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Course schedule

Two modules Lectures
one part on optimization and graphs (Raimondo) Thursday (9-11), Aula 8
one part on nonlinear systems (Ferrara) Friday (14-16), Aula 5

Visiting Prof. G. Ciaramella (a.y. 2018/2019) Tah s (4)
aboratories

Dates: 14/03, 15/03, 21/03, 22/03, 28/03, 29/03 Dates to be announced

Scripts will be provided after each class.
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Course schedule

Website: http://sisdin.unipw.it/labsisdin/teaching/courses/ails/files/ails.php
- course schedule, slides, etc.

Oftfice hours: by appointment

Dipartimento di Ingegneria Industriale e dell'Informazione

C

Davide M. Raimondo: floor F (davide.raimondo(@unipv.it)
Antonella Ferrara: floor F (antonella.ferrara(@unipv.it)
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Textbook and exams

[Textbooks )

* W. L. Winston & M. Venkataramanan “Introduction to Mathematical Programming: Applications
and Algorithms”, 4th ed., Duxbury Press, 2002. ISBN: 0-534-35964-7

* C. Vercellis “Ottimizzazione: Teoria, metodi, applicazioni”, McGraw-Hill,  2008. ISBN:

o 9788838664427 .

Exams: Closed-books closed-notes written exam on all course topics
The part on optimization & graphs lasts 2 hours
Date/time/room on the website of the Faculty of Engineering
No graphic or programmable caleulators are allowed

Registration to exams: Through the university website.
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Control

Classic control Optimization-based control

‘I'Reference lReference

_— Output Optimizer
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The classic controller is replaced by an optimization algorithm that runs on-line




Optimization-based control

Optimization-based control

lReference
= =1 N _
Optimizer M T
Y Input Output
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RS -2 t-1 ot t+N
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Measurements

The optimization uses predictions based on a model to optimize performance
(e.g. minimize costs, maximize return of investment, etc.)




Optimization-based control

Driving a car

minimize (distance from desired path)

subject to constrains on:
* car dynamics
* distance from leading car
* speed limitations

Further details in the course of
Industrial Control (Prof. Lalo Magni)
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O

Identification

Given an input-output data set (u,y), consider the following system 0

< data

Y XiiBi=yi (i=1,---,m)

with m linear equations in n (m > n) unknown parameters 3;, (7 =1,--- ,n).

Let X;; =1, foralli=1,--- ,m. For each i, Xj; is a predefined function of the input u; (i.e. u;, uZ, .
X X2 - X hn

Xor Xoo -0 Xy 2

Define X = , Y=

Xml Xm? e X’rnn Ym

Than, the problem above can be rewritten as X3 = y.
Since the data is affected by noise the equality does not hold in general.
We aim to find the set of parameters which provides the least square error 3 = argming || X 3 — y| |2

If prior knowledge is available, the problem above may be subject to constraints (e.g. 8 > 0).
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Optimal placement/sizing

4 Choose the number and the location of a set of wind turbines in order to maximize the return f
of investment of a wind farm. Several elements need to be taken into account ?_
Calculated power curve . '

Power P (kW) MW Power coefficient Cp (-] - m: m .
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Optimal placement/sizing

Energy Storage Systems (ESS) can help to cope with intermittent /
availability of renewable sources. However, fixed, maintenance, and
operating costs are a critical aspect that must be considered in the
optimal positioning and sizing of these devices

ﬁ ﬁ Factories

Renewable energy

Office buildings

< fr i -

(a) Estimated P* profiles from real load data.
Transmission and P et
distribution equipment Eg m H
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Resources allocation

Demand Driven Employee Scheduling for the Swiss Market

C.N. Jones K. Nolde
Automatic Control Laboratory, Apex Optimization GmbH,
EPFL, Lausanne, c/o Automatic Control Laboratory,
Switzerland, ETH Zurich, 8092 Zurich,
colin. jones@epfl.ch Switzerland,

nolde@control.ee.ethz.ch

June 24, 2013

1 Introduction

Standard practice for Swiss refail chains is (o schedule employees so that the tolal number of
workers present in the store is approximalely constani duning open hours. The number of shop-
pers, however, Muctuates throughoot the day, which results in periods of under- andfor over-
stafling that in lwm reduces the electiveness of the workforce. This paper repors on a new
scheduling system that has been developed specifically for the Swiss markel by Apex Oplimica-
tion GmbH. The ool seeks o malch expecied customer demand o the number of sales stafl by
optimizing the shifls of the work force. The system has been successfully wsed by 38 small w
mid-sized retml stores of the Migros chain of Swilzerland over the past year, and the resulis of
this imitial implementation are reporied here.

