Properties of linear programming

Dipartimento di Ingegneria Industriale e dell'Informazione
Università degli Studi di Pavia

Industrial Automation

Outline

(1) Representations of LP problems
(2) LP: properties of the feasible region

- Basics of convex geometry
(3) The graphical solution for two-variable LP problems

4 Properties of linear programming
(5) Algorithms for solving LP problems

Outline

(1) Representations of LP problems

(2) LP: properties of the feasible region

- Basics of convex geometry
(3) The graphical solution for two-variable LP problems

4 Properties of linear programming
(5) Algorithms for solving LP problems

Representations of LP problems

LP in canonical form (LP-C)

$$
\min _{\substack{A x \leq b \\ x \geq 0}} c^{\mathrm{T}} x
$$

Inequality " \leq " constraints. Positivity constraints on all variables.

Representations of LP problems

LP in canonical form (LP-C)

$$
\min _{\substack{A x \leq b \\ x \geq 0}} c^{\mathrm{T}} x
$$

Inequality " \leq " constraints. Positivity constraints on all variables.
LP in standard form (LP-S)

$$
\min _{\substack{A x=b \\ x \geq 0}} c^{\mathrm{T}} x
$$

Equality constraints. Positivity constraints on all variables.

Representations of LP problems

LP in canonical form (LP-C)

$$
\min _{\substack{A x \leq b \\ x \geq 0}} c^{\mathrm{T}} x
$$

Inequality " \leq " constraints. Positivity constraints on all variables.
LP in standard form (LP-S)

$$
\min _{\substack{A x=b \\ x \geq 0}} c^{\mathrm{T}} x
$$

Equality constraints. Positivity constraints on all variables.
LP in generic form
Mixed constraints \leq, \geq, = and/or some variable is not constrained to be positive.

Representations of LP problems

LP in canonical form (LP-C)

$$
\min _{\substack{A x \leq b \\ x \geq 0}} c^{\mathrm{T}} x
$$

Inequality " \leq " constraints. Positivity constraints on all variables.
LP in standard form (LP-S)

$$
\min _{\substack{A x=b \\ x \geq 0}} c^{\mathrm{T}} x
$$

Equality constraints. Positivity constraints on all variables.
LP in generic form
Mixed constraints $\leq, \geq,=$ and/or some variable is not constrained to be positive.
The three forms are equivalent even if the conversion from one form to another one is possible only changing the number of variables and/or constraints.

Conversion between constraints

From \leq to $=$

$$
a_{i}^{\mathrm{T}} x \leq b_{i} \Leftrightarrow \exists s_{i} \in \mathbb{R}:\left\{\begin{array}{l}
a_{i}^{\mathrm{T}} x+s_{i}=b_{i} \\
s_{i} \geq 0
\end{array}\right.
$$

The additional variable s_{i} is called slack variable

Conversion between constraints

From \leq to $=$

$$
a_{i}^{\mathrm{T}} x \leq b_{i} \Leftrightarrow \exists s_{i} \in \mathbb{R}:\left\{\begin{array}{l}
a_{i}^{\mathrm{T}} x+s_{i}=b_{i} \\
s_{i} \geq 0
\end{array}\right.
$$

The additional variable s_{i} is called slack variable
From \geq to $=$

$$
a_{i}^{\mathrm{T}} x \geq b_{i} \Leftrightarrow \exists s_{i} \in \mathbb{R}:\left\{\begin{array}{l}
a_{i}^{\mathrm{T}} x-s_{i}=b_{i} \\
s_{i} \geq 0
\end{array}\right.
$$

The additional variable s_{i} is called excess variable

Conversion between constraints

From \leq to $=$

$$
a_{i}^{\mathrm{T}} x \leq b_{i} \Leftrightarrow \exists s_{i} \in \mathbb{R}:\left\{\begin{array}{l}
a_{i}^{\mathrm{T}} x+s_{i}=b_{i} \\
s_{i} \geq 0
\end{array}\right.
$$

The additional variable s_{i} is called slack variable
From \geq to $=$

$$
a_{i}^{\mathrm{T}} x \geq b_{i} \Leftrightarrow \exists s_{i} \in \mathbb{R}:\left\{\begin{array}{l}
a_{i}^{\mathrm{T}} x-s_{i}=b_{i} \\
s_{i} \geq 0
\end{array}\right.
$$

The additional variable s_{i} is called excess variable
In both cases, a single constraint is replaced by two constraints

Positivity constraints

Variables without sign constraints

$$
x_{i} \in \mathbb{R} \Leftrightarrow \exists x_{i}^{+}, x_{i}^{-} \in \mathbb{R}:\left\{\begin{array}{l}
x_{i}=x_{i}^{+}-x_{i}^{-} \\
x_{i}^{+} \geq 0 \\
x_{i}^{-} \geq 0
\end{array}\right.
$$

x_{i}^{+}and x_{i}^{-}are two new variables representing the positive and negative part of $x_{i} \in \mathbb{R}$, respectively
The variable x_{i} is replaced with $x_{i}^{+}-x_{i}^{-}$in the whole LP problem and constraints $x_{i}^{+} \geq 0, x_{i}^{-} \geq 0$ are added

