ ∈ (0, 1]. Consider an initial guess

(x0,λλλ0, s0) ∈ N−∞(γ, µ0),



2.4. INTERIOR-POINT METHODS 45

Figure 2.5: Example of iterations of the interior-point algorithm. This is the same
example described in Figure 2.4, but it shows the behavior of the Algorithm 2 initial-
ized with a different initial guess. The approximations generated by the primal-dual
method approach the minimum from the interior of the feasible polyhedron.

where µ0 = 1
n (x0)>s0. Since this triple is feasible, we clearly have that

rb = Ax0 − b = 0 and rc = A>λλλ0 + s0 − c = 0,

which implies that the Newton linear system (2.15) becomes0 A> I
A 0 0
S 0 X

∆x
∆λλλ
∆s

 =

 0
0

−XSe + σµe

 . (2.16)

If we solve this system and then compute a new approximation by

(x+,λλλ+, s+) = (x0,λλλ0, s0) + α(∆x,∆λλλ,∆s), (2.17)

we observe that

Ax+ = Ax0 + αA∆x = Ax0 = b,

where we used that A∆x = 0 and that x0 is feasible, and

A>λλλ+ + s+ = A>λλλ0 + s0 + α(A>∆λλλ+ ∆s) = A>λλλ0 + s0 = c,
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where we used that A>∆λλλ+ ∆s = 0 and that λλλ0 and s0 are feasible. Moreover,
it is possible to show that one can always find a small enough α such that
(x+)i(s

+)i ≥ γµ+, where µ+ = 1
n (x+)>s+ (see proof of Theorem 14.3 in [10]).

Therefore, the new triple (x+,λλλ+, s+) lies in N−∞(γ, µ+) and hence is feasible.
Proceeding iteratively by solving (2.16) and updating as in (2.17), we obtain
the feasible primal-dual Algorithm 3.

Algorithm 3 (Feasible (Path-following) Primal-Dual Algorithm)

Require: The matrix A and the vectors b and c. An initial guess (x0,λλλ0, s0) ∈
N−∞(γ, µ0). Parameters γ ∈ (0, 1) and σmax, σmin ∈ (0, 1) such that 0 < σmin ≤
σmax < 1. A maximum number of iterations kmax.

1: for k = 0:kmax do
2: Choose σk ∈ [σmin, σmax].
3: Compute µk = 1

n
(xk)>sk.

4: Solve the linear system (2.16).
5: Compute the largest step-length αk such that the new approximation

(xk+1,λλλk+1, sk+1) = (xk,λλλk, sk) + αk(∆xk,∆λλλk,∆sk)

lies in N−∞(γ, µk+1).
6: If some stopping criterion is satisfied, then break.

7: end for

It is possible to prove that this algorithm converges to a solution of the KKT
system; see, e.g., [10, Theorem 14.3]. Moreover, this algorithm can perform very
efficiently if σk is chose in an “appropriate” way. However, a primal-dual strictly
feasible initial guess is required! This is the main drawback of this method
and the reason for the large use of infeasible primal-dual methods in practical
implementations.

A Matlab implementation of Algorithm 3 is the following.

function [x,x_iter] = IP_feasible(A,b,c,x0,s0,l0,tol,maxit)

n = length(c);

m = length(b);

e = ones(n,1);

sigma = 0.1;

gamma = 1e-3;

M = zeros(2*n+m);

M(1:n,n+1:n+m) = A’;

M(1:n,n+m+1:2*n+m) = eye(n);

M(n+1:n+m,1:n) = A;

rhs = zeros(2*n+m,1);

x = x0; s = s0; l = l0;

mu = (x’*s)/n;

v = [x;l;s];

x_iter = x;

for it=1:maxit

M(n+m+1:2*n+m,1:n) = diag(s);

M(n+m+1:2*n+m,n+m+1:2*n+m) = diag(x);
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rhs(n+m+1:2*n+m) = sigma*mu*e - diag(s)*x;

d = M\rhs;

alpha = 1;

for k=1:30 % backtracking for computing alpha

v_new = v + alpha*d;

mu_new = (v_new(1:n)’*v_new(n+m+1:2*n+m))/n;

if min(v_new(1:n).*v_new(n+m+1:2*n+m))>mu_new*gamma

break

end

alpha = alpha*0.5;

end

v = v + alpha*d;

x = v(1:n); l = v(n+1:n+m); s = v(n+m+1:2*n+m);

x_iter = [x_iter,x];

mu = (x’*s)/n;

rc = A’*l+s-c;

rb = A*x-b;

opt= norm(rc)+norm(rb)+mu;

f = c’*x;

fprintf(’it= %3.0d | mu= %5.3e | f= %5.3e | opt= %5.3e | alpha= %5.3e |\n’,it, mu, f, opt, alpha);

if abs(opt)<tol

break

end

end

end

We can test this function for our usual example by running the following Mat-
lab script.