Schedules are computed on a weekly basis, one or more weeks in advance. Each week, the
employees and/or store managers specily a wide range of store and employee-specific constraints
through a web-based interface. The system then formulates a mixed-inleger oplimization prob-
lem i order to select a shifi schedule that mimmizes over- and under-stafling agamnsi a predicied
customer demand profile, which has been estimated from past sales reconds.
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Routing/redistribution problems

EURO Journal on Transportation and Logistics
August 2013, Volume 2, |ssue 3, pp 187-229

Static repositioning in a bike-sharing system:
models and solution approaches

Authors Authors and affiliations

Tal Raviv[~], Michal Tzur, Iris A. Forma

Abstract

Bike-sharing systems allow people to rent a bicycle at one of many automatic rental stations
scattered around the city, use them for a short journey and return them at any station in the
city. A crucial factor for the success of a bike-sharing system is its ability to meet the fluctuating
demand for bicycles and for vacant lockers at each station. This is achieved by means of a
repositioning operation, which consists of removing bicycles from some stations and
transferring them to other stations, using a dedicated fleet of trucks. Operating such a fleetin a
large bike-sharing system is an intricate problem consisting of decisions regarding the routes
that the vehicles should follow and the number of bicyeles that should be removed or placed at
each station on each visit of the vehicles. In this paper, we present our modeling approach to the
problem that generalizes existing routing models in the literature. This is done by introducing a
unique convex objective function as well as time-related considerations. We present two mixed
integer linear program formulations, discuss the assumptions associated with each, strengthen
them by several valid inequalities and dominance rules, and compare their performances ¢
through an extensive numerical study. The results indicate that one of the formulations is very
effective in obtaining high quality solutions to real life instances of the problem consisting of up
to 104 stations and two vehicles. Finally, we draw insights on the characteristies of good

solutions.




Routing/redistribution problems

The Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities...
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Routing/redistribution problems

The Travelling Salesman Problem

Given a list of cities and the distances between each pair of cities...

The objective function 1s the
minimization of the cost of the path
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Planning of production processes

Investment
strategy
1
Management i
(dec%ions) Marketing
Human resources
p allocation
Proglg%tion Products
Control of
production
processes

Management science: optimal decisions for complex problems




Planning of production processes

Investrment Management: decisions can be either “instinctive” or structured
strategy

P “Instinctive” decisions:

P Pros: rapidity and flexibility

Management

—

(decisions) Marketing
Human resources P Cons: no quantitative model
allocation
nglgﬁion oroducts P limited number of the alternatives Suebccixspit(i)rrr]lgl
Control of P limited understanding of decision criteria
production
processes

Drawbacks can be extremely critical if decisions are complex
(several alternatives / mutually dependent choices / limited resources)




Planning of production processes

Investment

strategy
[ -
Management Marketin
(decisions) g
Production
plan

Human resources
allocation

Control of
production
processes

Products

Management: decisions can be either “instinctive” or structured

P Structured decisions (based on a quantitative model):
P Pros:
P Better understanding of the problem
P consideration of all possible alternatives
P precise decision criteria
P optimal decisions can be tacken even for complex problems

P Cons: getting a mathematical model of a decision problem might be time and
resource consuming

P trade-off between time/resources for decision-making and benefits of
optimality. Very often optimality wins !