Positivity constraints

Variables without sign constraints

$$
x_{i} \in \mathbb{R} \Leftrightarrow \exists x_{i}^{+}, x_{i}^{-} \in \mathbb{R}:\left\{\begin{array}{l}
x_{i}=x_{i}^{+}-x_{i}^{-} \\
x_{i}^{+} \geq 0 \\
x_{i}^{-} \geq 0
\end{array}\right.
$$

x_{i}^{+}and x_{i}^{-}are two new variables representing the positive and negative part of $x_{i} \in \mathbb{R}$, respectively
The variable x_{i} is replaced with $x_{i}^{+}-x_{i}^{-}$in the whole LP problem and constraints $x_{i}^{+} \geq 0, x_{i}^{-} \geq 0$ are added

Variables with sign constraints: from " ≤ 0 " to " ≥ 0 ":

$$
x_{i} \leq 0 \longrightarrow \xi_{i} \geq 0
$$

with $\xi_{i}=-x_{i}$ that replaces x_{i} in the whole LP problem

Example 1

Write the following problem in standard form

$$
\max _{x}\left\{c^{\mathrm{T}} x: A x=b\right\}
$$

Example 1

Write the following problem in standard form

$$
\max _{x}\left\{c^{\mathrm{T}} x: A x=b\right\}
$$

- There is no positivity constraint: we introduce two vectors $x^{+} \in \mathbb{R}^{n}, x^{-} \in \mathbb{R}^{n}$ and substitute x with $x^{+}-x^{-}$. We get

$$
\max _{x^{+}, x^{-}}\left\{c^{\mathrm{T}}\left(x^{+}-x^{-}\right): A\left(x^{+}-x^{-}\right)=b, x^{+} \geq 0, x^{-} \geq 0\right\}
$$

Example 1

Write the following problem in standard form

$$
\max _{x}\left\{c^{\mathrm{T}} x: A x=b\right\}
$$

- There is no positivity constraint: we introduce two vectors $x^{+} \in \mathbb{R}^{n}, x^{-} \in \mathbb{R}^{n}$ and substitute x with $x^{+}-x^{-}$. We get

$$
\max _{x^{+}, x^{-}}\left\{c^{\mathrm{T}}\left(x^{+}-x^{-}\right): A\left(x^{+}-x^{-}\right)=b, x^{+} \geq 0, x^{-} \geq 0\right\}
$$

- Defining $\xi=\left[\begin{array}{l}x^{+} \\ x^{-}\end{array}\right]$the problem becomes

$$
\max _{\xi}\left\{\left[\begin{array}{ll}
c^{\mathrm{T}} & -c^{\mathrm{T}}
\end{array}\right] \xi:\left[\begin{array}{ll}
A & -A
\end{array}\right] \xi=b, \xi \geq 0\right\}
$$

In the conversion process the number of variables doubled

Example 2: conversion between canonical and standard forms

From canonical (LP-C) to standard (LP-S) form

$$
\max _{\substack{A x \leq b \tag{1}\\
x \geq 0}} c^{\mathrm{T}} x \rightarrow \max _{\left[\begin{array}{l}
x \\
s
\end{array}\right]}\left\{\left[\begin{array}{ll}
c & 0
\end{array}\right]\left[\begin{array}{l}
x \\
s
\end{array}\right]:\left[\begin{array}{ll}
A & 1
\end{array}\right]\left[\begin{array}{l}
x \\
s
\end{array}\right]=b,\left[\begin{array}{l}
x \\
s
\end{array}\right] \geq 0\right\}
$$

We introduced the vector of slack variables $s \in \mathbb{R}^{n}$.

Example 2: conversion between canonical and standard forms

From canonical (LP-C) to standard (LP-S) form

$$
\max _{\substack{A x \leq b \tag{1}\\
x \geq 0}} x^{\mathrm{T}} x \rightarrow \max _{\left[\begin{array}{l}
x \\
s
\end{array}\right]}\left\{\left[\begin{array}{ll}
c & 0
\end{array}\right]\left[\begin{array}{l}
x \\
s
\end{array}\right]:\left[\begin{array}{ll}
A & 1
\end{array}\right]\left[\begin{array}{l}
x \\
s
\end{array}\right]=b,\left[\begin{array}{l}
x \\
s
\end{array}\right] \geq 0\right\}
$$

We introduced the vector of slack variables $s \in \mathbb{R}^{n}$.
From LP-S to LP-C

$$
\max _{\substack{A x=b \tag{2}\\
x \geq 0}} c^{\mathrm{T}} x \longrightarrow \max _{x}\left\{c^{\mathrm{T}} x:\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right], x \geq 0\right\}
$$

