Duality and Multiparametric Programming

0

Prof. Davide M. Raimondo

Dipartimento di Ingegneria Industriale e dell'Informazione

Università degli Studi di Pavia

davide.raimondo@unipv.it

Acknowledgment: thanks to Andrea Pozzi, Diego Locatelli, Giacomo Saccani for their help with some of the slides

Duality

standard form problem (without equality constraints)

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \ i=1,\ldots,m \end{array}$

- optimal value $p^{\star},$ domain D

0

• called **primal problem** (in context of duality)

(for now) we **don't** assume convexity

Duality

Lagrangian $L : \mathbb{R}^{n+m} \to \mathbb{R}$

$$L(x,\lambda) = f_0(x) + \lambda_1 f_1(x) + \dots + \lambda_m f_m(x)$$

- λ_i called Lagrange multipliers or dual variables
- objective is *augmented* with weighted sum of constraint functions

Lagrange dual function

(Lagrange) dual function $g : \mathbb{R}^m \to \mathbb{R} \cup \{-\infty\}$

$$g(\lambda) = \inf_{x} L(x, \lambda)$$

=
$$\inf_{x} (f_0(x) + \lambda_1 f_1(x) + \dots + \lambda_m f_m(x))$$

- minimum of augmented cost as function of weights
- can be $-\infty$ for some λ

0

• g is concave (even if f_i not convex!)

Not easy to understand (we will check it for QPs and LPs)

Lagrange dual function: LP example

0

minimize $c^T x$ subject to $a_i^T x - b_i \leq 0, i = 1, \dots, m$

$$L(x,\lambda) = c^T x + \sum_{i=1}^m \lambda_i (a_i^T x - b_i)$$
$$= -b^T \lambda + (A^T \lambda + c)^T x$$

hence $g(\lambda) = \begin{cases} -b^T \lambda & \text{if } A^T \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$

Lower bound property

if $\lambda \succeq 0$ and x is primal feasible, then

 $g(\lambda) \le f_0(x)$

 $f_0(x) - g(\lambda)$ is called the **duality gap** of (primal feasible) x and $\lambda \succeq 0$

minimize over primal feasible x to get, for any $\lambda \succeq 0$,

 $g(\lambda) \le p^{\star}$

 $\lambda \in \mathbf{R}^m$ is dual feasible if $\lambda \succeq 0$ and $g(\lambda) > -\infty$

dual feasible points yield lower bounds on optimal value!

proof: if $f_i(x) \le 0$ and $\lambda_i \ge 0$, $f_0(x) \ge f_0(x) + \sum_i \lambda_i f_i(x)$ $\ge \inf_z \left(f_0(z) + \sum_i \lambda_i f_i(z) \right)$ $= g(\lambda)$

 \bigcirc

Lagrangian dual problem

- called (Lagrange) dual problem (associated with primal problem)
- always a convex problem, even if primal isn't!
- optimal value denoted d*
- we always have $d^* \leq p^*$ (called *weak duality*)
- *p*[★] − *d*[★] is optimal duality gap

Strong duality

0

for convex problems, we (usually) have *strong duality:*

$$d^{\star} = p^{\star}$$

when strong duality holds, dual optimal λ^{\star} serves as **certificate of optimality** for primal optimal point x^{\star}

Strong duality

many conditions or *constraint qualifications* guarantee strong duality for convex problems

Slater's condition: if primal problem is strictly feasible (and convex), *i.e.*, there exists $x \in \operatorname{relint} D$ with

$$f_i(x) < 0, \ i = 1, \dots, m$$

then we have $p^{\star} = d^{\star}$

 \bigcirc

Dual of linear program

(primal) LP

0

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$

• n variables, m inequality constraints

dual of LP is (after making implicit equality constraints explicit)

 $\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0 \\ & \lambda \succeq 0 \end{array}$

• dual of LP is also an LP (indeed, in std LP format)

m variables, *n* equality constraints, *m* nonnegativity contraints

for LP we have strong duality except in one (pathological) case: primal and dual *both* infeasible $(p^* = +\infty, d^* = -\infty)$

Dual of quadratic program

(primal) QP

0

 $\begin{array}{ll} \text{minimize} & x^T P x\\ \text{subject to} & Ax \preceq b \end{array}$

we assume $P \succ 0$ for simplicity

Lagrangian is $L(x, \lambda) = x^T P x + \lambda^T (Ax - b)$

 $\nabla_x L(x,\lambda)=0$ yields $x=-(1/2)P^{-1}A^T\lambda,$ hence dual function is

