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Duality

standard form problem (without equality constraints)

minimize  fo(x)
subject to  fi(z) <0.i=1,....m

e optimal value p*, domain D

e called primal problem (in context of duality)

(for now) we don’t assume convexity
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Duality

Lagrangian L : R"™™ — R
L(z,A) = fo(x) + A fi(x) + - + A fm(2)
e )\; called Lagrange multipliers or dual variables

e objective is augmented with weighted sum of
constraint functions
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Lagrange dual function

(Lagrange) dual function g : R" — RU {—oc}

g(A) = i;;fL(:r.).)
= inf (fol@) + M) + -+ A (@)

e minimum of augmented cost as function of weights

e can be —oc¢ for some A
Not easy to understand
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® g IS concave (EVEH it fi not CDI‘IVE‘X.) I:>(W€Wﬂl check it for QPs and L.Ps) Q




Lagrange dual function: LLP example

minimize L

subject to alx —b; <0, i=1.....m

L(z.\) = T+ Z Ni(aTz —by)
i1
= AN+ AT N+

—bIN ifATAN+c=0

— 00 otherwise

hence g(\) = {




Lower bound property

if A > 0 and x is primal feasible, then

9(A) < fo(x)

folx) — g(\) is called the duality gap of (primal
feasible) x and A = 0

minimize over primal feasible = to get, for any A > 0,

g(A) <p”

A € R™ is dual feasible if A = 0 and g(\) > —

dual feasible points yield lower bounds on optimal
valuel

proof: if f;(z) <0 and \; > 0,

fo(x)

=

fole) + 37 Nafula)
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Lagrangian dual problem

maximize  g(\)

subject to A >~ 0

e called (Lagrange) dual problem
(associated with primal problem)

e always a convex problem, even if primal isn't!
e optimal value denoted d*
e we always have d* < p* (called weak duality)

e p* — d* is optimal duality gap
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Strong duality

for convex problems, we (usually) have strong duality:

d‘k _ pl‘k

when strong duality holds, dual optimal A* serves as
certificate of optimality for primal optimal point 2*




Strong duality

many conditions or constraint qualifications guarantee
strong duality for convex problems

Slater’s condition: if primal problem is strictly feasible
(and convex), i.e., there exists = € relint D with

then we have p* = d*
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Dual of linear program

(primal) LP

minimize Lz

subject to Axr <0

e n variables, m inequality constraints

dual of LP is (after making implicit equality constraints
explicit)

maximize —bT\
subject to ATA+c¢=0
A=0

e dual of LP is also an LP (indeed, in std LP format)

e m variables, n equality constraints, m nonnegativity
contraints

for LP we have strong duality except in one
(pathological) case: primal and dual both infeasible
(p* = 400, d* = _;j)c.)




Dual ot quadratic program

(primal) QP

minimize 2T Px
subject to Ax <

we assume P > 0 for simplicity

dual of QP is

maximize —(1/4)ATAP~TATX — b7\
subject to A =0

.. . another QP

Lagrangian is L(z, \) = 2T Pz + \T (Az — b)

V.L(x,\) = 0yields 2 = —(1/2)P~LAT ), hence dual
function is

g(A\) = —(1/DANTAP7TATN — b7\

e concave quadratic function

/z’

@ e all A = 0 are dual feasible
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Duality 1n algorithms

many algorithms produce at iteration £

e a primal feasible z:(F)

e and a dual feasible \(F)

with fo(z®)) — g(A®)) = 0 as k — oc

hence at iteration & we know p* & [g(/\(k)), fo(;r(k)}}

e useful for stopping criteria

e algorithms that use dual solution are often more
efficient (e.g., LP)




Stopping criteria

absolute error = fo(z®)) — p* < ¢ stopping criterion:
stopping criterion: until (g(/\(k)) -0 & fo(m(;z;(—kgig)\(kj) < E)
antil ( fo(x™®) — g(A®) < ¢) or  (fo(x®) <0 & DT < )
~ fo(zF
relative error — fo(ﬂ’(k)) —p* < achieve target value ( or, prove ( is unachievable (i.e.,
| - determine either p* < ( or p* > ()

stopping criterion:

until (fo(ﬂk)) < 0 or g(A®)) > {)
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Complementary slackness condition

suppose x*, A* are primal, dual feasible with zero

duality gap (hence, they are primal, dual optimal)

fo(z™) = g(\")

m
. e ith constraint inactive at optimum = \; = ()
= inf (fg(;r) + Z/\;fi-(;r)) P i
T
i=1
m e \¥ > 0 at optimum = ith constraint active at
< fo(x*)+z/\§f@(x*) optimum
i=1

hence we have >_7" - \*f;(2*) = 0, and so

2_:]_ (]