Example 2: conversion between canonical and standard forms

From canonical (LP-C) to standard (LP-S) form

$$
\max _{\substack{A x \leq b \tag{1}\\
x \geq 0}} c^{\mathrm{T}} x \rightarrow \max _{\left[\begin{array}{l}
x \\
s
\end{array}\right]}\left\{\left[\begin{array}{ll}
c & 0
\end{array}\right]\left[\begin{array}{l}
x \\
s
\end{array}\right]:\left[\begin{array}{ll}
A & 1
\end{array}\right]\left[\begin{array}{l}
x \\
s
\end{array}\right]=b,\left[\begin{array}{l}
x \\
s
\end{array}\right] \geq 0\right\}
$$

We introduced the vector of slack variables $s \in \mathbb{R}^{n}$.
From LP-S to LP-C

$$
\max _{\substack{A x=b \tag{2}\\
x \geq 0}} c^{\mathrm{T}} x \longrightarrow \max _{x}\left\{c^{\mathrm{T}} x:\left[\begin{array}{c}
A \\
-A
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right], x \geq 0\right\}
$$

Meaning of equivalence between the two forms:

- $\ln (1): x^{*}$ is optimal for LP-C $\Leftrightarrow \exists s^{*}:\left[\begin{array}{c}x^{*} \\ s^{*}\end{array}\right]$ is optimal for LP-S
- In (2): x^{*} is optimal for LP-S $\Leftrightarrow x^{*}$ is optimal for LP-C

Example 3

Write the following problem in canonical form

$$
\begin{equation*}
\min _{x_{1}, x_{2}, x_{3}} c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2} \leq b_{1} \tag{4}\\
a_{22} x_{2}+a_{23} x_{3} \geq b_{2} \tag{5}\\
a_{31} x_{1}+a_{32} x_{3}=b_{3} \tag{6}\\
x_{1} \geq 0 \tag{7}\\
x_{2} \leq 0 \tag{8}
\end{gather*}
$$

Example 3

Write the following problem in canonical form

$$
\begin{equation*}
\min _{x_{1}, x_{2}, x_{3}} c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2} \leq b_{1} \tag{4}\\
a_{22} x_{2}+a_{23} x_{3} \geq b_{2} \tag{5}\\
a_{31} x_{1}+a_{32} x_{3}=b_{3} \tag{6}\\
x_{1} \geq 0 \tag{7}\\
x_{2} \leq 0 \tag{8}
\end{gather*}
$$

1. Positivity constraints on all variables:

- replace x_{2} with $\xi_{2}=-x_{2}$
- x_{3} is not sign constrained: we set $x_{3}=x_{3}^{+}-x_{3}^{-}$and add the constraints $x_{3}^{+} \geq 0$ e $x_{3}^{-} \geq 0$

Example 3

The original problem is now

$$
\begin{equation*}
\min _{x_{1}, \xi_{2}, x_{3}^{+}, x_{3}^{-}} c_{1} x_{1}-c_{2} \xi_{2}+c_{3} x_{3}^{+}-c_{3} x_{3}^{-} \tag{9}
\end{equation*}
$$

$$
\begin{gather*}
a_{11} x_{1}-a_{12} \xi_{2} \leq b_{1} \tag{10}\\
-a_{22} \xi_{2}+a_{23} x_{3}^{+}-a_{23} x_{3}^{-} \geq b_{2} \tag{11}\\
a_{31} x_{1}+a_{32} x_{3}^{+}-a_{32} x_{3}^{-}=b_{3} \tag{12}\\
x_{1} \geq 0 \tag{13}\\
\xi_{2} \geq 0 \tag{14}\\
x_{3}^{+} \geq 0 \tag{15}\\
x_{3}^{-} \geq 0 \tag{16}
\end{gather*}
$$

Example 3

The original problem is now

$$
\begin{gather*}
\min _{x_{1}, \xi_{2}, x_{3}^{+}, x_{3}^{-}} c_{1} x_{1}-c_{2} \xi_{2}+c_{3} x_{3}^{+}-c_{3} x_{3}^{-} \\
a_{11} x_{1}-a_{12} \xi_{2} \leq b_{1} \tag{10}\\
-a_{22} \xi_{2}+a_{23} x_{3}^{+}-a_{23} x_{3}^{-} \geq b_{2} \tag{11}\\
a_{31} x_{1}+a_{32} x_{3}^{+}-a_{32} x_{3}^{-}=b_{3} \tag{12}\\
x_{1} \geq 0 \tag{13}\\
\xi_{2} \geq 0 \tag{14}\\
x_{3}^{+} \geq 0 \tag{15}\\
x_{3}^{-} \geq 0 \tag{16}
\end{gather*}
$$