% Example Nocedal-Wright (page 371)

A = [ 1 1 1 0 ; 2 0.5 0 1 ];

b = [ 5 ; 8 ];

c = [ -4 ; -2 ; 0 ; 0 ];

n = length(c);

m = length(b);

x0 = [ 1 ; 1 ; 3 ; 5.5 ]; % primal-dual strictly feasible initial guess

l0 = -2*ones(2,1);

s0 = c-A’*l0;

[x,x_iter] = IP_feasible(A,b,c,x0,s0,l0,1e-6,30);

This script shows that the algorithm converges in 9 iterations. In Figure 2.6 the
first 5 iterates are shown. The method is clearly converging to the solution and
each iterate lies in the feasible set.

2.4.2 Infeasible primal-dual methods

In this section, we describe the infeasible primal-dual method that was in-
troduced by S. Mehrotra in 1992 [8]2. Mehrotra’s algorithm is a primal-dual

2Notice that the interior-point method implemented in the Matlab function linprog is
based on a variant of Mehrotra’s algorithm; see [13].
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Figure 2.6: Example of iterations of the feasible primal dual algorithm. This is the
same example described in Figure 2.4. The approximations generated by the feasible
primal-dual method approach the minimum from the interior of the feasible polyhe-
dron.

method that performs at each iteration a prediction step and a correction step.
For this reason, this is also called predictor-corrector primal-dual method ; see,
e.g., [10].

Given an approximation (x0,λλλ0, s0), Mehrotra’s method performs a predic-
tion step by solving the Newton system

 0 A> I
A 0 0
S0 0 X0

∆xpre

∆λλλpre

∆spre

 =

 −r0
c

−r0
b

−X0S0e

 (2.18)

and then computing

(xpre,λλλpre, spre) = (x0,λλλ0, s0) + (∆xpre,∆λλλpre,∆spre).

By the linearity of the first two equations of G(x,λλλ, s) = 0, this prediction
satisfies the equalities Axpre = b and A>λλλpre + spre = c. However, the KKT
condition (1.14) (the third equation of G(x,λλλ, s) = 0) is not satisfied, and we
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can compute the corresponding residual:

[(x0)j + (∆xpre)j ][(s
0)j + (∆spre)j ] = (x0)j(s

0)j + (x0)j(∆spre)j

+ (s0)j(∆xpre)j + (∆xpre)j(∆spre)j

= (∆xpre)j(∆spre)j

for j = 1, . . . , n, where we used the last (block) equation of (2.18). Hence, the
updated value (xpre)j(s

pre)j is (∆xpre)j(∆spre)j rather than the ideal value
zero. Now, the idea is to attempt to correct this value by solving another
Newton-type system: 0 A> I

A 0 0
S0 0 X0

∆xcor

∆λλλcor

∆scor

 =

 0
0

−∆Xpre∆Spree

 . (2.19)

The new direction is then

(∆x,∆λλλ,∆s) = (∆xpre,∆λλλpre,∆spre) + (∆xcor,∆λλλcor,∆scor).

In many practical cases this predictor-corrector step performs very well. As for
feasible methods, also Mehrotra’s algorithm uses duality measure and centering
parameter. The centering parameter is chosen as

σ =
(µpre
µ0

)3

, (2.20)

where µ0 = 1
n (x0)>s0 is the duality measure and µpre is the predicted duality

measure given by

µpre =
1

n
(x0 + αppre∆xpre)>(s0 + αdpre∆spre). (2.21)

Here we used two different step-length parameters: αppre for the primal variable

x and αdpre for the dual variable s. These are computed as

αppre := min
(

1, min
j : (∆xpre)j<0

− (x0)j
(∆xpre)j

)
,

αdpre := min
(

1, min
j : (∆spre)j<0

− (s0)j
(∆spre)j

)
,

(2.22)

and represent the maximum allowable step lengths along the directions ∆xpre

and ∆spre (larger steps would violate the constraints xpre > 0 and spre > 0).
To summarize, Mehrotra’s predictor-corrector strategy performs at each it-

eration the following key steps:

(a) Solve (2.18) to obtain the prediction direction (∆xpre,∆λλλpre,∆spre).