 $g(\lambda) = -(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$

146

- concave quadratic function
- all $\lambda \succeq 0$ are dual feasible

1415

dual of QP is maximize $-(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$ subject to $\lambda \succeq 0$... another QP

Duality in algorithms

many algorithms produce at iteration \boldsymbol{k}

- a primal feasible $x^{(k)}$
- and a dual feasible $\lambda^{(k)}$

with $f_0(x^{(k)}) - g(\lambda^{(k)}) \to 0$ as $k \to \infty$

hence at iteration k we **know** $p^* \in [g(\lambda^{(k)}), f_0(x^{(k)})]$

- useful for stopping criteria
- algorithms that use dual solution are often more efficient (*e.g.*, LP)

0

Stopping criteria

absolute error =
$$f_0(x^{(k)}) - p^* \le \epsilon$$

stopping criterion:

0

until
$$\left(f_0(x^{(k)}) - g(\lambda^{(k)}) \le \epsilon\right)$$

relative error
$$= \frac{f_0(x^{(k)}) - p^{\star}}{|p^{\star}|} \le \epsilon$$

stopping criterion:

until
$$\left(g(\lambda^{(k)}) > 0 \& \frac{f_0(x^{(k)}) - g(\lambda^{(k)})}{g(\lambda^{(k)})} \le \epsilon\right)$$

or $\left(f_0(x^{(k)}) < 0 \& \frac{f_0(x^{(k)}) - g(\lambda^{(k)})}{-f_0(x^{(k)})} \le \epsilon\right)$

achieve **target value** ℓ or, prove ℓ is unachievable (*i.e.*, determine either $p^* \leq \ell$ or $p^* > \ell$)

stopping criterion:

until
$$\left(f_0(x^{(k)}) \le \ell \text{ or } g(\lambda^{(k)}) > \ell\right)$$

Complementary slackness condition

suppose x^* , λ^* are primal, dual feasible with zero duality gap (hence, they are primal, dual optimal)

0

$$f_0(x^*) = g(\lambda^*)$$

= $\inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) \right)$
 $\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*)$

hence we have $\sum_{i=1}^m \lambda_i^\star f_i(x^\star) = 0$, and so

$$\lambda_i^{\star} f_i(x^{\star}) = 0, \quad i = 1, \dots, m$$

- *i*th constraint inactive at optimum $\Longrightarrow \lambda_i = 0$
- $\lambda_i^{\star} > 0$ at optimum $\implies i$ th constraint active at optimum

KKT optimality conditions

suppose

0

- f_i are differentiable
- $x^{\star},\,\lambda^{\star}$ are (primal, dual) optimal, with zero duality gap

by complementary slackness we have

$$f_0(x^\star) + \sum_i \lambda_i^\star f_i(x^\star) = \inf_x \left(f_0(x) + \sum_i \lambda_i^\star f_i(x) \right) \quad \Longrightarrow \quad \nabla f_0(x^\star) + \sum_i \lambda_i^\star \nabla f_i(x^\star) = 0$$

i.e., x^{\star} minimizes $L(x, \lambda^{\star})$

KKT optimality conditions

if x^* , λ^* are (primal, dual) optimal, with zero duality gap, they satisfy

 $f_i(x^*) \le 0$ $\lambda_i^* \ge 0$ $\lambda_i^* f_i(x^*) = 0$ $\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) = 0$

0

the Karush-Kuhn-Tucker (KKT) optimality conditions

conversely, if the problem is convex and x^* , λ^* satisfy KKT, then they are (primal, dual) optimal

Equality constraints

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \ i=1,\ldots,m \\ & h_i(x)=0, \ i=1,\ldots,p \end{array}$

- optimal value p^{\star}

0

• again assume (for now) not necessarily convex

define Lagrangian $L: \mathbb{R}^{n+m+p} \to \mathbb{R}$ as

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

dual function is $g(\lambda, \nu) = \inf_x L(x, \lambda, \nu)$ (λ, ν) is dual feasible if $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$ (no sign condition on ν)