@




Example: product mix

A company manifactures two radio models (low-cost and high-end) and produces

two components
P Department A: antennas
P no more than 120h hours of production per day
P 1h of work for a low-cost antenna
P 2h of work for a high-end antenna
P Department B: cases
I no more than 90h hours of production per day
P 1h of work for a low-cost case
P 1h of work for a high-end case
The company has two assembly lines (1 radio=1 antenna + 1 case)
P Line 1: production of low-cost models. No more than 70 units/day
P Line 2: production of high-end models. No more than 50 units/day

e ——————————————————————————————————————————————



Example: product mix

1h low-cost 2h high-end
A A
Department A Line 1
120 h/day) (70 units/day)
1h low-cost 1h high-end
A
Department B Line 2
(90 h/day) (50 units/day)

Profits: 20 Euro for a low-cost radio and 30 Euro for a high-end radio

Assuming the company will sell all the radios, which is the optimal humber of
units, for each model, that must be prq)duced daily for maximizing the
revenue”?

Optimal daily production plan = mix of two products



Example: product mix

1h low-cost oh high-end
4 A
Department A Line 1
120 h/day) (70 units/day)
1h low-cost 1h high-end
A
Department B Line 2
(90 h/day) (50 units/day)

Instinctive (and greedy) manager: higher profits for high-end models & maximize
their production (50 units/day)

Department A: 100h for high-end antennas (50 antennas) & 20h for low-cost antennas
(20 antennas)

Department B: 50h for high-end cases (50 cases) &> 20h for low-cost cases (20 cases)
Line 1: 20 low-cost radios per day
Line 2: 50 high-end radios per day

Daily profits: 20*20+50*30=1900 Euro. Is there any better solution ?



Example: product mix

1h low-cost

2h high-end
A A
Department A Line 1
120 h/day) (70 units/day)
1h low-cost 1h high-end
A
Department B Line 2
(90 h/day) (50 units/day)

Smart manager: 60 low-cost models and 30 high-end models

Department A: 60h for high-end antennas (30 antennas) £ 60h for low-cost antennas (60
antennas)

Department B: 30h for high-end cases (30 cases) &> 60h for low-cost cases (60 cases)

Line 1: 60 low-cost radios per day

Line 2: 30 high-end radios per day

Daily profits: 60*20+30*30=2100 Euro



Example: product mix

1h low-cost oh high-end

4 A

Department A
120 h/day)

1h low-cost 1h high-end

A

Department B
(90 h/day)

Line 1
(70 units/day)

Line 2
(50 units/day)

Decisions taken by the
smart manager are optimal
(profits cannot increase)

Smart manager: 60 low-cost models and 30 high-end models

Department A: 60h for high-end antennas (30 antennas) &> 60h for low-cost antennas (60

antennas)

Department B: 30h for high-end cases (30 cases) & 60h for low-cost cases (60 cases)

Line 1: 60 low-cost radios per day

Line 2: 30 high-end radios per day
Daily profits: 60*20+30*30=2100 Euro




Example: product mix

1h low-cost oh high-end
A A
Department A Line 1
120 h/day) (70 units/day)
T : How the manager came up
1h high-end > .
A with this plan ? How can
, we certify it is optimal ?
Department B Line 2
(90 h/day) (50 units/day)

Smart manager: 60 low-cost models and 30 high-end models

Department A: 60h for high-end antennas (30 antennas) &> 60h for low-cost antennas (60
antennas)

Department B: 30h for high-end cases (30 cases) & 60h for low-cost cases (60 cases)

Line 1: 60 low-cost radios per day

Line 2: 30 high-end radios per day

Daily profits: 60*20+30*30=2100 Euro




Example: product mix

1h low-cost oh high-end
A A
Department A Line 1
120 h/day) (70 units/day)
T : How the manager came up
1h high-end > .
A with this plan ? How can
, we certify it is optimal ?
Department B Line 2
(90 h/day) (50 units/day)

4

Answers to both

Smart manager: 60 low-cost models and 30 high-end models

Department A: 60h for high-end antennas (30 antennas) &> 60h for low-cost antennas (60

antennas) : questions in the
Department B: 30h for high-end cases (30 cases) & 60h for low-cost cases (60 cases)
Line 1: 60 low-cost radios per day next lectures !