(b) Compute the centering parameter σ using (2.20).
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(c) Solve the linear system 0 A> I
A 0 0
S0 0 X0

∆x
∆λλλ
∆s

 =

 −r0
c

−r0
b

−X0S0e−∆Xpre∆Spree + σµ0e

 (2.23)

to obtain the predictor-corrector direction (∆x,∆λλλ,∆s).

Once the direction (∆x,∆λλλ,∆s) is obtained, the algorithm computes primal
step length αpmax and dual step length αdmax in (0, 1] that are as big as possible
and that allow us to guarantee that the new iterate (x+,λλλ+, s+) satisfies x+ > 0
and s+ > 0. These step lengths are computed as

αpmax := min
j : (∆xpre)j<0

− (x0)j
(∆xpre)j

,

αdmax := min
j : (∆spre)j<0

− (s0)j
(∆spre)j

.

In practical implementations, these values are modified:

αp = min(1, ηαpmax), αd = min(1, ηαdmax), (2.24)

where η ∈ [0.9, 1) and η → 1 as the iteration count increases. Using these step
lengths, the new approximation is computed as

x+ = x0 + αp∆x,

λλλ+ = λλλ0 + αd∆λλλ,

s+ = s0 + αd∆s.

Once the new approximation is computed, the predictor-corrector step is re-
peated iteratively. Mehrotra’s strategy is summarized in Algorithm 4.

A Matlab implementation of Algorithm 4 is the following.

function [x,l,s] = IP_Mehrotra(A,b,c,x0,s0,l0,tol,maxit)

n = length(c);

m = length(b);

e = ones(n,1);

sigma = 0.1;

M = zeros(2*n+m);

M(1:n,n+1:n+m) = A’;

M(1:n,n+m+1:2*n+m) = eye(n);

M(n+1:n+m,1:n) = A;

x = x0; s = s0; l = l0;

rc = A’*l+s-c;

rb = A*x-b;

mu = (x’*s)/n;

for it=1:maxit

M(n+m+1:2*n+m,1:n) = diag(s);

M(n+m+1:2*n+m,n+m+1:2*n+m) = diag(x);
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Algorithm 4 (Mehrotra’s Primal-Dual Algorithm)

Require: The matrix A and the vectors b and c. An initial guess (x0,λλλ0, s0) such
that (x0, s0) > 0. A maximum number of iterations kmax.

1: for k = 0:kmax do
2: Set (x,λλλ, s) = (xk,λλλk, sk) and solve (2.19) to get (∆xpre,∆λλλpre,∆spre).
3: Compute αp

pre, αd
pre, µk, µpre and σ using (2.22), (2.21) and (2.20).

4: Solve the linear system 0 A> I
A 0 0
Sk 0 Xk

∆x
∆λλλ
∆s

 =

 −rkc
−rkb

−XkSke−∆Xpre∆Spree + σµke


to obtain the predictor-corrector direction (∆x,∆λλλ,∆s).

5: Compute αp and αd using (2.24).
6: Compute the new updates as

xk+1 = xk + αp∆x,

λλλk+1 = λλλk + αd∆λλλ,

sk+1 = sk + αd∆s.

7: If some stopping criterion is satisfied, then break.

8: end for

rhs = - [ rc ; rb; s.*x ]; % affine step

d_aff = M\rhs;

ratio=-(x./d_aff(1:n)).*(d_aff(1:n)<0) ...

+1e8*ones(size(x)).*(d_aff(1:n)>=0);

alpha_p_m=min(ratio);

ratio=-(s./d_aff(n+m+1:2*n+m)).*(d_aff(n+m+1:2*n+m)<0) ...