Dual of LP in standard form

• Lagrangian

$$L(x,\lambda,\nu) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}x + \nu^{\mathsf{T}}(b - Ax)$$

$$g(\lambda,\nu) = \min_{x} L(x,\lambda,\nu) = \min_{x} (c^{\mathsf{T}} - \lambda^{\mathsf{T}} - \nu^{\mathsf{T}}A)x + \nu^{\mathsf{T}}b = \min_{x} (c - \lambda - A^{\mathsf{T}}\nu)^{\mathsf{T}}x + b^{\mathsf{T}}\nu$$

$$\mathsf{Resulting dual LP} \qquad \max_{\lambda,\nu} b^{\mathsf{T}}\nu \\ subj. \ to \quad A^{\mathsf{T}}\nu + \lambda = c \\ \lambda \ge 0 \end{cases}$$

Properties

lower bound property: if x is primal feasible and (λ, ν) is dual feasible, then $g(\lambda, \nu) \leq f_0(x)$, hence

 $g(\lambda,\nu) \leq p^\star$

dual problem: find best lower bound

0

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$

(note ν unconstrained), optimal value d^{\star}

weak duality: $d^{\star} \leq p^{\star}$ always

strong duality: if primal is convex then (usually) $d^* = p^*$

Slater condition: if primal is convex (*i.e.*, f_i convex, h_i affine) and strictly feasible, *i.e.*, there exists $x \in$ **relint** D s.t.

 $f_i(x) < 0, \quad h_i(x) = 0,$

then $d^{\star} = p^{\star}$

KKT optimality conditions with equality constraints

assume f_i , h_i differentiable

0

if x^* , λ^* , ν^* are optimal, with zero duality gap, then they satisfy KKT conditions

 $f_i(x^*) \le 0, \ h_i(x^*) = 0$ $\lambda_i^* \ge 0$ $\lambda_i^* f_i(x^*) = 0$ $\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0$

conversely, if they satisfy KKT and the problem is convex, then x^* , λ^* , ν^* are optimal

KKT of LP in standard form

Ax = b $x \ge 0$ $A^{\top}\nu + \lambda = c$ $\lambda \ge 0$ $x^{\top}\lambda = 0$

0

 $\lambda = \nu$ $s = \lambda$

change of notation (the second one is used in some scripts) Ax = b $x \ge 0$ $A^{\top}\lambda + s = c$ $s \ge 0$ $x^{\top}s = 0$

Duality problem: example

Consider the following LP

0

 $\max 5x_1 + 12x_2 + 4x_3$ $x_1 + 2x_2 + x_3 \le 10$ $2x_1 - x_2 + 3x_3 = 8$ $x_1, x_2, x_3 \ge 0$

Find the dual problem (first rewrite the primal LP in standard form)

Parametric programming

- General formulation

0

$$f^*(x) = \inf_z f(z, x)$$
$$g(z, x) \le 0$$

- $z \in Z \subseteq R^m$ is the vector of optimization variables
- $x \in X \subseteq \mathbb{R}^n$ is the vector of parameters (i.e. initial state conditions)
 - When $x \in \mathbb{R}^n$ with n > l, then we talk about multi-parametric programming

• **Parametric program:** solution for the full range of parameters **x**

We consider

- 1. Multi-<u>parametric LPs</u> (mp-LPs)
- 2. Multi-parametric QPs (mp-QPs)

Multiparametric LP (mp-LP)

Formulation: given $c \in \mathbb{R}^m$, $G \in \mathbb{R}^{q \times m}$, $S \in \mathbb{R}^{q \times n}$, $W \in \mathbb{R}^q$

Primal problem

0

$$J^*(x) = \min_{z} \quad J(z, x) = c^T z,$$

subj. to $Gz \le W + Sx$

KKT Conditions • $Gz - Sx - W \le 0$ • $\pi \le 0$ • $(Gz - Sx - W)^{T}\pi = 0$

• $G^{\mathsf{T}}\pi = c$

Dual problem

 $\label{eq:general} \begin{array}{ll} \max_{\pi} & (W+Sx)^T\pi,\\ \text{subj. to} & G^T\pi=c,\\ & \pi\leq 0 \end{array}$

Multiparametric LP (mp-LP)

Feasible set: $X^* \subseteq X$ is the set of all points for which exist a solution to the primal (P.P.) and the dual problem (D.P.).