Line 2: 30 high-end radios per day
Daily profits: 60*20+30*30=2100 Euro




Optimization

Mathematical formalization
_I_

Optimized algorithms

Is 1t worth?
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Optimization

[553 bl

SPECTRUM £
Amazon Acquires Kiva Systems for $775 \
Million

By Erico Guizzo
Posted 20 Mar 2012 3:21 GMT

Al Magazine Volume 29 Number | (2008) (© AAAI)

Coordinating Hundreds of
Cooperative, Autonomous
Vehicles in Warehouses

Peter R. Wurman, Raffaello D’Andrea,
and Mick Mountz
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Introduction to optimization

Optimization 1s also known as mathematical programming

Programming means planning or building an action plan for solving a problem
or taking a decision

Optimization falls in the fields of operations research and management
science




Introduction to optimization

gi(x)<0
=127 m

[Basic problem:  min  f(x) ]

Variables: T = [331, e ,ﬂfn]—r

Constraints: ¢; : R" - R, 1 =1,2,--- ,m
Feasible region: X ={x € R" : g1(2) <0, -, gm(z) <0}

Feasible solution or feasible point: x € X

Objective function (or cost): f: X — R

] ) .
C

O
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Introduction to optimization

Basic problem:  min  f(x) 3 K r" € X is an optimal solutioh

gi (2)<0 (global minimum point) if
i=1,2.--.m

f(x)

fla®) < fz), Ve e X

10 —

A T € X is a local optimal solution

of (local minimum point) if

1" Qwo:vxex,nx—fn<e:>f(;z)gf(zy
i In the figure: X; and X, are respectively a

S S oracos cpaars s ane nas v Y = . =TT 3 pe— it it i i

local and the global minimum point. @ _



Introduction to optimization

Basic problem: min €T
p nin f(z)
i=1.2 m

In some cases, the basic problem can be
infeasible (if X = ()
unbounded (if Vk <03z € X : f(z) < k)

Even if the basic problem is feasible and bounded, optimal solutions could
exist and be not unique (e.g / (x) constant)

not exist e.o. mine* rc R ‘
& <0

ol

] ) .
C

O
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Introduction to optimization

gi(x)<0
=127 m

[Basic problem:  min  f(x) ]

No easy way to solve the basic problem 1n its full generality!

Need of numerical algorithms

Often, only local optimal solutions can be computed




Introduction to optimization

Maximum problems: max  f(x)
gi ()0
1=1,2,---,m

The problem is unbounded i Vk > 0 dv € X : f(x) > k

x* € X is an optimal solution (global maximum point) if

f(z™) > f(x),Vre X

T € X is a local optimal solution (local maximum point) if

Je>0:Vee X, |jlz—2|| <e— f() > f(x)




Conversion in the basic problem form

optimal solutions

Conversion maximum/minimum: | max f(z) = — min — f(2) Gt ok
reX reX
both problems




Conversion in the basic problem form

optimal solutions

Conversion maximum/minimum: | max f(z) = — min — f(2) Gt ok
reX reX
both problems

Conversion from < to > in the constraints

freR":g(x) >0} ={xcR": —g(x) <0} the feasible region

o does not change




Conversion in the basic problem form

optimal solutions

Conversion maximum/minimum: | max f(z) = — min — f(2) Gt ok
reX reX
both problems

Conversion from < to > in the constraints

freR":g(x) >0} ={xcR": —g(x) <0} the feasible region

o does not change

Conversion from equalities to inequalities in the constraints

N . An equality constraint
{reR" 1 g(x) =0} ={r e R" : g(x) < 0,9(x) = 0} is replaced by two

@), inequality constraints (&)

B R i e ———e - - R ————— — S S — e r— —_——
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Classes of optimization problems |

Basic problem: gir(gl)réo

i=1,2,--,m

f() ]

f(x) is quadratic if f(z) = 2' Qx4+ ¢' 2 (Q matrix, ¢ vector)
f(x) is linear if f(z) =c¢' 2
f(x)is affine if f(x) =c¢' 2+ b (b constant)




Classes of optimization problems | ssepmoben i, 16 ]

i=1,2,,m

f(x) is quadratic if f(z) = 2' Qx4+ ¢' 2 (Q matrix, ¢ vector)
f(x) is linear if f(z) =c' 2
f(x) is affine if f(2) =c 2+ b (b constant)
Notable problems for which etficient algorithms exist
f(2) is convex and ¢;(x) are convex = convex programming
if f(x)is quadratic and g;(z) atre affine = quadratic programming

if f(x)is linear and g;(x) are affine = linear programming

If the variables must also verify x € Z" we have integer programming (mixed-integer
programming 1f only a subset of the variables 1s constrained to integer values) )