2. Constraints " $\leq "$:

- we replace (11) with $a_{22} \xi_{2}-a_{23} x_{3}^{+}+a_{23} x_{3}^{-} \leq-b_{2}$
- we replace (12) with $a_{31} x_{1}+a_{32} x_{3}^{+}-a_{32} x_{3}^{-} \leq b_{3}$ and
$-a_{31} x_{1}-a_{32} x_{3}^{+}+a_{32} x_{3}^{-} \leq-b_{3}$

Example 3

The LP problem is now in canonical form

$$
\begin{equation*}
\min _{x_{1}, \xi_{2}, x_{3}^{+}, x_{3}^{-}} c_{1} x_{1}-c_{2} \xi_{2}+c_{3} x_{3}^{+}-c_{3} x_{3}^{-} \tag{17}
\end{equation*}
$$

$$
\begin{gather*}
a_{11} x_{1}-a_{12} \xi_{2} \leq b_{1} \tag{18}\\
+a_{22} \xi_{2}-a_{23} x_{3}^{+}+a_{23} x_{3}^{-} \leq-b_{2} \tag{19}\\
a_{31} x_{1}+a_{32} x_{3}^{+}-a_{32} x_{3}^{-} \leq b_{3} \tag{20}\\
-a_{31} x_{1}-a_{32} x_{3}^{+}+a_{32} x_{3}^{-} \leq-b_{3} \tag{21}\\
x_{1} \geq 0 \tag{22}\\
\xi_{2} \geq 0 \tag{23}\\
x_{3}^{+} \geq 0 \tag{24}\\
x_{3}^{-} \geq 0 \tag{25}
\end{gather*}
$$

Example 3 - matrix notation

We define $x=\left[\begin{array}{llll}x_{1} & \xi_{2} & x_{3}^{+} & x_{3}^{-}\end{array}\right]^{T}$ and obtain

$$
\begin{gather*}
\min _{\substack{A x \leq b \\
x \geq 0}}\left[\begin{array}{llll}
c_{1} & -c_{2} & c_{3} & -c_{3}
\end{array}\right] x \tag{26}\\
A=\left[\begin{array}{cccc}
a_{11} & -a_{12} & 0 & 0 \\
0 & a_{22} & -a_{23} & +a_{23} \\
a_{31} & 0 & a_{32} & -a_{32} \\
-a_{31} & 0 & -a_{32} & +a_{32}
\end{array}\right] \quad b=\left[\begin{array}{c}
b_{1} \\
-b_{2} \\
b_{3} \\
-b_{3}
\end{array}\right]
\end{gather*}
$$

Example 3 - matrix notation

We define $x=\left[\begin{array}{llll}x_{1} & \xi_{2} & x_{3}^{+} & x_{3}^{-}\end{array}\right]^{T}$ and obtain

$$
\min _{\substack{A x \leq b \tag{26}\\
x \geq 0}}\left[\begin{array}{llll}
c_{1} & -c_{2} & c_{3} & -c_{3}
\end{array}\right] x
$$

$$
A=\left[\begin{array}{cccc}
a_{11} & -a_{12} & 0 & 0 \\
0 & a_{22} & -a_{23} & +a_{23} \\
a_{31} & 0 & a_{32} & -a_{32} \\
-a_{31} & 0 & -a_{32} & +a_{32}
\end{array}\right] \quad b=\left[\begin{array}{c}
b_{1} \\
-b_{2} \\
b_{3} \\
-b_{3}
\end{array}\right]
$$

Meaning of equivalence between different forms
If $x^{*}=\left[\begin{array}{lll}x_{1}^{*} & \xi_{2}^{*} & \left(x_{3}^{+}\right)^{*} \\ \left(x_{3}^{-}\right)^{*}\end{array}\right]$ is an optimal solution to (26), then $\left[\begin{array}{lll}\tilde{x}_{1} & \tilde{x}_{2} & \tilde{x}_{3}\end{array}\right]$ is an optimal solution to the original problem, where

$$
\begin{aligned}
& \tilde{x}_{1}=x_{1}^{*} \\
& \tilde{x}_{2}=-\xi_{2}^{*} \\
& \tilde{x}_{3}=\left(x_{3}^{+}\right)^{*}-\left(x_{3}^{-}\right)^{*}
\end{aligned}
$$

Outline

(1) Representations of LP problems
(2) LP: properties of the feasible region

- Basics of convex geometry
(3) The graphical solution for two-variable LP problems

4 Properties of linear programming
(5) Algorithms for solving LP problems

Convex geometry

Hyperplane

The set $H=\left\{x \in \mathbb{R}^{n}: a^{T} x=b\right\}$ with $a \in \mathbb{R}^{n}, a \neq 0, b \in \mathbb{R}$ is called hyperplane in \mathbb{R}^{n}. The boundary of the closed half-spaces

$$
\begin{aligned}
H^{-} & =\left\{x \in \mathbb{R}^{n}: a^{\mathrm{T}} x \leq b\right\} \\
H^{+} & =\left\{x \in \mathbb{R}^{n}: a^{\mathrm{T}} x \geq b\right\}
\end{aligned}
$$

is the supporting hyperplane H

Convex geometry

Polyhedra and polytopes

A polyhedron in \mathbb{R}^{n} is the intersections of a finite and strictily positive number of
 half-spaces in \mathbb{R}^{n}.

