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Representations of LP problems

LP in canonical form (LP-C)

min
Ax≤b
x≥0

cTx

Inequality “≤” constraints. Positivity constraints on all variables.

LP in standard form (LP-S)

min
Ax=b
x≥0

cTx

Equality constraints. Positivity constraints on all variables.

LP in generic form

Mixed constraints ≤, ≥, = and/or some variable is not constrained to be positive.

The three forms are equivalent even if the conversion from one form to
another one is possible only changing the number of variables and/or
constraints.
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Conversion between constraints

From ≤ to =

aTi x ≤ bi ⇔ ∃si ∈ R :

{
aTi x + si = bi

si ≥ 0

The additional variable si is called slack variable

From ≥ to =

aTi x ≥ bi ⇔ ∃si ∈ R :

{
aTi x − si = bi

si ≥ 0

The additional variable si is called excess variable

In both cases, a single constraint is replaced by two constraints
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Positivity constraints

Variables without sign constraints

xi ∈ R⇔ ∃x+
i , x

−
i ∈ R :


xi = x+

i − x−
i

x+
i ≥ 0

x−
i ≥ 0

x+
i and x−

i are two new variables representing the positive and negative
part of xi ∈ R, respectively
The variable xi is replaced with x+

i − x−
i in the whole LP problem and

constraints x+
i ≥ 0, x−

i ≥ 0 are added

Variables with sign constraints: from “≤ 0” to “≥ 0”:

xi ≤ 0 −→ ξi ≥ 0

with ξi = −xi that replaces xi in the whole LP problem
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Example 1

Write the following problem in standard form

max
x

{
cTx : Ax = b

}

There is no positivity constraint: we introduce two vectors
x+ ∈ Rn, x− ∈ Rn and substitute x with x+ − x−. We get

max
x+,x−

{
cT(x+ − x−) : A(x+ − x−) = b, x+ ≥ 0, x− ≥ 0

}
.

Defining ξ =

[
x+

x−

]
the problem becomes

max
ξ

{[
cT −cT

]
ξ :
[
A −A

]
ξ = b, ξ ≥ 0

}
In the conversion process the number of variables doubled
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Example 2: conversion between canonical and standard
forms

From canonical (LP-C) to standard (LP-S) form

max
Ax≤b
x≥0

cTx −→ max[
x
s

]
{[

c 0
] [x

s

]
:
[
A I

] [x
s

]
= b,

[
x
s

]
≥ 0

}
(1)

We introduced the vector of slack variables s ∈ Rn.

From LP-S to LP-C

max
Ax=b
x≥0

cTx −→ max
x

{
cTx :

[
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0

}
(2)

Meaning of equivalence between the two forms:

In (1): x∗ is optimal for LP-C ⇔ ∃s∗ :

[
x∗

s∗

]
is optimal for LP-S

In (2): x∗ is optimal for LP-S ⇔ x∗ is optimal for LP-C
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Example 3

Write the following problem in canonical form

min
x1,x2,x3

c1x1 + c2x2 + c3x3 (3)

a11x1 + a12x2 ≤ b1 (4)

a22x2 + a23x3 ≥ b2 (5)

a31x1 + a32x3 = b3 (6)

x1 ≥ 0 (7)

x2 ≤ 0 (8)

1. Positivity constraints on all variables:

replace x2 with ξ2 = −x2

x3 is not sign constrained: we set x3 = x+
3 − x−

3 and add the
constraints x+

3 ≥ 0 e x−
3 ≥ 0
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Example 3
The original problem is now

min
x1,ξ2,x

+
3 ,x

−
3

c1x1 − c2ξ2 + c3x+
3 − c3x−

3 (9)

a11x1 − a12ξ2 ≤ b1 (10)

−a22ξ2 + a23x+
3 − a23x−

3 ≥ b2 (11)

a31x1 + a32x+
3 − a32x−

3 = b3 (12)

x1 ≥ 0 (13)

ξ2 ≥ 0 (14)

x+
3 ≥ 0 (15)

x−
3 ≥ 0 (16)

2. Constraints ”≤”:

we replace (11) with a22ξ2 − a23x+
3 + a23x−

3 ≤ −b2

we replace (12) with a31x1 + a32x+
3 − a32x−

3 ≤ b3 and
−a31x1 − a32x+

3 + a32x−
3 ≤ −b3
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Example 3 - matrix notation
We define x =

[
x1 ξ2 x+

3 x−
3

]T
and obtain

min
Ax≤b
x≥0

[
c1 −c2 c3 −c3

]
x (26)