+1e8*ones(size(s)).*(d_aff(n+m+1:2*n+m)>=0);

alpha_d_m=min(ratio);

alpha_aff_p=min(1,alpha_p_m);

alpha_aff_d=min(1,alpha_d_m);

mu_aff = ((x+alpha_aff_p*d_aff(1:n))’*(s+alpha_aff_d*d_aff(n+m+1:2*n+m)))/n;

sigma = (mu_aff/mu)^3; % centering parameter ...

rhs(n+m+1:2*n+m) = rhs(n+m+1:2*n+m)-d_aff(1:n).*d_aff(n+m+1:2*n+m)+sigma*mu*e;

d = M\rhs; % corrector step

ratio=-(x./d(1:n)).*(d(1:n)<0)+1e8*ones(size(x)).*(d(1:n)>=0);

alpha_p_m=min(ratio);

ratio=-(s./d(n+m+1:2*n+m)).*(d(n+m+1:2*n+m)<0)+1e8*ones(size(s)).*(d(n+m+1:2*n+m)>=0);

alpha_d_m=min(ratio);

eta = min(1,0.9+0.1*it/10);

alpha_p = min(1,eta*alpha_p_m); % compute primal and dual step length

alpha_d = min(1,eta*alpha_d_m);

x = x + alpha_p*d(1:n); % update

l = l + alpha_d*d(n+1:n+m);

s = s + alpha_d*d(n+m+1:2*n+m);

mu = (x’*s)/n;
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rc = A’*l+s-c; rb = A*x-b;

opt= norm(rc)+norm(rb)+mu;

f = c’*x;

fprintf(’it= %3.0d | mu= %5.3e | f= %5.3e | opt= %5.3e | eta= %5.3e | alpha= %5.3e |\n’,it, mu, f, opt, eta, min(alpha_p,alpha_d));

if abs(opt)<tol

break

end

end

end

Notice that no convergence analysis is available for Mehrotra’s algorithm;
see, e.g., [10]. There are examples on which the algorithm diverges, but these
failures are rare and sometimes “mitigated” by detailed modifications of the
algorithm.

The performance of primal-dual algorithms is strongly affected by the choice
of the initial guess. For infeasible algorithm, like Mehrotra’s method, there are
several heuristic choices described in the literature; see, e.g., [10, 12]. In what
follows, we describe one of these.

The first step toward the computation of a warm start is to get a triple

(x̂, λ̂λλ, ŝ) such that x̂ satisfies Ax = b and has minimum norm, and λ̂λλ and ŝ
satisfy A>λλλ + s = c and ŝ has minimum norm. Such a triple solves the two
problems

min
x∈Rn

1

2
x>x s.t. Ax = b,

min
s∈Rn,λλλ∈Rm

1

2
s>s s.t. A>λλλ+ s = c.

It is not difficult to show that their solutions are

x̂ = A>(AA>)−1b, λ̂λλ = (AA>)−1Ac, ŝ = c−A>λ̂λλ.

In general, x̂ and ŝ can have negative components, which means that they are
not suitable as starting point. For this reason, we correct them:

x̃ = x̂ + δxe, s̃ = ŝ + δse,

where e = [1 . . . 1]> ∈ Rn and

δx = max
(
−(3/2) min

j
(x̂)j , 0

)
, δs = max

(
−(3/2) min

j
(ŝ)j , 0

)
.

Clearly x̃ > 0 and s̃ > 0. Finally, to ensure that the components of x0 and s0

are not too close to zero and not too dissimilar, we introduce two more scalars:

δ̂x =
1

2

x̃>s̃

e>s̃
, δ̂s =

1

2

x̃>s̃

e>x̃
.
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Notice that δ̂x is the average size of the components of x̃, weighted by the
corresponding components of s̃; similarly for δ̂s. We can finally compute the
initial guess

x0 = x̃ + δ̂xe, λλλ0 = λ̂λλ, s0 = s̃ + δ̂se.

To compute this initial guess, it is possible to use the following Matlab
function.

function [x0,l0,s0] = warm_start(A,b,c)

e = ones(length(c),1);

x0 = A’*((A*A’)\b);

l0 = (A*A’)\(A*c);

s0 = c - A’*l0;

dx = max(-(3/2)*min(x0),0);

ds = max(-(3/2)*min(s0),0);

x0 = x0+dx*e; s0 = s0+ds*e;

dx = 0.5*(x0’*s0)/(e’*s0);

ds = 0.5*(x0’*s0)/(e’*x0);

x0 = x0+dx*e; s0 = s0+ds*e;

end

Now, we wish to test Mehrotra’s method and compare it with the simplex
method of Section 2.1. To do so, we use the following Matlab script.

m = 100; n = 2*m;

A = rand(m,2*m);

indB = 1:m;

x0 = [rand(m,1);zeros(m,1)];

b = A*x0;

c = rand(2*m,1);

disp(’Simplex Iterations’)

[x_simplex,sN] = simplex(A,b,c,indB,200);

disp(’Simplex Iterations’)

[x0,l0,s0] = warm_start(A,b,c);

[x,l,s] = IP_Mehrotra(A,b,c,x0,s0,l0,1e-8,200);

norm(x-x_simplex)

This script tests for a random problem of dimensions m = 100 and n = 200.
The results are similar (due to randomness) to the following.