- If K is a polyhedron, $\exists A, b$ of suitable dimensions such that $K=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$.
- If K is bounded, it is called polytope.

Convex geometry

Polyhedra and polytopes

A polyhedron in \mathbb{R}^{n} is the intersections of a finite and strictily positive number of
 half-spaces in \mathbb{R}^{n}.

- If K is a polyhedron, $\exists A, b$ of suitable dimensions such that $K=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$.
- If K is bounded, it is called polytope.

- A polytope is a closed and convex set

Convex geometry

Polyhedra and polytopes

 A polyhedron in \mathbb{R}^{n} is the intersections of a finite and strictily positive number of half-spaces in \mathbb{R}^{n}.

- If K is a polyhedron, $\exists A, b$ of suitable dimensions such that $K=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$.
- If K is bounded, it is called polytope.

- A polytope is a closed and convex set
- The feasible region of an LP problem is a polyhedron

Convex geometry

Remarks
The pair (A, b) defining the polyhedron $K=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ is not unique.

Convex geometry

Remarks

The pair (A, b) defining the polyhedron $K=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ is not unique.

- If \tilde{A} and \tilde{b} coincide with A and b, up to a row permutation, then (\tilde{A}, \tilde{b}) defines K

Convex geometry

Remarks

The pair (A, b) defining the polyhedron $K=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ is not unique.

- If \tilde{A} and \tilde{b} coincide with A and b, up to a row permutation, then (\tilde{A}, \tilde{b}) defines K
- ($\alpha A, \alpha b), \alpha>0$ defines K

Convex geometry

Remarks

The pair (A, b) defining the polyhedron $K=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ is not unique.

- If \tilde{A} and \tilde{b} coincide with A and b, up to a row permutation, then ($\tilde{A}, \tilde{b})$ defines K
- ($\alpha A, \alpha b$), $\alpha>0$ defines K
- A constraint in $A x \leq b$ is redundant if K does not change when removed. If redundant constraints are added to or removed form those defining K, one gets a new pair (\tilde{A}, \tilde{b}) that still defines K

Convex geometry

Remarks

- The empty set is a polyhedron ...

Convex geometry

Remarks

- The empty set is a polyhedron ...

Convex geometry

Remarks

- The empty set is a polyhedron ...

... it is also a polytope

Convex geometry

Remarks

- The empty set is a polyhedron ...

... it is also a polytope
- \mathbb{R}^{n} is not a polyhedron

Convex geometry

Extreme points

Let $S \subseteq \mathbb{R}^{n}$ be a convex set. A point $z \in S$ is called extreme point if there are not two points $x, y \in S$ different from z, such that z belongs to the segment $\overline{x y}$.

Convex geometry

Definition

Let $K \subset \mathbb{R}^{n}$ be a polyhedron. Then

- its extreme points are called vertices
- the intersection of K with one or more supporting hyperplanes is called face
- faces of dimension 1 are called edges. Faces of dimension $n-1$ are called facets or maximal faces.

Convex geometry

Theorem
A polyhedron has a finite number ${ }^{a}$ of vertices.
${ }^{a}$ It can be zero.

Convex geometry

Theorem

A polyhedron has a finite number ${ }^{\text {a }}$ of vertices.

```
alt can be zero.
```


Representations of a polytope

Definition

The point $z \in \mathbb{R}^{n}$ is a convex combination of k points $x_{1}, x_{2}, \ldots, x_{k}$ if $\exists \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \geq 0$ verifying $\sum_{i=1}^{k} \lambda_{i}=1$ and such that

$$
\begin{equation*}
z=\sum_{i=1}^{k} \lambda_{k} x_{k} \tag{27}
\end{equation*}
$$

A segment $\overline{x y}$ is the set of the convex combinations of x and y.

Convex geometry

Minkowski-Weyl theorem
Let P be a polytope. Then, a point $x \in P$ is a convex combination of the vertices of P

Convex geometry

Minkowski-Weyl theorem

Let P be a polytope. Then, a point $x \in P$ is a convex combination of the vertices of P

Example

All points x of the triangle can be written as $x=\sum_{i=1}^{3} \lambda_{i} p_{i}$ for suitable $\lambda_{i} \geq 0$ such that $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$

Convex geometry

Minkowski-Weyl theorem

Let P be a polytope. Then, a point $x \in P$ is a convex combination of the vertices of P

Example

All points x of the triangle can be written as $x=\sum_{i=1}^{3} \lambda_{i} p_{i}$ for suitable $\lambda_{i} \geq 0$ such that $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$

Remark

The theorem does not hold for generic polyhedra (think about a cone ...)

