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Optimization

Optimization is also known as mathematical programming

Programming means planning or building an action plan for solving a
problem or tacking a decision

Optimization falls in the fields of operations research and
management science.
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Optimization

Basic problem

min
gi (x)≤0

i=1,2,...,m

f (x)

Variables: x = [x1, . . . , xn]T

Constraints: gi : Rn → R, i = 1, 2, . . . ,m.

Feasible region

X = {x ∈ Rn : g1(x) ≤ 0, · · · , gm(x) ≤ 0}

Feasible solution or feasible point: x ∈ X

Objective function (or cost): f : X → R
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Optimization

Basic problem

min
gi (x)≤0

i=1,2,...,m

f (x)

x∗ ∈ X is an optimal solution (global minimum point) if
f (x∗) ≤ f (x), ∀x ∈ X

x̄ ∈ X is a local optimal solution (local minimum point) if
∃ε > 0 : ∀x ∈ X , ‖x − x̄‖ < ε⇒ f (x̄) ≤ f (x)

f (x)

0
x

x̄1 − ε x̄1 + ε
x̄1

x̄2 + εx̄2 − ε
x̄2
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Optimization

Basic problem

min
gi (x)≤0

i=1,2,...,m

f (x)

The basic problem can be:

infeasible (if X = ∅)

unbounded (if ∀k < 0 ∃x ∈ X : f (x) < k).

even if the basic problem is feasible and bounded, optimal solutions could

not exist; e.g.

min
x≤0

ex x ∈ R
ex

0 x

exist and be not unique (e.g. f costant)
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Optimization

Basic problem

min
gi (x)≤0

i=1,2,...,m

f (x)

No easy way to solve the basic problem in its full generality !

Need of numerical algorithms

Often, only local optimal solutions can be computed
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Optimization

Maximum problems

max
gi (x)≤0

i=1,2,...,m

f (x)

the problem is unbounded if ∀k > 0 ∃x ∈ X : f (x) > k .

x∗ ∈ X is an optimal solution (global maximum point) if
f (x∗) ≥ f (x), ∀x ∈ X

x̄ ∈ X is a local optimal solution (local maximum point) if
∃ε > 0 : ∀x ∈ X , ‖x − x̄‖ < ε⇒ f (x̄) ≥ f (x)
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Conversions in the basic problem form

Conversions maximum/minumum

max
x∈X

f (x) = −min
x∈X
−f (x)

0 x

v

-v

f(x)

-f(x)

Optimal solutions are the same for both problems

Conversion form “≥” to “≤” in the constraints

{x ∈ Rn : g(x) ≥ 0} = {x ∈ Rn : −g(x) ≤ 0};

The feasible region does not change

Conversion from “=” to inequalities in the constraints

{x ∈ Rn : g(x) = 0} = {x ∈ Rn : g(x) ≤ 0, g(x) ≥ 0};

An equality constraint is replaced by two inequality constraints
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Classes of optimization problems

Basic problem

min
gi (x)≤0

i=1,2,...,m

f (x)

f is quadratic if f (x) = xTQx + cTx (Q matrix, c vector)

f is linear if f (x) = cTx

f is affine if f (x) = cTx + b (b constant)

Notable problems for which efficient algorithms exist

f is convex and gi are convex ⇒ convex programming

if f is quadratic and gi are affine ⇒ quadratic programming

if f is linear and gi are affine ⇒ linear programming

If the variables must also verify x ∈ Zn we have an integer programming
problem (mixed-integer programming problem if only a subset of variables
is constrained to integer values)
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Convex programming

Definition

Given two points x , y ∈ Rn, the set

xy = {λx + (1− λ)y : λ ∈ [0, 1]}

is a segment joining x and y .

0 x1

x2

x

y

xy

Definition

The set X ⊆ Rnis convex if ∀x , y ∈ X one has xy ∈ X .
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Examples

convex not convex

polyhedron
(without the boundary)

convex

A
B

A ∪ B
not convex

Rn is convex
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Convexity and intersection

Proposition (try to prove it at home !)

