Introduction to optimization

G. Ferrari Trecate

Dipartimento di Ingegneria Industriale e dell'Informazione Università degli Studi di Pavia

Industrial Automation

- N

- 一司

Optimization is also known as mathematical programming

- *Programming* means planning or building an action plan for solving a problem or tacking a decision
- Optimization falls in the fields of operations research and management science.

Basic problem

$$\min_{\substack{g_i(x) \le 0\\i=1,2,\ldots,m}} f(x)$$

• Variables:
$$x = [x_1, \dots, x_n]^{\mathrm{T}}$$

- Constraints: $g_i : \mathbb{R}^n \to \mathbb{R}, i = 1, 2, \dots, m$.
- Feasible region

$$X = \{x \in \mathbb{R}^n : g_1(x) \le 0, \cdots, g_m(x) \le 0\}$$

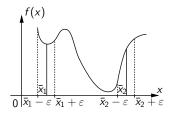
- Feasible solution or feasible point: $x \in X$
- Objective function (or cost): $f: X \to \mathbb{R}$

A (1) > A (2) > A

Basic problem

$$\min_{\substack{g_i(x) \leq 0 \\ i=1,2,\ldots,m}} f(x)$$

- $x^* \in X$ is an *optimal solution* (global minimum point) if $f(x^*) \leq f(x), \ \forall x \in X$
- $\bar{x} \in X$ is a local optimal solution (local minimum point) if $\exists \epsilon > 0 : \forall x \in X, \ ||x - \bar{x}|| < \epsilon \Rightarrow f(\bar{x}) \le f(x)$



< 一型

Basic problem

$$\min_{\substack{g_i(x) \le 0 \\ i=1,2,\ldots,m}} f(x)$$

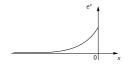
The basic problem can be:

- infeasible (if $X = \emptyset$)
- unbounded (if $\forall k < 0 \exists x \in X : f(x) < k$).

even if the basic problem is feasible and bounded, optimal solutions could

• not exist; e.g.

$$\min_{x\leq 0} e^x \quad x\in \mathbb{R}$$



• exist and be not unique (e.g. f costant)

Basic problem

$$\min_{\substack{g_i(x) \leq 0 \\ i=1,2,\ldots,m}} f(x)$$

No easy way to solve the basic problem in its full generality !

- Need of numerical algorithms
- Often, only local optimal solutions can be computed

Maximum problems

$$\max_{\substack{g_i(x) \leq 0 \\ i=1,2,\ldots,m}} f(x)$$

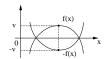
- the problem is unbounded if $\forall k > 0 \exists x \in X : f(x) > k$.
- $x^* \in X$ is an *optimal solution* (global maximum point) if $f(x^*) \ge f(x), \ \forall x \in X$
- $\bar{x} \in X$ is a local optimal solution (local maximum point) if $\exists \epsilon > 0 : \forall x \in X, \ ||x - \bar{x}|| < \epsilon \Rightarrow f(\bar{x}) \ge f(x)$

(4 個) トイヨト イヨト

Conversions in the basic problem form

• Conversions maximum/minumum

$$\max_{x\in X} f(x) = -\min_{x\in X} -f(x)$$

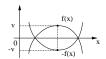


Optimal solutions are the same for both problems

Conversions in the basic problem form

• Conversions maximum/minumum

$$\max_{x\in X} f(x) = -\min_{x\in X} -f(x)$$



Optimal solutions are the same for both problems

 \bullet Conversion form " \geq " to " \leq " in the constraints

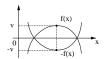
$${x \in \mathbb{R}^n : g(x) \ge 0} = {x \in \mathbb{R}^n : -g(x) \le 0};$$

The feasible region does not change

Conversions in the basic problem form

• Conversions maximum/minumum

$$\max_{x\in X} f(x) = -\min_{x\in X} -f(x)$$



Optimal solutions are the same for both problems

 \bullet Conversion form " \geq " to " \leq " in the constraints

$${x \in \mathbb{R}^n : g(x) \ge 0} = {x \in \mathbb{R}^n : -g(x) \le 0};$$

The feasible region does not change

• Conversion from "=" to inequalities in the constraints

$${x \in \mathbb{R}^n : g(x) = 0} = {x \in \mathbb{R}^n : g(x) \le 0, g(x) \ge 0};$$