Outline

(1) Representations of LP problems
(2) LP: properties of the feasible region

- Basics of convex geometry
(3) The graphical solution for two-variable LP problems
(4) Properties of linear programming
(5) Algorithms for solving LP problems

The graphical solution for two-variable LP problems

The feasible region and optimal solution of LP problems with only two variables $x=\left[x_{1}, x_{2}\right]^{T}$ can be represented graphically.

Isocost lines

Given a level $\alpha \in \mathbb{R}$ the level surface of the cost is

$$
C_{\alpha}\left[c^{\mathrm{T}} x\right]=\left\{x \in \mathbb{R}^{2}: c^{\mathrm{T}} x=\alpha\right\} .
$$

For different values of α one gets parallel lines called isocost lines

Example 1

Product mix

$$
\begin{align*}
& \max _{M_{1}, M_{2}} 30 M_{1}+20 M_{2} \\
& 8 M_{1}+4 M_{2} \leq 640 \\
& 4 M_{1}+6 M_{2} \leq 540 \tag{28}\\
& M_{1}+M_{2} \leq 100 \tag{29}\\
& M_{1}, M_{2} \geq 0 \tag{30}
\end{align*}
$$

Feasible region $=$ hatched area

Example 1

Product mix

$$
\begin{align*}
& \max _{M_{1}, M_{2}} 30 M_{1}+20 M_{2} \\
& 8 M_{1}+4 M_{2} \leq 640 \\
& 4 M_{1}+6 M_{2} \leq 540 \tag{28}\\
& M_{1}+M_{2} \leq 100 \tag{29}\\
& M_{1}, M_{2} \geq 0 . \tag{30}
\end{align*}
$$

Isocost lines: $C_{\alpha}\left[30 M_{1}+20 M_{2}\right]: \quad M_{2}=\frac{\alpha}{20}-\frac{30}{20} M_{1}$
E.g. $\alpha=1800 \rightarrow$ line passing through $(0,90)$ and $(60,0)$

Example 1

Product mix

$$
\begin{align*}
& \max _{M_{1}, M_{2}} 30 M_{1}+20 M_{2} \\
& 8 M_{1}+4 M_{2} \leq 640 \\
& 4 M_{1}+6 M_{2} \leq 540 \tag{28}\\
& M_{1}+M_{2} \leq 100 \tag{29}\\
& M_{1}, M_{2} \geq 0 . \tag{30}
\end{align*}
$$

As α increases, isocost lines move in the arrow direction

Example 1

Product mix

$$
\begin{align*}
& \max _{M_{1}, M_{2}} 30 M_{1}+20 M_{2} \\
& 8 M_{1}+4 M_{2} \leq 640 \\
& 4 M_{1}+6 M_{2} \leq 540 \tag{28}\\
& M_{1}+M_{2} \leq 100 \tag{29}\\
& M_{1}, M_{2} \geq 0 . \tag{30}
\end{align*}
$$

(28) (30)

The optimal solution is $(60,40)$ and it is given by C_{2600} : for greater values of α, the isocost line does not intersect the feasible region. The optimal solution is a vertex of the feasible region

Example 2

Diet problem

$\min _{A_{1}, A_{2}} 20 A_{1}+30 A_{2}$	
A_{1}	$\geq 2 \quad(32)$
$2 A_{1}+A_{2}$	$\geq 12 \quad(33)$
$2 A_{1}+5 A_{2}$	$\geq 36 \quad(34)$
A_{2}	$\geq 4 \quad(35)$
A_{1}, A_{2}	$\geq 0 . \quad(36)$

Feasible region $=$ hatched area

Example 2

Diet problem

$$
\begin{aligned}
\min _{A_{1}, A_{2}} 20 A_{1} & +30 A_{2} \\
A_{1} & \geq 2 \\
2 A_{1}+A_{2} & \geq 12 \\
2 A_{1}+5 A_{2} & \geq 36 \\
A_{2} & \geq 4 \\
A_{1}, A_{2} & \geq 0
\end{aligned}
$$

Isocost lines: $C_{\alpha}\left[20 A_{1}+30 A_{2}\right]: \quad A_{2}=-\frac{20}{30} A_{1}+\frac{\alpha}{30}$

Example 2

Diet problem

$\min _{A_{1}, A_{2}} 20 A_{1}+30 A_{2}$	
A_{1}	$\geq 2 \quad(32)$
$2 A_{1}+A_{2}$	$\geq 12 \quad(33)$
$2 A_{1}+5 A_{2}$	$\geq 36 \quad(34)$
A_{2}	$\geq 4 \quad(35)$
A_{1}, A_{2}	$\geq 0 . \quad(36)$

