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Introduction

Historical Background

The origins of feedback control date back to the ancient world,
with the advent of level control, water clocks, and
pneumatics/hydraulics systems.

From the 17th century on-wards, systems were designed for
temperature control in furnaces, the mechanical control of mills,
and the regulation of steam engines.

It was only during the 19th century that it became clear that
feedback systems were prone to instability or oscillatory
behaviors.
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Introduction

Historical Background

This was particularly true for Relay-based control systems:

A relay is an electrically operated switch.

The first relays were used in long distance telegraph circuits as
amplifiers (a simple relay was included in the original 1840 telegraph
patent of Samuel Morse).

Relays were used extensively in early control systems to perform
logical operations. In particular, they could implement on-off
control actions: these can be regarded as primordial sliding mode
(or better, variable structure) control strategies.

A theory was needed!
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Introduction

Historical Background

Spurred by servo and communications engineering developments of
the 30s, the coherent body of theory known as classical control
emerged during and just after WWII in the US, UK and elsewhere.

In the 50s and 60s, an alternative approach to dynamic modelling
was developed in the Soviet Union based on the works by Poincaré
and Lyapunov. Information was gradually disseminated, and
state-space or modern control techniques rapidly developed.

But only at the end of the 70s, with the first publications in English
by Vadim I. Utkin (Ph.D. 1964, Institute for Control Sciences,
Moscow, Russia), a theory of relay-based control was disclosed. It
was the beginning of Sliding Mode Control Theory.
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Basic Concepts in Sliding Mode Control

Introduction: Basic Concepts in Sliding
Mode Control
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Basic Concepts in Sliding Mode Control

The Basic Terms

Consider a generic dynamical system S described by its state equation

ẋ(t) = f(x(t), u(t), t)

with x(t0) = x0, and t, t0 ∈ [0, +∞)

x(t) ∈ Rn is the system state

u(t) ∈ Rm is the system input (i.e. the control input)

Consider a function of the system state σ(x(t)) ∈ Rm and the associated
manifold σ(x(t)) = 0 (0 null vector of dimension m)

σ(x(t)) is the sliding variable

σ(x(t)) = 0 is the sliding manifold

Prof. Antonella Ferrara Sliding Mode Control, Advanced Automation and Control



Basic Concepts in Sliding Mode Control

The Concept of Sliding mode

The sliding manifold is a subspace of the system state space
having dimension n−m.
It can be a single surface or be given by the intersection of several
surfaces.
When the state trajectory continuously crosses the sliding
manifold, since in its vicinity the state motion is always directed
towards the manifold, a sliding mode is enforced.
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Basic Concepts in Sliding Mode Control

The Design Ingredients
Two elements need to be “designed”:

The sliding manifold: it is designed so that the system in sliding
mode evolves in the desired way (e.g. it results in being linearized
and its state is asymptotically regulated to zero, or it satisfies some
optimality requirement, etc.).
The control law: it has to be chosen in order to enforce a sliding
mode.

An important design requirement
The sliding mode needs to be enforced in a finite time!
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Basic Concepts in Sliding Mode Control

The Equivalent System and its Properties

The system in sliding mode
It has two interesting properties:

Order reduction: the system in sliding mode changes its
order from n to n−m.
Invariance property: it is insensitive to “matched
uncertainties” (i.e. uncertain terms affecting the system on
the control channel).

The reduced order state equation describing the system in sliding
mode is called equivalent system.

Its dynamics can be assigned by suitably designing the sliding
manifold.
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Basic Concepts in Sliding Mode Control

Two Simple Examples to Illustrate Some Facts

EXAMPLE 1: Consider an unstable second order system

[
ẋ1
ẋ2

]
=
[
0 1
1 2

] [
x1
x2

]
+
[
0
1

]
u

Design the control input as u = −3x1 or u = 2x1
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Basic Concepts in Sliding Mode Control

Example 1 (cont’ed)

The controlled system has an unstable focus if u = −3x1, and a saddle
point if u = 2x1.

u = −3x1 u = 2x1
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Basic Concepts in Sliding Mode Control

Example 1 (cont’ed)

Now select a sliding manifold: σ = c1x1 + x2 = 0, c1 > 0, and
design the control input as a combination of the two previous
control laws:

u = k(σ, x1)x1, k(σ, x1) =
{
−3 σx1 > 0
2 σx1 < 0

The control law is a variable structure control law!