A =


a11 −a12 0 0
0 a22 −a23 +a23

a31 0 a32 −a32

−a31 0 −a32 +a32

 b =


b1

−b2

b3

−b3



Meaning of equivalence between different forms

If x∗ =
[
x∗

1 ξ∗2
(
x+

3

)∗ (
x−

3

)∗]
is an optimal solution to (26), then[

x̃1 x̃2 x̃3

]
is an optimal solution to the original problem, where

x̃1 = x∗
1

x̃2 = −ξ∗2
x̃3 =

(
x+

3

)∗ − (x−
3

)∗
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Convex geometry

Hyperplane

The set H =
{

x ∈ Rn : aTx = b
}

with a ∈ Rn, a 6= 0, b ∈ R is called
hyperplane in Rn. The boundary of the closed half-spaces

H− =
{

x ∈ Rn : aTx ≤ b
}

H+ =
{

x ∈ Rn : aTx ≥ b
}

is the supporting hyperplane H

0 x1

x2
H

H+

H−

(DIS) Properties of linear programming Industrial Automation 14 / 35



Convex geometry

Polyhedra and polytopes

A polyhedron in Rn is the
intersections of a finite and
strictily positive number of
half-spaces in Rn.

- If K is a polyhedron, ∃A, b of
suitable dimensions such that
K = {x ∈ Rn : Ax ≤ b}.

- If K is bounded, it is called
polytope.

0 x1

x2

0 x1

x2

0 x1

x2

0 x1

x2

K

A polytope is a closed and convex set

The feasible region of an LP problem is a polyhedron
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Convex geometry

Remarks

The pair (A, b) defining the polyhedron K = {x ∈ Rn : Ax ≤ b} is not
unique.

If Ã and b̃ coincide with A and b, up to a row permutation, then
(Ã, b̃) defines K

(αA, αb), α > 0 defines K

A constraint in Ax ≤ b is redundant if K does not change when
removed. If redundant constraints are added to or removed form
those defining K , one gets a new pair (Ã, b̃) that still defines K

0 x1

x2

K

V
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0 x1

x2

K

V

(DIS) Properties of linear programming Industrial Automation 16 / 35



Convex geometry

Remarks

The empty set is a polyhedron ...

0 x1

x2

1 2 3 4 5 6

1

2

3

-1
-1

... it is also a polytope

Rn is not a polyhedron
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Convex geometry

Extreme points

Let S ⊆ Rn be a convex set. A point z ∈ S is called extreme point if there
are not two points x , y ∈ S different from z , such that z belongs to the
segment xy .

0 x1

x2

0 x1

x2

0 x1

x2
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Convex geometry

Definition

Let K ⊂ Rn be a polyhedron. Then

its extreme points are called vertices

the intersection of K with one or more supporting hyperplanes is
called face

faces of dimension 1 are called edges. Faces of dimension n − 1 are
called facets or maximal faces.

0 x1

x2

x3

maximal face

vertex

edge
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Convex geometry

Theorem

A polyhedron has a finite numbera of vertices.

aIt can be zero.

Representations of a polytope

Definition

The point z ∈ Rn is a convex combination of k points x1, x2, . . . , xk if
∃λ1, λ2, . . . , λk ≥ 0 verifying

∑k
i=1 λi = 1 and such that

z =
k∑

i=1

λkxk (27)

A segment xy is the set of the convex combinations of x and y .
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Convex geometry

Minkowski-Weyl theorem

Let P be a polytope. Then, a point x ∈ P is a convex combination of the
vertices of P

Example

0 x1

x2

p1 p2

p3

x

All points x of the triangle can be written as x =
∑3

i=1 λipi for suitable
λi ≥ 0 such that λ1 + λ2 + λ3 = 1

Remark

The theorem does not hold for generic polyhedra (think about a cone ...)
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The graphical solution for two-variable LP problems

The feasible region and optimal solution of LP problems with only two
variables x = [x1, x2]T can be represented graphically.

Isocost lines

Given a level α ∈ R the level surface of the cost is

Cα
[
cTx

]
=
{

x ∈ R2 : cTx = α
}
.