——



Convex programming

42
Definition: given two points 2,y € R’} the set y
Ty={dx+(1—=Ny: Ae[0,1]} -
is a segment joining & and Y %
> -
0 X1
Definition: the set X C R" is convex if O <A>
T AUB
v, Y€ X e Ty € X convex not convex _polyhedron not convex
(without the boundary
convex

R"™ i
1s convex




Convexity and intersection

Proposition (try to prove it at home): the intersection of two convex sets 1s a convex set.

Note: the proposition implies that the empty set 1s also a convex set.

ea

AN B convex AN B = & convex AU B not convex
AN B convex

Attention: the union of two convex sets is not convex in general!




Convex functions

Definition: a function f : X — R on a convex set X C R" is convex if Va,y € X and
A€ [0, 1] one has f(Ax + (1 = A)y) < Af(x) + (1= N)f(y)

e s o e Bt e : vy g ry=reey T P T T Yy



Convex functions

Definition: a function f : X — R on a convex set X C R" is convex if Va,y € X and
A€ [0, 1] one has f(Ax + (1 = A)y) < Af(x) + (1= N)f(y)

) 0
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Convexity and smoothness

[A convex function f : X — R, X C R" is continuous in the interior of X] =) A ()

éeorem — convexity test for smooth functions

=

Let X C R" be open and convex andlet f : X — R bea C ? function.
e f is convex only if the Hessian matrix H () is positive semidefinite

Vo € X.In particular, if X C R™ and f € C?, then f is convex only if

>

{1 Q@
-;] Z
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Convex functions and sets

Theorem
Let g : R™ — R be a convex function and take ¢ € R. Then, the level set
Xc={x € R": g(x) < c} is convex.

18(x)

(=

0- x - X

Proof. Pick x,y € X. and A € [0,1] and consider z = Ax + (1 — A)y: we
have to show that z € X..

From the convexity of g one has that g(z) < Ag(x) + (1 — X\)g(y). Since
x,y € Xc one has

g(z) < Ag(x) +(1—=A)gy) SAc+(1-A)c=c

that implies z € X..




Convex functions and sets

Key corollary
Consider the optimization problem

min  f(x)
gi(x)<0
i=1,2,....m
If functions gj(x), i = 1,2,..., m are convex, then the feasibile region is
convex. A

Proof. The proof follows from the previous theorem and the fact that
convexity is preserved by intersection.

In convex programming, the feasible region is convex ]




Fundamental theorem of convex programming

Theorem

If X € X is a local optimal solution for the convex programming problem
{minf(x): gi(x) <0,i=1,2,...,m}

then X is an optimal solution.

Remarks

Often one tries to transform a programming problem into a convex
programming problem by performing suitable changes of variables




Fundamental theorem of convex programming

Remarks
The optimization problem {maxf(x): gi(x) <0,i=1,2,...,m} is not a
convex programming problem even if f and g;, i = 1,2,..., m are convex.

Indeed, it is equivalent to {— min —f(x) : gi(x) <0,i=1,2,..., m}
where the function —f(x) is concave.

Notable exception: f(x) linear.




Proof of the theorem

The goal is to show f(X) < f(y) Vy € X.

Fix y € X, y # X and let I.(X) be a neighborhood

of X such that z € I.(X) = f(X) < f(z). Pick X
z € X such that z € Xy, z € I(X) and z # X.

Such a z exists because

z=Ax+(1-N)y

and
@ choosing A sufficiently close to 1 guarantees z € [.(X)

@ choosing \ # 1 guarantees z # X

e ————————————————————— ——————————————



Proof of the theorem

Then,

f(x) < f(z) =f(Ax+(1-A)y) <

~—

local optimizer
< (X 1—M\)f
< MK+ (1 =Mf(y)

f convex

From the last inequality one has

(1 - NF(3) < (1 - NF(y) = F(R) < F(y)
AN#£1