An equality constraint is replaced by two inequality constraints

Classes of optimization problems

Basic problem

$$\min_{\substack{g_i(x) \leq 0 \\ i=1,2,...,m}} f(x)$$

- f is quadratic if $f(x) = x^{T}Qx + c^{T}x$ (Q matrix, c vector)
- f is linear if $f(x) = c^{\mathrm{T}}x$
- f is affine if $f(x) = c^{\mathrm{T}}x + b$ (b constant)

3

- 4 同 6 4 日 6 4 日 6

Classes of optimization problems

Basic problem

$$\min_{\substack{g_i(x) \leq 0 \\ i=1,2,\ldots,m}} f(x)$$

- f is quadratic if $f(x) = x^{T}Qx + c^{T}x$ (Q matrix, c vector)
- f is linear if $f(x) = c^{\mathrm{T}}x$
- f is affine if $f(x) = c^{\mathrm{T}}x + b$ (b constant)

Notable problems for which efficient algorithms exist

- f is convex and g_i are convex \Rightarrow convex programming
- if f is quadratic and g_i are affine \Rightarrow quadratic programming
- if f is linear and g_i are affine \Rightarrow *linear* programming

If the variables must also verify $x \in \mathbb{Z}^n$ we have an *integer* programming problem (mixed-integer programming problem if only a subset of variables is constrained to integer values)

Ferrari Trecate (DIS)

Convex programming

Definition

Given two points $x, y \in \mathbb{R}^n$, the set

$$\overline{xy} = \{\lambda x + (1-\lambda)y : \lambda \in [0,1]\}$$

is a *segment* joining x and y.

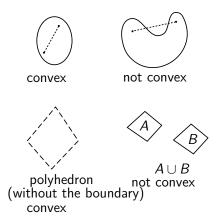
Definition

The set $X \subseteq \mathbb{R}^n$ is *convex* if $\forall x, y \in X$ one has $\overline{xy} \in X$.

Ferrari	Trecate	(DIS)

э

Examples



Convexity and intersection

Proposition (try to prove it at home !)

The intersection of two convex sets is a convex set

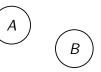
It follows that the empty set is convex

Convexity and intersection

Proposition (try to prove it at home !)

The intersection of two convex sets is a convex set

It follows that the empty set is convex



 $A \cap B = \emptyset$ convex

 $A \cup B$ not convex $A \cap B$ convex

B

Α

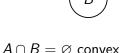
Convexity and intersection

Proposition (try to prove it at home !)

The intersection of two convex sets is a convex set

It follows that the empty set is convex

 $A \cap B$ convex



 $A \cup B$ not convex $A \cap B$ convex

The union of two convex sets is not convex, in general

Ferrari Trecate (DIS)

Optimization

Industrial Automation 9 / 17

Convex functions

Definition

A function $f: X \to \mathbb{R}$ on a convex set $X \subseteq \mathbb{R}^n$ is convex if $\forall x, y \in X$ and $\forall \lambda \in [0, 1]$ one has

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

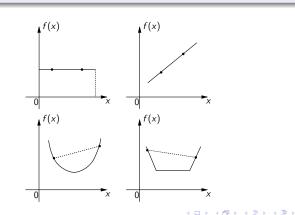
3

(日) (周) (三) (三)

Convex functions

Definition

A function $f: X \to \mathbb{R}$ on a convex set $X \subseteq \mathbb{R}^n$ is convex if $\forall x, y \in X$ and $\forall \lambda \in [0, 1]$ one has



$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$$

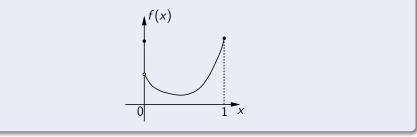
Ferrari Trecate (DIS)

3

Convexity and smoothness

Convexity and continuity

A convex function $f : X \to \mathbb{R}, X \subseteq \mathbb{R}^n$ is continuous in the interior of X.



3

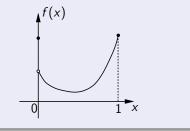
- N

< 🗗 🕨

Convexity and smoothness

Convexity and continuity

A convex function $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^n$ is continuous in the interior of X.