Denoting with $I = \{1, ..., q\}$ the constraint index set, define

- Set of Active constraints $\mathcal{A}(x) = \{i \in \mathcal{I} \mid \forall z : J(z, x) = J^*(x) \Rightarrow G_i z S_i x W_i = 0\}$
- Set of Inactive constraints $\mathcal{N}(x) = \{i \in \mathcal{I} \mid \exists z : J(z, x) = J^*(x) \land G_i z S_i x W_i < 0\}$
- Critical region for a given set $\mathcal{A}^* \subseteq \mathcal{I}$

$$\mathcal{CR}_{\mathcal{A}^*} = \{ x \in \mathcal{X} \mid \mathcal{A}(x) = \mathcal{A}^* \}$$

- exploration of the parameter space X using geometric methods
- requires an LP solver

0

Step 1: solve an LP: for an initial parameter vector $x_0 \in \mathcal{X}$:

1. Solve P.P. & D.P. $\Rightarrow z^*(x_0)$ and $\pi^*(x_0)$

2. Obtain $\mathcal{A}_0 = \mathcal{A}(x_0)$ and $\mathcal{N}_0 = \mathcal{N}(x_0)$ and matrices $\{G_{\mathcal{A}_0}, S_{\mathcal{A}_0}, W_{\mathcal{A}_0}\} = \{G_i, S_i, W_i \mid i \in \mathcal{A}(x_0)\}$ $\{G_{\mathcal{N}_0}, S_{\mathcal{N}_0}, W_{\mathcal{N}_0}\} = \{G_i, S_i, W_i \mid i \in \mathcal{N}(x_0)\}$

- exploration of the parameter space X using geometric methods
- requires an LP solver

Step 2: determine : CR_{A_0} , $z_0^*(x)$ and $J_0^*(x)$

1. From the primal feasibility conditions

$$G_{\mathcal{A}_0} z_0^*(x) = W_{\mathcal{A}_0} + S_{\mathcal{A}_0} x$$

$$G_{\mathcal{N}_0} z_0^*(x) < W_{\mathcal{N}_0} + S_{\mathcal{N}_0} x$$

2. Compute optimizer (as a function of x)

$$z_0^*(x) = G_{\mathcal{A}_0}^{-1} S_{\mathcal{A}_0} x + G_{\mathcal{A}_0}^{-1} W_{\mathcal{A}_0} = F_0 x + g_0$$

3. Critical region

$$\mathcal{CR}_{\mathcal{A}_0} = \left\{ x \mid (G_{\mathcal{N}_0}F_0 - S_{\mathcal{N}_0})x < W_{\mathcal{N}_0} - G_{\mathcal{N}_0}g_0 \right\}$$

4. Compute the optimal value function using the D.P. (strong duality holds)

$$J_0^*(x) = (S_{\mathcal{A}_0}x + W_{\mathcal{A}_0})^T \pi_{\mathcal{A}_0}^*$$

- Critical region $C\mathcal{R}_{\mathcal{A}_0}$ ($C\mathcal{R}_0$ from now on) is defined by strict inequalities \rightarrow an open polyhedral set • $\mathcal{A} = \mathcal{A}(x)$ uniquely determines $C\mathcal{R}_{\mathcal{A}} \rightarrow$ the regions do not overlap!
- the optimizer $z^*(x)$ is affine over \mathcal{CR}_0

Step 3: explore the rest of X

 (\bigcirc)

- Replace CR_0 by its closure $C\overline{R}_0$
- For $x \in \mathcal{X} \setminus C\mathcal{R}_0$ find optimality conditions and corresponding critical regions covering the entire feasible set X^*
- Different exploration strategies

lst approach: reversing inequalities

 \bigcirc

- Note: regions *Ri* are not critical regions
- Proceed recursively: repeat the whole procedure for each Ri
- The entire set X is explored in finite number of iterations
- Problem: critical regions can be artificially divided among different Ri

 $\mathcal{CR}_{0} = \{x \in \mathcal{X} \mid Hx \leq K\}$ $\mathcal{R}_{i} = \{x \in \mathcal{X} \mid H_{i}x \geq K_{i} \land H_{j}x \leq K_{j}, \forall j < i\}$ $\mathcal{X} \setminus \mathcal{CR}_{0} = \bigcup_{i} \mathcal{R}_{i}$

2nd approach: crossing the facets

- For each of the facets of CR_0 a point outside the region but close to the facet is selected and the procedure is repeated
- Critical regions are computed "in one piece", no artificial splitting
- No formal proof that whole X is covered
 - In practice usually outperforms the strategy based on reversing inequalities

mp-LP: properties

1. Feasible set X^* is closed and convex

- 2. If the optimal solution z^* is unique for all x in X^{*}, the optimizer function $z(x) : X^* \rightarrow R^m$ is
 - Continuous

0

- Polyhedral piecewise affine (PPWA) over X*
- Affine in each CRi

If the solution is not unique, it is always possible to choose a continuous and PPWA optimizer function $z^*(x)$

- 3. The value function $J^*(x): X^* \rightarrow R$ is
 - Convex
 - PPWA over X*, affine in each CRi

mp-QP

Formulation: multi-parametric quadratic programs of the form (Assume H>0)

$$J^*(x) = \min_{z} \left\{ J(z, x) = \frac{1}{2} z^T H z \right\}$$

subj. to $Gz \le W + Sx$

where $z \in \mathcal{Z} \subseteq \mathbb{R}^m$, and $x \in \mathcal{X} \subseteq \mathbb{R}^n$, $G \in \mathbb{R}^{q \times m}$.