For different values of α one gets parallel lines called isocost lines

(DIS) Properties of linear programming Industrial Automation 23 / 35



Example 1

Product mix

max
M1,M2

30M1 + 20M2

8M1 + 4M2 ≤ 640 (28)

4M1 + 6M2 ≤ 540 (29)

M1 + M2 ≤ 100 (30)

M1,M2 ≥ 0. (31)
0 M1

M2

20 40 60 80 100 120 140

20

40

60

80

100

120

140

160

(30) (29)(28)
(31)

Feasible region = hatched area
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M1,M2

30M1 + 20M2

8M1 + 4M2 ≤ 640 (28)

4M1 + 6M2 ≤ 540 (29)

M1 + M2 ≤ 100 (30)

M1,M2 ≥ 0. (31)
0 M1

M2

20 40 60 80 100 120 140

20

40

60

80

100

120

140

160

(30) (29)(28)
(31)

C2600

Isocost lines: Cα [30M1 + 20M2] : M2 = α
20 −

30
20 M1

E.g. α = 1800 → line passing through (0, 90) and (60, 0)
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The optimal solution is (60, 40) and it is given by C2600: for greater values
of α, the isocost line does not intersect the feasible region.
The optimal solution is a vertex of the feasible region
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Example 2

Diet problem

min
A1,A2

20A1 + 30A2

A1 ≥ 2 (32)

2A1 + A2 ≥ 12 (33)

2A1 + 5A2 ≥ 36 (34)

A2 ≥ 4 (35)

A1,A2 ≥ 0. (36) 0 A1

A2
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Example 2

Diet problem

min
A1,A2

20A1 + 30A2

A1 ≥ 2 (32)

2A1 + A2 ≥ 12 (33)

2A1 + 5A2 ≥ 36 (34)
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The optimal solution is (3, 6) and it is given by C240.
The optimal solution is a vertex of the feasible region
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Example: multiple solutions

LP problem

max
x1,x2

30x1 + 30x2

x2 ≤ 80 (37)

x1 ≤ 60 (38)

x1 + x2 ≤ 100 (39)

x1, x2 ≥ 0. (40)
0 x1

x2
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SC3000

(37)

(38)

(39)
(40)

Feasible region = hatched area
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Example: multiple solutions

LP problem

max
x1,x2

30x1 + 30x2

x2 ≤ 80 (37)

x1 ≤ 60 (38)

x1 + x2 ≤ 100 (39)

x1, x2 ≥ 0. (40)
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The optimal isocost line is C3000 and intersects the face S of the feasible
region: ∀x ∈ S is an optimal solution.
There exists at least an optimal solution that is a vertex of the feasible
region
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Example: unbounded problem

LP problem

max
x1,x2

x1 + 2x2

x2 ≤ 1 (41)

−x1 − x2 ≤ −2 (42)

x1, x2 ≥ 0. (43)
0 x1

x2
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Feasible region = hatched area
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Example: unbounded problem

LP problem

max
x1,x2

x1 + 2x2

x2 ≤ 1 (41)

−x1 − x2 ≤ −2 (42)

x1, x2 ≥ 0. (43)
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The cost can grow unbounded: ∀α > 0 the isocost line Cα [x1 + 2x2]
intersects the feasible region.

The LP problem is unbounded
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Example: unbounded problem

LP problem

max
x1,x2

x1 + 2x2

x2 ≤ 1 (41)

−x1 − x2 ≤ −2 (42)

x1, x2 ≥ 0. (43)
0 x1

x2
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(41)

(42)
(43)

Unboundedness is often due to modeling errors.
One would automatically detect it, especially when the number of variables
is high.
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Example: infeasible problem

LP problem

max
x1,x2

x1 + x2

−x1 + 2x2 ≤ −1 (44)

x1 − x2 ≤ −1 (45)

x1, x2 ≥ 0. (46)

0 x1

x2

1 2 3 4 5 6
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3

(44)

(45)

(46)
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-1

The feasibility region is empty → infeasible problem

(DIS) Properties of linear programming Industrial Automation 28 / 35



Example: infeasible problem

LP problem

max
x1,x2

x1 + x2

−x1 + 2x2 ≤ −1 (44)

x1 − x2 ≤ −1 (45)

x1, x2 ≥ 0. (46)

0 x1

x2

1 2 3 4 5 6

1

2

3

(44)

(45)

(46)

-1
-1

Infeasibility is often due to modelling errors.
One would automatically detect it, especially when the number of variables
is high.

(DIS) Properties of linear programming Industrial Automation 28 / 35



Outline

1 Representations of LP problems

2 LP: properties of the feasible region
Basics of convex geometry

3 The graphical solution for two-variable LP problems

4 Properties of linear programming

5 Algorithms for solving LP problems

(DIS) Properties of linear programming Industrial Automation 29 / 35



Properties of linear programming

Fundamental theorem of linear programming

Let
{

max cTx : x ∈ X
}

be an LP problem where X is a polyhedron and
x ∈ Rn. If the problem is feasible, then only one of the following is true:

1 the problem is unbounded;

2 there is at least a vertex of X that is an optimal solution.

