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Preliminary Detinition

A mixed-integer linear program in standard form is formulated as

/ /
max c X +d'y
Note that if x €EZ" we can

s.t. Ax -+ Ey — b reformulate the problem by
o introducing x*, x~ € Z% such that
xeZ, ,y>0 x=x"—x".

withy € R, A €¢ R™*" and E € R™*1




Preliminary Detinition

If all the variables are integer (q = 0) we have a pure

integer linear programming problem.
max ¢'x +d'y

st. Ax+Ey =Db
xeZl,y>0
If x € {0,1}" we speak of binary optimization problem.
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Linear Continuous Relaxation

Let consider a pure integer linear programming problem

27— max X
st. Ax =D
X e Z

The feasible reagion of the problem 1s defined as

S={xeR":Ax=b,xec 2"}




Linear Continuous Relaxation

Its linear countinuos relaxation is obtained by removing the integer condition (x € Z%) for all
the integer variables.

27— max e X Zg = max c'X
st. Ax=b > st. Ax=b
X € Zy x =0




Linear Continuous Relaxation

Theorem 1: given a linear integer optimization in the form of maximization and its linear
continuous relaxation it holds z; < zg.

Corollary 1: If the solution of the linear countinuos relaxation X € Z%, then X is optimal
also for the integer optimization problem.




Numerical Example

Let consider the pure integer optimization problem

max 8xq + Do
s.t. 91 + Do < 45
1+ 39 < 16
T Eoe T

(=

B o C o e e 4 =

Xo = (2.5, 4.5) = z5 = 42.5
x7 = (5, 0) = 27 = 40

The optimal value of the linear
telaxation W iss ot W eaod
approximation for the original
integer problem.




Alternative Formulations

Definition 2: a polyhedron P = {x € R": Ax < b} is a linear formulation of an integer
optimization problem with feasible region S if § = P N Z7}.

Definition 3: given two equivalent linear formulations P; and P, of an integer optimization, we
say that P; is more stringent, and therefore better, if P; C P5.
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Alternative Formulations
, max 8r1 + dxs n 5025 max 8r1 + dxo
s.t. 9x1 + dxy < 45 ,_ s.t. 9x1 + by < 45
x1 + 3x9 < 16 1+ 3x9 < 16
:131,35'262_7; 1 +2x9 <6
T N AR
C. Verecellis, Ottimizzazione. Teoria, C. Vercellis, Ottimizzazione. Teoria,
Metodi, applicazioni, 2008 Metodi, applicazioni, 2008
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Convex Hull

Definition 4: given a set X S R", we define the comvex hull of X (denoted by conv(X)) as the
smallest convex set in R™ which contains X.
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L. De Giovanni, M. Di Summa, G. Zambelli, Solution Methods for Integer Linear Programming.




Ideal Formulation

Definition 5: a linear formulation with feasible region P of an integer optimization problem
with feasible region S is said to be idea/ if P is the convex hull of S, i.e. P = conv(S).

The 1deal formulation is the most stringent linear formulation of an integer problem.

In case of an ideal formulation one has that

max{c'x : x € S} = max{c'x : x € conv(S)}
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Ideal Formulation

~ C. Verecellis, Ottimizzazione. Teoria,
Metodi, applicazioni, 2008

max 8xry + dxo max 8rq1 + d5x2
s.t. 91 + dxy < 45 Sl Bonien
r1+ 3z < 16 | > r1+1x9 <6
1+ 22 <6 3x1 + 229 < 15
TIORGOS N SR

Unfortunately, only in few cases it is possible to determine the ideal formulation of a linear
integer optimization problem (see #nimodularity).
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Cutting Plane Idea

Idea: iteratively solve a sequence of linear relaxations that approximate better and better the
convex hull of the feasible region around the optimal solution.

At the k-th iteration:
compute the optimal solution X¢, of the linear relaxation
if x¢, is integer, then X¢, = X, is the optimal solution of the integer problem

otherwise, add to the optimization problem a new constraints which is violated by X, but

satistied by all the feasible solutions of the original integer problem.




Cutting Plane Idea

Let consider I, as the optimization problem at the 4-th iteration and Cj, the correspondent
linear relaxation. The problem [}, is then given by

RN !/
Z7, = max €'X

sit. Ax=Db
Vglngh:h:]-a"'ak
:x:EZfrL

where v;,x = gn,h =1, ..., k are the set of constraints added during the previous iterations.