KKT Conditions

 \bigcirc

$$Hz^* + G^T \lambda^* = 0,$$

$$\lambda_i^* (G_i z^* - S_i x - W_i) = 0, \quad i = 1, \dots, q$$

$$|\lambda^* \ge 0,$$

$$Gz^* \le W + Sx$$

mp-QP: geometric algorithm

exploration of the parameter space X using geometric methods
requires an QP solver

Step 1: solve an QP: for an initial parameter vector $x_0 \in \mathcal{X}$:

0

- 1. Solve P.P. & D.P. $\Rightarrow z^*(x_0)$ and $\lambda^*(x_0)$
- 2. Obtain $\mathcal{A}_0 = \mathcal{A}(x_0)$ and $\mathcal{N}_0 = \mathcal{N}(x_0)$ and matrices

 $\{G_{\mathcal{A}_{0}}, S_{\mathcal{A}_{0}}, W_{\mathcal{A}_{0}}\} = \{G_{i}, S_{i}, W_{i} \mid i \in \mathcal{A}(x_{0})\}$ $\{G_{\mathcal{N}_{0}}, S_{\mathcal{N}_{0}}, W_{\mathcal{N}_{0}}\} = \{G_{i}, S_{i}, W_{i} \mid i \in \mathcal{N}(x_{0})\}$

mp-QP: geometric algorithm

- exploration of the parameter space X using geometric methods
- requires an QP solver

 \bigcirc

Step 2: determine : CR_{A_0} , $z_0^*(x)$ and $J_0^*(x)$

1. From the primal feasibility conditions

2. Since $z^* = -H^{-1}G^T\lambda^*$ and $\lambda^*_{\mathcal{A}}(x) = -(G_{\mathcal{A}}H^{-1}G^T_{\mathcal{A}})^{-1}(W_{\mathcal{A}} + S_{\mathcal{A}}x)$ the optimizer function is $z^*(x) = H^{-1}G^T_{\mathcal{A}}(G_{\mathcal{A}}H^{-1}G^T_{\mathcal{A}})^{-1}(W_{\mathcal{A}} + S_{\mathcal{A}}x)$

3. Critical region

$$\mathcal{CR}_{\mathcal{A}} = \{x \mid Ax \le b\} \qquad \begin{array}{c} A = \begin{bmatrix} GH^{-1}G_{\mathcal{A}}^{T}(G_{\mathcal{A}}H^{-1}G_{\mathcal{A}}^{T})^{-1}S_{\mathcal{A}} - S \\ (G_{\mathcal{A}}H^{-1}G_{\mathcal{A}}^{T})^{-1}S_{\mathcal{A}} \end{bmatrix} \\ b = \begin{bmatrix} W + GH^{-1}G_{\mathcal{A}}^{T}(G_{\mathcal{A}}H^{-1}G_{\mathcal{A}}^{T})^{-1}W_{\mathcal{A}} \\ (G_{\mathcal{A}}H^{-1}G_{\mathcal{A}}^{T})^{-1}W_{\mathcal{A}} \end{bmatrix} \end{array}$$

 $G_{\mathcal{A}_0} z_0^*(x) = W_{\mathcal{A}_0} + S_{\mathcal{A}_0} x$

mp-QP: geometric algorithm

- Note that the function $z^*(x)$ is a **uniquely defined affine function** over the critical region CRA
- Moreover, the critical region is a **polyhedral set** in the x-space

Step 3: explore the rest of X (as before..)

mp-QP: properties

1. Feasible set X* is closed and convex

- 2. The optimizer function $z(x) : X^* \rightarrow R^m$ is
 - Continuous

- Polyhedral piecewise affine (PPWA) over X*
- Affine in each CRi
- 3. The value function $J^*(x): X^* \rightarrow R$ is
 - Continuous
 - Convex
 - polyhedral piecewise quadratic (PPWQ) (piecewise quadratic over the critical regions CRi