→ The controlled system becomes a Variable Structure
System (VSS)
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Basic Concepts in Sliding Mode Control

Example 1 (cont’ed)
The combination of the two (non stabilizing) control laws ensures the
convergence of the system state to the origin.
The origin becomes an asymptotically stable equilibrium point of
the controlled system.

Note: only if c1 < 1 a sliding mode is enforced!

Prof. Antonella Ferrara Sliding Mode Control, Advanced Automation and Control



Basic Concepts in Sliding Mode Control

Example 2

EXAMPLE 2: Consider a double integrator[
ẋ1
ẋ2

]
=
[
0 1
0 0

] [
x1
x2

]
+
[
0
1

]
u, |u| ≤ 1

Design the sliding manifold: σ = c1x1 + x2 = 0, c1 > 0

Note
If σ = 0 in a finite time tr (reaching time) and σ = 0, ∀ t ≥ tr (sliding
mode), then the dynamics of the equivalent system in sliding mode is
of reduced order:

ẋ1 + c1x1 = 0 → x1(t) = x(tr)e−c1(t−tr)

It can be “assigned” by choosing c1!
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Basic Concepts in Sliding Mode Control

Example 2 (cont’ed)
Design the control input:

u =
{
−1 σ > 0
1 σ < 0

Note: it is discontinuos on σ(x) = 0!

Simulink closed-loop scheme
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Basic Concepts in Sliding Mode Control

Example 2 (cont’ed)
The controlled system evolution differs depending on the value of c1 > 0
(having set the control amplitude to 1!)

If c1 is “small”, the state trajectories, following a parabola arc,
reach the line σ = 0 and slide towards the origin (sliding mode).
If c1 is “large”, the state trajectories follow a sequence of parabola
arcs closer and closer to the origin but no sliding mode is generated.

Small c1 Large c1
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Basic Concepts in Sliding Mode Control

Example 2 (cont’ed)

Now perturb the double integrator with an uncertain bounded term[
ẋ1
ẋ2

]
=
[
0 1
0 0

] [
x1
x2

]
+
[

0
d(x1,x2, t)

]
+
[
0
1

]
u, |u| ≤ U

Design the sliding manifold: σ = c1x1 + x2 = 0, c1 > 0

Note
If σ = 0 in a finite time tr (reaching time) and σ = 0, ∀ t ≥ tr (sliding
mode), then the dynamics of the equivalent system in sliding mode is
again:

ẋ1 + c1x1 = 0 → x1(t) = x(tr)e−c1(t−tr)

The uncertain term does not affect the system in sliding mode!
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Basic Concepts in Sliding Mode Control

Lesson Learnt

A variable structure control making the system become a
variable structure system can have a stabilizing effect.

The sliding mode enforcement depends on the choice of the
control law (correct sizing taking into account the sliding
variable definition and the initial conditions).

The system in sliding mode is of reduced order.

The system dynamics in sliding mode can be arbitrarily
assigned.

The system in sliding mode has a nice robustness property.
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Types of Variable Structure Control Laws

Types of Variable Structure Control Laws
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Types of Variable Structure Control Laws

Types of Variable Structure Control Laws

Relay (or Relè) Control

ui(t) =
{
u+

i (x, t) σi(x) > 0
u−i (x, t) σi(x) < 0

i = 1, . . . ,m, where σi(x) = 0 is the i-th surface defining the sliding
manifold

σ(x) = [σ1(x), . . . , σm(x)]T = 0

The design phase consists in designing the sliding variable σ(x) and the
smooth functions u+

i and u−i .
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Types of Variable Structure Control Laws