Corollary

If X is a nonempty polytope,
then there is a vertex of X
that is an optimal solution 0 x1

x2

x3

v
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Properties of linear programming

Proof of the corollary

Let x1, x2, . . . , xk be vertices of X (their number is finite) and
z∗ = max

{
cTxi , i = 1, 2, . . . , k

}
(maximum of vertex costs).

We want to show that ∀y ∈ X one has cTy ≤ z∗.

From Minkowski-Weyl theorem:
y ∈ X ⇒ ∃λ1, λ2, . . . , λk ≥ 0 :

∑k
i=1 λi = 1 and y =

∑k
i=1 λixi .

Then

cTy = cT
k∑

i=1

λixi =
k∑

i=1

λi
(
cTxi

)
≤

k∑
i=1

λi︸ ︷︷ ︸
=1

z∗ = z∗.

(DIS) Properties of linear programming Industrial Automation 31 / 35



Properties of linear programming

Proof of the corollary

Let x1, x2, . . . , xk be vertices of X (their number is finite) and
z∗ = max

{
cTxi , i = 1, 2, . . . , k

}
(maximum of vertex costs).

We want to show that ∀y ∈ X one has cTy ≤ z∗.

From Minkowski-Weyl theorem:
y ∈ X ⇒ ∃λ1, λ2, . . . , λk ≥ 0 :

∑k
i=1 λi = 1 and y =

∑k
i=1 λixi .

Then

cTy = cT
k∑

i=1

λixi =
k∑

i=1

λi
(
cTxi

)
≤

k∑
i=1

λi︸ ︷︷ ︸
=1

z∗ = z∗.

(DIS) Properties of linear programming Industrial Automation 31 / 35



Properties of linear programming

Proof of the corollary

Let x1, x2, . . . , xk be vertices of X (their number is finite) and
z∗ = max

{
cTxi , i = 1, 2, . . . , k

}
(maximum of vertex costs).

We want to show that ∀y ∈ X one has cTy ≤ z∗.

From Minkowski-Weyl theorem:
y ∈ X ⇒ ∃λ1, λ2, . . . , λk ≥ 0 :

∑k
i=1 λi = 1 and y =

∑k
i=1 λixi .

Then

cTy = cT
k∑

i=1

λixi =
k∑

i=1

λi
(
cTxi

)
≤

k∑
i=1

λi︸ ︷︷ ︸
=1

z∗ = z∗.

(DIS) Properties of linear programming Industrial Automation 31 / 35



Outline

1 Representations of LP problems

2 LP: properties of the feasible region
Basics of convex geometry

3 The graphical solution for two-variable LP problems

4 Properties of linear programming

5 Algorithms for solving LP problems

(DIS) Properties of linear programming Industrial Automation 32 / 35



Algorithms for solving LP problems

Vertex enumeration

If an LP problem is feasible and bounded one can

compute all vertices x1, x2, . . . , xk of X

compute zi = cTxi , i = 1, 2, . . . , k (cost of vertices)

and obtain an optimal solution as xk : cTxk = max {z1, z2, . . . , zk}

The number of vertices of the feasible region can grow exponentially with
n → computationally prohibitive
Example: let X be an hypercube

n X N. of vertices
2 square 22 = 4
3 cube 23 = 8
1000 ipercube 21000 ' 10300

If the computation of a vertex

requires 10−9 s, when n = 1000

the computation time is greater

than 1030010−9 = 10291 s > 10281

centuries
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Efficient algorithms for linear programming

Simplex algorithm

Developed by G. Dantzig in 1947

iterative procedure for generating vertices of X with decreasing cost
(for miminization problems) and for assessing their optimality.

I m constraints and n variables: → maximal number of vertices(
n
m

)
= n!

m!(n−m)!
I in the worst case the complexity of the method is exponential in the

dimension of the LP problem
I ”on average” the method is numerically robust and much more

efficient than vertex enumeration.

infeasibility and unboundedness of the LP problem are automatically
detected
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Efficient algorithms for linear programming

Interior point method

Developed by N. Karmarkar in 1984

iterative procedure that generates a sequence of points lying in the
interior of X and convergings to an optimal vertex

I Convergence to an optimal solution requires a computational time that
grows polynomially with the number of variables and constraints of the
LP problem

I for large-scale LP problems, it can be much more efficient than the
simplex algorithm

infeasibility and unboundedness of the LP problem are automatically
detected
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