Cutting Plane Idea

Definition 6: the constraint V' 41 X = g 41 i said to be a valid cut for the problem I}, at the
k-th iteration 1f

the constraint is violated by the optimal solution X¢, of the linear continuos relaxation Cy

the constraint is satisfied by all the feasible solution of [




Cutting Plane Idea

Let consider the following linear integer optimization problem I and its relaxation C

2] = max c'x 25 = max ¢'X
st. Ax =Db st. Ax=Db
xX€EZ} x > 0

and consider B the optimal base for the linear relaxation C and its correspondent optimal
solution x* = (xg, xp) = (B~1b,0). If the solution is not integer it exists an index t for
which x{ € Ry \Z,;. Assume that A = [B D], with D associated to non basic variables.

Let finally define
yi; = (B- D)y, w; = (BT b);




Cutting Plane Idea

Definition 7: the Gomory cut 1s given by the constraint

Z VL5 = Gy

)

whete D={m+1, m+2,---,n} is the set of index of non basic variables and

R L I Lytﬂ, gt = Wt — Lth

Theorem 2: the Gomory cut is a valid cut.




Cutting Plane Algorithm

Initialization: assign kK = 0 to the iteration index and set [y = I, where [ is the original
problem.

Stopping criteria: solve the linear relaxation Cy of the problem Ij. If the solution X, is

integer the algorithm stops since X¢, is also solution of the problem [, and therefore of I.

Cut generation: generate a valid cut V11X = gi+1 and add it to the problem I,
obtaining the problem [y 4. Finally, update k = k + 1.




Numerical Examples

Solve the following problem with Gomory cutting plan method. 27 = max z1 + 2
st. —2x1 4+ 212 <O

6x1 + 4o < 25
Ty o &

Consider two slack variables in order to transform the problem into standard form.

z] = max r1 + 29
st. —2x1+2x5+581 =05
6x1 +4xo + 59 = 25
T N = AR R




Numerical Examples

Consider two slack variables in order to transform the problem into standard form.

. o e v
ZC'O — 95, .’L'CO = (15’ 4, 0, 0) BsrRr= |: 0.3 01]
-2 2 sl
Bl b
e Lytjja AN Lth
yi; = (B~'D),, w; = (B™'b);

Gomory cut associated with X1: 8s; + 89 > 5




Numerical Examples
The Gomory cut can be esxpressed as function of the original variable as  —z1 +2z2 <6
and the problem I[; becomes B
r 27 = max x1 + 2x2
st. —2x1+2x94+381 =5
—Z1+2x2+383=06 o
j’ T1,X2 - Z_Tﬁ, 51,582,553 ZO ;
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Numerical Examples

The optimal solution of the relaxation problem (; is given by

. S RTINS
ch = 925, LUCl = (g, 1—6, g, 0, 0)
AR 0 0
B— 164 0, D=1|1 0 B D =
SRR Bl

Gomory cut associated with X5: s3 + 6s3 > 13
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Numerical Examples

The Gomory cut can be esxpressed as function of the original variable as 2 <3

and the problem I, becomes

" 2] = max x1 + 2x9

f ) st. —2¢1+2x5+8, =5 s
6x1 + 4xs + 59 = 25 =
) » Ji¥ =817 = B 25132 + 83 = 6 :

To+ 84 =3

| - § :

f. 3915372624_58198278320 :
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Numerical Examples

The optimal solution of the relaxation problem C;, is given by

) S 13 10 13
ZG2 = 8].7, 515'02 = (E, 3, 3, 0, F, 0)
R R R AR oY SO0
GRS g g
B D D=1y o| B'D=
R AR i

Gomory cut associated with X1: s +2s4 > 1

DW= OO




Numerical Examples

The Gomory cut can be esxpressed as function of the original variable as  x1 + 2 <5

and the problem I3 becomes

27 = max x; + 22
st. —2x14+2x5+51 =95 e
6x1 +4x2 + 50 = 25
— 21 + 222 + 53 =6
To+84=3

1+ x2+ 85 =295 ’

n
xr1,T2 € Z_|_a 81,852,583 2 0
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Numerical Examples

The optimal solution of the relaxation problem (3 is given by
2 =8, 5 =(2,3,0,0,0,0,0)

The algorithm stops since the obtained solution 1s integer, and therefore

21, = 20, = 8, z7, =2¢, = (2,3,0,0,0,0,0)