AN fi(z®) =0, i=1,....m
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KKT optimality conditions

suppose

e f; are differentiable

e %, \* are (primal, dual) optimal, with zero duality
gap

by complementary slackness we have

fo(.‘l‘*) 1 Z )\?fz'(;r*) — i]%f (fo(;l?) + Z )\;fi{glf)) |:> Vf{}{:r*) + Z )\;sz'(:zj*) = ()

*

i.e., % minimizes L(x, \*)




KKT optimality conditions

if x*, A\* are (primal, dual) optimal, with zero duality gap, they satisfy

s
vf[) Z vfz

the Karush-Kuhn-Tucker (KKT) optimality conditions

conversely, if the problem is convex and z*, A\* satisfy
KKT, then they are (primal, dual) optimal
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Equality constraints

minimize  fo(x)
subject to  f;(x) <
hi(z) =

—

), i=1.....m

e optimal value p*

e again assume (for now) not necessarily convex

Rn—l—m—l—p

define Lagrangian L : — R as

m p
L(x, \.v) = fo(x) + Z Nifilx) + Z vihi(r)
i=1 i=1

dual function is g(\. ) = inf, L(z, A\, v)
(A.v) is dual feasible if A = 0 and g(\, ) > —

(no sign condition on 1)




Dual of LP in standard form

Primal LP min c¢'x _ -
x min  c¢'x

subj. to Ax =10 :> i

subj. to b— Axr =0

\
4

x>0 <0
Lagrangian
Lz \v)=c o= Ao+ (b— Ax)
g\ v)=minL(z,\,v) = min (¢ =A" —vT D +v'b = min (c=A—-A"v) z+b"v
TS N
l | _(/\ ) Ty if(c—A— ATw) =0 Resulting dual LP max b,
g\ALY) = —o00  otherwise ’ v
subj. to ATv+\X=c¢ £
A>0 '-



Properties

lower bound property: if = is primal feasible and
(A, ) is dual feasible, then g(A, ) < fo(2), hence

weak duality: d* < p* always

Av) < p*

9( ) ) =P strong duality: if primal is convex then (usually)
d* = p*

dual problem: find best lower bound Slater condition: if primal is convex (i.e., f; convex,

h; affine) and strictly feasible, i.e., there exists = €
relint D s.t.
maximize  g(A,v)

subject to A = 0 fi(x) <0, hy(x)=0,

: : then d* = p*
(note v unconstrained), optimal value d* .




KKT optimality conditions with equality constraints

assume f;, h; differentiable

if *, A*, v* are optimal, with zero duality gap, then
they satisfy KKT conditions

fi(a*) <0, hi(z*) =0
\F >0

Nt fil2*) =0

Vfo(a*) + 3, NV fi(a*) + 3, 12V hy(2*) = 0

conversely, if they satisfy KKT and the problem is
convex, then x*, \*, ¥* are optimal




KKT of LLP in standard form

Ax = A=v Ar =10
x>0 5= A x>0
Alv+d=c¢ > A N+s=c¢
A>0 change of notation s>0

Ty — 0 (the second one is used in some scripts) T 0




Duality problem: example

Consider the following LP

max dxrq, + 12x9 + 4x3
.581+2(E2—|-(E3 § 10
2$1—$2+3£€3:8

L1, L2,X3 2 0

Find the dual problem (first rewrite the primal LP in standard form)




Parametric programming

= General formulation

f*(@) =inf f(z,x)
g(z,z) <0




Multiparametric LP (mp-LP)

Formulation: given ¢ € R™,G € RT”"™,S € RT”", W € R

= Primal problem Dual problem

J(z) =min J(z,z) = cl 2,

subj. to Gz < W + Sz subj. to  GTr = e

<0

KKT Conditions

= Gz—Sx—-W <0
=<0

= (Gz—Sx—-W)'m=0

= G'm=c

max (W 4+ Sz)Tr,
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Multiparametric LP (mp-LP)

Feasible set: X* € X is the set of all points for which exist a solution to the primal

(P.P.) and the dual problem (D.P.).