Simplex Iterations

it= 1 | f= 2.326e+01

it= 2 | f= 2.324e+01

it= 3 | f= 2.318e+01

it= 4 | f= 2.313e+01

it= 5 | f= 2.301e+01

it= 6 | f= 2.271e+01

it= 7 | f= 2.268e+01

it= 8 | f= 2.261e+01

it= 9 | f= 2.258e+01

it= 10 | f= 2.258e+01

...
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it= 83 | f= 1.862e+01

it= 84 | f= 1.861e+01

it= 85 | f= 1.860e+01

it= 86 | f= 1.859e+01

it= 87 | f= 1.859e+01

Simplex Iterations

it= 1 | mu= 1.839e-01 | f= 3.439e+01 | opt= 1.263e+02 | eta= 9.100e-01 | alpha= 8.028e-01 |

it= 2 | mu= 4.066e-02 | f= 2.258e+01 | opt= 2.181e+01 | eta= 9.200e-01 | alpha= 7.869e-01 |

it= 3 | mu= 1.338e-02 | f= 1.994e+01 | opt= 6.707e+00 | eta= 9.300e-01 | alpha= 6.740e-01 |

it= 4 | mu= 4.810e-03 | f= 1.909e+01 | opt= 2.192e+00 | eta= 9.400e-01 | alpha= 6.732e-01 |

it= 5 | mu= 1.681e-03 | f= 1.876e+01 | opt= 6.764e-01 | eta= 9.500e-01 | alpha= 6.664e-01 |

it= 6 | mu= 4.315e-04 | f= 1.862e+01 | opt= 1.196e-01 | eta= 9.600e-01 | alpha= 7.231e-01 |

it= 7 | mu= 8.515e-05 | f= 1.860e+01 | opt= 3.314e-02 | eta= 9.700e-01 | alpha= 7.210e-01 |

it= 8 | mu= 1.817e-05 | f= 1.859e+01 | opt= 3.511e-03 | eta= 9.800e-01 | alpha= 7.032e-01 |

it= 9 | mu= 1.985e-06 | f= 1.859e+01 | opt= 3.786e-05 | eta= 9.900e-01 | alpha= 8.406e-01 |

it= 10 | mu= 1.121e-07 | f= 1.859e+01 | opt= 1.313e-06 | eta= 1.000e+00 | alpha= 9.618e-01 |

it= 11 | mu= 1.446e-08 | f= 1.859e+01 | opt= 1.446e-08 | eta= 1.000e+00 | alpha= 1.000e+00 |

it= 12 | mu= 4.697e-15 | f= 1.859e+01 | opt= 1.583e-13 | eta= 1.000e+00 | alpha= 1.000e+00 |

ans =

3.7583e-12

The simplex algorithm requires about 90 iterations to converge, while Mehro-
tra’s algorithm converges within a tolerance of 10−8 to a solution in only 12
iterations. The corresponding solution differs in norm from the simplex solu-
tion of around 10−12. This simple experiment shows the higher efficiency of
primal-dual methods for higher-dimensional problem.
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fundamental theorem of linear program-

ming, 19

hyperplane, 12

infeasible LP problem, 9
infeasible primal-dual methods, 40, 47
interior-point methods, 40
isocost lines, 16

KKT system, 21

Lagrange multipliers, 22
leaving index, 25
line-search, 41
LP canonical form, 10
LP cost function, 7
LP feasible set, 7
LP standard form, 7
LU-decomposition, 35

Newton’s method, 40

pivoting (LU-decomposition), 37
pivoting (simplex method), 27
polyhedron, 12
polytope, 12
predictor-corrector primal-dual method,

47
primal-dual methods, 40
primal-dual strictly feasible set, 44

redundant constraint, 14
revised simplex method, 24

simplex method, 23
slack variable, 10
supporting hyperplane, 12

two-phase strategy (simplex method),
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two-side constraint, 34

unbounded LP problem, 9

vertexes, 15
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