Theorem - convexity test for smooth functions

Let $X \subseteq \mathbb{R}^n$ be open and convex and let $f : X \to \mathbb{R}$ be a \mathcal{C}^2 function. Then, f is convex only if the Hessian matrix H(x) is positive semidefinite $\forall x \in X$. In particular, if $X \subseteq \mathbb{R}$ and $f \in \mathcal{C}^2$, then f is convex only if $\frac{d^2f(x)}{dx^2} \ge 0$, $\forall x \in X$.

Theorem

Let $g : \mathbb{R}^n \to \mathbb{R}$ be a convex function and take $c \in \mathbb{R}$. Then, the level set $X_c = \{x \in \mathbb{R}^n : g(x) \le c\}$ is convex.

Theorem

Let $g : \mathbb{R}^n \to \mathbb{R}$ be a convex function and take $c \in \mathbb{R}$. Then, the level set $X_c = \{x \in \mathbb{R}^n : g(x) \le c\}$ is convex.

Proof. Pick $x, y \in X_c$ and $\lambda \in [0, 1]$ and consider $z = \lambda x + (1 - \lambda)y$: we have to show that $z \in X_c$. From the convexity of g one has that $g(z) \le \lambda g(x) + (1 - \lambda)g(y)$. Since $x, y \in X_c$ one has

$$g(z) \leq \lambda g(x) + (1-\lambda)g(y) \leq \lambda c + (1-\lambda)c = c$$

that implies $z \in X_c$.

Key corollary

Consider the optimization problem

$$\min_{\substack{g_i(x) \leq 0 \\ =1,2,\ldots,m}} f(x)$$

If functions $g_i(x)$, i = 1, 2, ..., m are convex, then the feasibile region is convex.

Key corollary

Consider the optimization problem

$$\min_{\substack{g_i(x) \leq 0 \\ =1,2,\ldots,m}} f(x)$$

If functions $g_i(x)$, i = 1, 2, ..., m are convex, then the feasibile region is convex.

Proof. The proof follows from the previous theorem and the fact that convexity is preserved by intersection.

In convex programming, the feasible region is convex

Fundamental theorem of convex programming

Theorem

If $\tilde{x} \in X$ is a *local optimal solution* for the convex programming problem

$$\{\min f(x) : g_i(x) \le 0, i = 1, 2, \dots, m\}$$

then \tilde{x} is an optimal solution.

Remarks

Often one tries to transform a programming problem into a convex programming problem by performing suitable changes of variables

Fundamental theorem of convex programming

Remarks

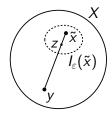
The optimization problem $\{\max f(x) : g_i(x) \le 0, i = 1, 2, ..., m\}$ is not a convex programming problem even if f and g_i , i = 1, 2, ..., m are convex. Indeed, it is equivalent to $\{-\min - f(x) : g_i(x) \le 0, i = 1, 2, ..., m\}$ where the function -f(x) is concave.

Notable exception: f(x) linear.

Proof of the theorem

The goal is to show $f(\tilde{x}) \leq f(y) \ \forall y \in X$. Fix $y \in X$, $y \neq \tilde{x}$ and let $I_{\epsilon}(\tilde{x})$ be a neighborhood of \tilde{x} such that $z \in I_{\epsilon}(\tilde{x}) \Rightarrow f(\tilde{x}) \leq f(z)$. Pick $z \in X$ such that $z \in \tilde{x}y$, $z \in I_{\epsilon}(\tilde{x})$ and $z \neq \tilde{x}$. Such a z exists because

$$z = \lambda \tilde{x} + (1 - \lambda)y$$



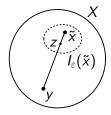
and

- choosing λ sufficiently close to 1 guarantees $z \in I_{\epsilon}(ilde{x})$
- choosing $\lambda \neq 1$ guarantees $z \neq \tilde{x}$

Proof of the theorem

Then,

$$f(\tilde{x}) \underbrace{\leq}_{\substack{\text{local optimizer} \\ \leq \\ f \text{ convex}}} f(z) = f(\lambda \tilde{x} + (1 - \lambda)y) \leq$$



From the last inequality one has

$$(1-\lambda)f(\tilde{x}) \leq (1-\lambda)f(y) \underset{\lambda \neq 1}{\Rightarrow} f(\tilde{x}) \leq f(y)$$

- < A