As α decreases, isocost lines move in the arrow direction

Example 2

The optimal solution is $(3,6)$ and it is given by C_{240}. The optimal solution is a vertex of the feasible region

Example: multiple solutions

LP problem

$$
\begin{align*}
& \max _{x_{1}, x_{2}} 30 x_{1}+30 x_{2} \\
& x_{2} \leq 80 \\
& x_{1} \leq 60 \tag{37}\\
& x_{1}+x_{2} \leq 100 \tag{38}\\
& x_{1}, x_{2} \geq 0 \tag{39}
\end{align*}
$$

Feasible region $=$ hatched area

Example: multiple solutions

LP problem

$$
\begin{align*}
& \max _{x_{1}, x_{2}} 30 x_{1}+30 x_{2} \\
& x_{2} \leq 80 \\
& x_{1} \leq 60 \\
& x_{1}+x_{2} \leq 100 \tag{38}\\
& x_{1}, x_{2} \geq 0
\end{align*}
$$

Isocost lines: $C_{\alpha}\left[30 x_{1}+30 x_{2}\right]: x_{2}=-x_{1}+\frac{\alpha}{30}$

Example: multiple solutions

LP problem

$$
\begin{align*}
& \max _{x_{1}, x_{2}} 30 x_{1}+30 x_{2} \\
& x_{2} \leq 80 \\
& x_{1} \leq 60 \\
& x_{1}+x_{2} \leq 100 \tag{38}\\
& x_{1}, x_{2} \geq 0 \tag{39}
\end{align*}
$$

As α decreases, isocost lines move in the arrow direction

Example: multiple solutions

LP problem

$$
\begin{align*}
& \max _{x_{1}, x_{2}} 30 x_{1}+30 x_{2} \\
& x_{2} \leq 80 \\
& x_{1} \leq 60 \tag{37}\\
& x_{1}+x_{2} \leq 100 \tag{38}\\
& x_{1}, x_{2} \geq 0 . \tag{39}
\end{align*}
$$

The optimal isocost line is C_{3000} and intersects the face S of the feasible region: $\forall x \in S$ is an optimal solution.
There exists at least an optimal solution that is a vertex of the feasible region

Example: unbounded problem

LP problem

\[\)| $\max _{x_{1}, x_{2}} x_{1}$ | $+2 x_{2}$ |
| ---: | :--- |
| x_{2} | ≤ 1 |
| $-x_{1}-x_{2}$ | ≤-2 |
| x_{1}, x_{2} | ≥ 0 |\(\quad(41)

\]

Feasible region $=$ hatched area

Example: unbounded problem

LP problem

$$
\begin{align*}
\max _{x_{1}, x_{2}} x_{1} & +2 x_{2} \\
x_{2} & \leq 1 \\
-x_{1}-x_{2} & \leq-2 \tag{41}\\
x_{1}, x_{2} & \geq 0 . \tag{42}
\end{align*}
$$

Isocost lines: $C_{\alpha}\left[x_{1}+2 x_{2}\right]: x_{2}=-\frac{1}{2} x_{1}+\frac{\alpha}{2}$
As α increases, isocos lines move in the arrow direction

Example: unbounded problem

LP problem

$$
\begin{align*}
\max _{x_{1}, x_{2}} x_{1} & +2 x_{2} \\
x_{2} & \leq 1 \\
-x_{1}-x_{2} & \leq-2 \tag{41}\\
x_{1}, x_{2} & \geq 0 . \tag{42}
\end{align*}
$$

- The cost can grow unbounded: $\forall \alpha>0$ the isocost line $C_{\alpha}\left[x_{1}+2 x_{2}\right]$ intersects the feasible region.
- The LP problem is unbounded

Example: unbounded problem

LP problem

$$
\begin{align*}
\max _{x_{1}, x_{2}} x_{1} & +2 x_{2} \\
x_{2} & \leq 1 \\
-x_{1}-x_{2} & \leq-2 \tag{41}\\
x_{1}, x_{2} & \geq 0 . \tag{42}
\end{align*}
$$

Unboundedness is often due to modeling errors.
One would automatically detect it, especially when the number of variables is high.

Example: infeasible problem

$$
\begin{aligned}
& \text { LP problem } \\
& \qquad \begin{aligned}
\max _{x_{1}, x_{2}} x_{1} & +x_{2} \\
-x_{1}+2 x_{2} & \leq-1 \\
x_{1}-x_{2} & \leq-1 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
\end{aligned}
$$

The feasibility region is empty \rightarrow infeasible problem

Example: infeasible problem

$$
\begin{align*}
& \text { LP problem } \\
& \qquad \begin{aligned}
\max _{x_{1}, x_{2}} x_{1} & +x_{2} \\
-x_{1}+2 x_{2} & \leq-1 \\
x_{1}-x_{2} & \leq-1 \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
\end{align*}
$$

Infeasibility is often due to modelling errors.
One would automatically detect it, especially when the number of variables is high.