The intersection of two convex sets is a convex set

It follows that the empty set is convex

A

B

A ∪ B not convex
A ∩ B convex

B

A

A ∩ B convex

A

B

A ∩ B = ∅ convex

The union of two convex sets is not convex, in general
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Convex functions

Definition

A function f : X → R on a convex set X ⊆ Rn is convex if ∀x , y ∈ X and
∀λ ∈ [0, 1] one has

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

0 x

f (x)

0 x

f (x)

0 x

f (x)

0 x

f (x)
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Convexity and smoothness

Convexity and continuity

A convex function f : X → R,X ⊆ Rn is continuous in the interior of X .

0 x

f (x)

1

Theorem - convexity test for smooth functions

Let X ⊆ Rn be open and convex and let f : X → R be a C2 function.
Then, f is convex only if the Hessian matrix H(x) is positive semidefinite
∀x ∈ X . In particular, if X ⊆ R and f ∈ C2, then f is convex only if
d2f (x)
dx2 ≥ 0, ∀x ∈ X .
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Convex functions and sets

Theorem

Let g : Rn → R be a convex function and take c ∈ R. Then, the level set
Xc = {x ∈ Rn : g(x) ≤ c} is convex.

0 x

g(x)

c

Xc

Proof. Pick x , y ∈ Xc and λ ∈ [0, 1] and consider z = λx + (1− λ)y : we
have to show that z ∈ Xc .
From the convexity of g one has that g(z) ≤ λg(x) + (1− λ)g(y). Since
x , y ∈ Xc one has

g(z) ≤ λg(x) + (1− λ)g(y) ≤ λc + (1− λ)c = c

that implies z ∈ Xc .
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Convex functions and sets

Key corollary

Consider the optimization problem

min
gi (x)≤0

i=1,2,...,m

f (x)

If functions gi (x), i = 1, 2, . . . ,m are convex, then the feasibile region is
convex.

Proof. The proof follows from the previous theorem and the fact that
convexity is preserved by intersection.

In convex programming, the feasible region is convex
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Fundamental theorem of convex programming

Theorem

If x̃ ∈ X is a local optimal solution for the convex programming problem

{min f (x) : gi (x) ≤ 0, i = 1, 2, . . . ,m}

then x̃ is an optimal solution.

Remarks

Often one tries to transform a programming problem into a convex
programming problem by performing suitable changes of variables
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Fundamental theorem of convex programming

Remarks

The optimization problem {max f (x) : gi (x) ≤ 0, i = 1, 2, . . . ,m} is not a
convex programming problem even if f and gi , i = 1, 2, . . . ,m are convex.
Indeed, it is equivalent to {−min−f (x) : gi (x) ≤ 0, i = 1, 2, . . . ,m}
where the function −f (x) is concave.

Notable exception: f (x) linear.
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Proof of the theorem

The goal is to show f (x̃) ≤ f (y) ∀y ∈ X .
Fix y ∈ X , y 6= x̃ and let Iε(x̃) be a neighborhood
of x̃ such that z ∈ Iε(x̃)⇒ f (x̃) ≤ f (z). Pick
z ∈ X such that z ∈ x̃y , z ∈ Iε(x̃) and z 6= x̃ .
Such a z exists because

z = λx̃ + (1− λ)y

X

x̃

Iε(x̃)
z

y

and

choosing λ sufficiently close to 1 guarantees z ∈ Iε(x̃)

choosing λ 6= 1 guarantees z 6= x̃
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Proof of the theorem

Then,

f (x̃) ≤︸︷︷︸
local optimizer

f (z) = f (λx̃ + (1− λ)y) ≤

≤︸︷︷︸
f convex

λf (x̃) + (1− λ)f (y)

X

x̃

Iε(x̃)
z

y

From the last inequality one has

(1− λ)f (x̃) ≤ (1− λ)f (y) ⇒︸︷︷︸
λ 6= 1

f (x̃) ≤ f (y)
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