Denoting with [ = {1, ..., q} the constraint index set, define
- Set of Active constraints  A(z) ={i €71 | Vz : J(z,2) =J"(2) = Gz - Sz - W; =0}
= Set of Inactive constraints N(z)={i€7 | 3z : J(z,2) = J*(2) NGz — Sjz — W; < 0}

= Critical region for a givenset A* C 7

CRy+ ={zr € X | A(z) = A"}




mp-LP: geometric approach

= exploration of the parameter space X using geometric methods

= requires an LP solver

Step 1: solve an LP: for an initial parameter vector rg € X':

1. Solve PP.&D.P. = z*(xg) and 7*(xq)

2. Obtain Ag = A(zp)and Ny = N (xg) and matrices
{G.on S.Aoa WAQ} — {Gla Si, Wi | NS A(:EO)}
{Gn SN WY = G S, Wi | i € N(xg)}




mp-LP: geometric approach

= exploration of the parameter space X using geometric methods

= requires an LP solver

Step 2: determine : CR 4,, z5(x) and J3(x)

1.From the primal feasibility conditions Gap?0(®) = Wag + 542
1 ANz () < Wi + Shp

2.Compute optimizer (as a function of x)
* — ~—1 -1 _
i) = G A S 40T + G4 Wa, = For + g0
3.Critical region
CRA, = {2 | (GrpFo — Snp)T < Wiy, — Gapdo}
4. Compute the optimal value function using the D.P. (strong duality holds)

Jolz) = (SAOQZ -+ WAO)TW:ZO
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mp-LP: geometric approach

= Critical region C'R Ao (CR 0 from now on) is defined by strict inequalities = an open polyhedral set
A = .A(LE) uniquely determines CR A > the regions do not overlap!

= the optimizer 2™ (:C) is affine over CRO

Step 3: explore the rest of X
* Replace CR by its closure (Ro
«Forz € X \ CRg find optimality conditions

and corresponding critical regions covering

the entire feasible set X~

= Different exploration strategies

i l
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mp-L.P: geometric approach

Ist approach: reversing inequalities

= Note: regions Ri are not critical regions

= Proceed recursively: repeat the whole procedure for each Ri
= The entire set X is explored in finite number of iterations

= Problem: critical regions can be artificially divided among different Ri

(Ro={reX | Hr < K}

X\ CRo = JRi

)

-

DO o ¢ o st e e~ e s



mp-LP: geometric approach

2nd approach: crossing the facets

= For each of the facets of CRo a point outside the region but close to the facet is selected and the
procedure is repeated

= Critical regions are computed “in one piece”, no artificial splitting

= No formal proof that whole X is covered
* In practice usually outperforms the strategy based on reversing inequalities




mp-LP: properties

1. Feasible set X* is closed and convex

2. If the optimal solution z* is unique for all x in X*, the optimizer function z(x) : X*>R™Mis

If the solution is not unique, it is always possible to choose a continuous and PPWA
optimizer function z*(x)

3. The value function J*(x): X* 2 Ris




mp-QP

Formulation: multi-parametric quadratic programs of the form (Assume H>0)

J*(x) = min {J(z,a?) = %ZTHZ}
subj. to Gz< W+ Sz

where z € Z CR™, and z €¢ X CR", G € R1*™,

KKT Conditions
Hz* 4+ G\ =0,
N(Giz" = Sie—W;)) =0, i=1,...,q
A* >0,
Gz*<W + Sz




mp-QP: geometric algorithm

= exploration of the parameter space X using geometric methods

= requires an QP solver

Step 1: solve an QP: for an initial parameter vector xg € X':

1. Solve PP.&D.P. = z*(xzg) and \*(xzg)

2. Obtain Ag = A(xzg)and Ny = N (zp) and matrices
{G Ay Sag-Wast = {Gi,Si,W; | i€ A(zo)}
{GJ\/’()? SJ\/’Q? WN’()} - {Giv S’iv Wl ‘ % S N(‘TO)}




mp-QP: geometric algorithm

= exploration of the parameter space X using geometric methods
= requires an QP solver

Step 2: determine : CR 4,, 24(x) and J5(z)

1.From the primal feasibility conditions EAO’ZO@) = Wap + 54,7

l INp20(T) < Wap + Shpz

2.Since 2* = —H 'GT X\ and \y(z) = —(GAH 1GL) Y (W4 + Sux)
the optimizer functionis z*(z) = H_lGﬁ(GAH_lGﬁ)_l(WA+SA$)

3.Critical region

A = { GH1GL(GAHGL) 1S, —-S 1
_ T _1 IT _1Lq
CR 4 = o || Az <5} (C B~ G5 "B
p — | WHGH'GL(GAH G TW,
- (GAH1GL)W,




mp-QP: geometric algorithm

= Note that the function z*(X) is a uniquely defined affine function over the critical region CRa

= Moreover, the critical region is a polyhedral set in the x-space

Step 3: explore the rest of X (as before..)




mp-QP: properties

1. Feasible set X* 1s closed and convex
2. The optimizer function z(x) : X*>RMis
1 » Continuous
= Polyhedral piecewise affine (PPWA) over X*

« Affine in each CRi *-

s 3. The value function J*(x): X* > Ris
i = Continuous ;

3 = Convex ;
1 = polyhedral piecewise quadratic (PPWQ) (piecewise quadratic over the critical regions CRi """
: @
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