Outline

(1) Representations of LP problems

(2) LP: properties of the feasible region

- Basics of convex geometry
(3) The graphical solution for two-variable LP problems

4 Properties of linear programming
(5) Algorithms for solving LP problems

Properties of linear programming

Fundamental theorem of linear programming

Let $\left\{\max c^{\mathrm{T}} x: x \in X\right\}$ be an LP problem where X is a polyhedron and $x \in \mathbb{R}^{n}$. If the problem is feasible, then only one of the following is true:
(1) the problem is unbounded;
(2) there is at least a vertex of X that is an optimal solution.

Corollary

If X is a nonempty polytope, then there is a vertex of X that is an optimal solution

Properties of linear programming

Proof of the corollary

- Let $x_{1}, x_{2}, \ldots, x_{k}$ be vertices of X (their number is finite) and $z^{*}=\max \left\{c^{\mathrm{T}} x_{i}, i=1,2, \ldots, k\right\}$ (maximum of vertex costs).
- We want to show that $\forall y \in X$ one has $c^{T} y \leq z^{*}$.

Properties of linear programming

Proof of the corollary

- Let $x_{1}, x_{2}, \ldots, x_{k}$ be vertices of X (their number is finite) and $z^{*}=\max \left\{c^{\mathrm{T}} x_{i}, i=1,2, \ldots, k\right\}$ (maximum of vertex costs).
- We want to show that $\forall y \in X$ one has $c^{T} y \leq z^{*}$.
- From Minkowski-Weyl theorem:
$y \in X \Rightarrow \exists \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \geq 0: \sum_{i=1}^{k} \lambda_{i}=1$ and $y=\sum_{i=1}^{k} \lambda_{i} x_{i}$.

Properties of linear programming

Proof of the corollary

- Let $x_{1}, x_{2}, \ldots, x_{k}$ be vertices of X (their number is finite) and $z^{*}=\max \left\{c^{\mathrm{T}} x_{i}, i=1,2, \ldots, k\right\}$ (maximum of vertex costs).
- We want to show that $\forall y \in X$ one has $c^{T} y \leq z^{*}$.
- From Minkowski-Weyl theorem:

$$
y \in X \Rightarrow \exists \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \geq 0: \sum_{i=1}^{k} \lambda_{i}=1 \text { and } y=\sum_{i=1}^{k} \lambda_{i} x_{i}
$$

- Then

Outline

(1) Representations of LP problems

(2) LP: properties of the feasible region

- Basics of convex geometry
(3) The graphical solution for two-variable LP problems

4 Properties of linear programming
(5) Algorithms for solving LP problems

Algorithms for solving LP problems

Vertex enumeration

If an LP problem is feasible and bounded one can

- compute all vertices $x_{1}, x_{2}, \ldots, x_{k}$ of X
- compute $z_{i}=c^{\mathrm{T}} x_{i}, i=1,2, \ldots, k$ (cost of vertices)
and obtain an optimal solution as $x_{k}: c^{\mathrm{T}} x_{k}=\max \left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$

Algorithms for solving LP problems

Vertex enumeration

If an LP problem is feasible and bounded one can

- compute all vertices $x_{1}, x_{2}, \ldots, x_{k}$ of X
- compute $z_{i}=c^{\mathrm{T}} x_{i}, i=1,2, \ldots, k$ (cost of vertices)
and obtain an optimal solution as $x_{k}: c^{\mathrm{T}} x_{k}=\max \left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$
The number of vertices of the feasible region can grow exponentially with $n \rightarrow$ computationally prohibitive Example: let X be an hypercube

n	X	N. of vertices
2	square	$2^{2}=4$
3	cube	$2^{3}=8$
1000	ipercube	$2^{1000} \simeq 10^{300}$

If the computation of a vertex requires $10^{-9} s$, when $n=1000$ the computation time is greater than $10^{300} 10^{-9}=10^{291} s>10^{281}$ centuries

Efficient algorithms for linear programming

Simplex algorithm

Developed by G. Dantzig in 1947

- iterative procedure for generating vertices of X with decreasing cost (for miminization problems) and for assessing their optimality. m constraints and n variables: \rightarrow maximal number of vertices $\binom{n}{m}=\frac{n!}{m!(n-m)!}$
in the worst case the complexity of the method is exponential in the dimension of the LP problem
"on average" the method is numerically robust and much more efficient than vertex enumeration.
- infeasibility and unboundedness of the LP problem are automatically detected

Efficient algorithms for linear programming

Interior point method

Developed by N. Karmarkar in 1984

- iterative procedure that generates a sequence of points lying in the interior of X and convergings to an optimal vertex

Convergence to an optimal solution requires a computational time that grows polynomially with the number of variables and constraints of the LP problem
for large-scale LP problems, it can be much more efficient than the simplex algorithm

- infeasibility and unboundedness of the LP problem are automatically detected