Types of Variable Structure Control Laws

State Feedback Control with Switching Gains

u = Ψ(x)x(t)

with Ψ = [ψij(x)] ∈ Rm×n, for instance,

ψij =
{
αij σi(x)xj > 0
βij σi(x)xj < 0, i = 1, . . . ,m, j = 1, . . . , n

Unit Vector Control

u = K
σ(x)
‖σ(x)‖
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Types of Variable Structure Control Laws

Types of Variable Structure Control Laws

Control Based on a Simplex of Vectors
In the multi-input case the variable structure control philosophy can also
be implemented by designing a set of m+ 1 control vectors forming a
simplex in Rm.The controlled system switches from one to another of
m+ 1 different structures.

G. Bartolini and A. Ferrara, ”Multi-input sliding-mode control of a class of
uncertain nonlinear systems”, IEEE Trans. Automat. Contr., vol. 41,
pp.1662-1666, 1996
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Types of Systems
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Types of Systems

Canonical Forms

Assumption: The system is nonlinear with respect to the state
variable and linear with respect to the control variable (i.e. affine in
the control input)

The proof of the existence of a sliding mode and the design of the
variable structure control law are simplified if the considered nonlinear
system is expressed in one of the following canonical forms.

1. Reduced Form

The state vector x(t) can be split into two vectors: x1 ∈ Rn−m and
x2 ∈ Rm.

Matrix B(x, t) = [0 B∗]T , with B∗ ∈ Rm×m, is not singular.{
ẋ1 = A1(x, t)
ẋ2 = A2(x, t) +B∗u
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Types of Systems

Canonical Forms

2. Controllability Form

The system is split into m subsystems (m is the number of control
inputs), each of them in Brunovsky canonical form.

Consider x = [x1 . . . xm]T , with dim(xi) = ni, Σm
i=1ni = n.

The final system is ẋ = Ax+ f(x) + b(x)u with A = diag(Ai) and

ẋi = Aixi + fi(x) + bi(x)u, i = 1, . . . ,m

Ai =
[

0 Ini−1
0 0

]
, dim(Ai) = ni × ni

fi(x) =

 0
...

fi0(x)

 , dim(fi) = ni

bi(x) =

 0
...

bi0(x)

 , dim(bi) = ni ×m
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Types of Systems

Canonical Forms

3. Decoupled Input-Output Form

In the SISO case: consider a nonlinear system with output
y = c(x, u). The system relative degree is the order of the time
derivative of y in which the control u first explicitly appears.

In the MIMO case (y ∈ Rm): given the generic output yi, the
associated relative degree ri is the order of the time derivative of
yi in which at least one of the control variables ui first explicitly
appears. The system relative degree is r = r1 + · · ·+ rm.

If r = n, the system {
ẋ = A(x) +B(x)u
y = c(x)

can be represented as the set of m decoupled differential equations

y
(ri)
i = fi(y1, . . . , y

(r1−1)
1 , . . . , ym, . . . , y

(rm−1)
m ) + gi(. . . )ui
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Types of Systems

Canonical Forms

4. Normal Form

Under certain assumptions, if r < n, the following transformation is
possible: let zi,j be a vector including the output yi and its
derivatives up to order j = ri − 1 (for i = 1, . . . ,m, r external
variables).

Consider the variables ηk, k = 1, . . . , n− r, called internal
variables, mutually independent and independent of zi,j .

The transformed system is of the following typeżi,j = zi,j+1 j = 1, . . . , ri − 1
żi,ri

= αi(z, η) +
∑m

k=1 βi,k(z, η)uk, i = 1, . . . ,m
η̇ = γ(z, η), dim(η) = n− r
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Elements of Design
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Elements of Design

Design of the Sliding Manifold

The sliding manifold σ(x) = 0 can be a nonlinear function of x.

Linear sliding manifolds are generally preferred, i.e.:

σ(x) = Cx(t) = 0

with C ∈ Rm×n.

An issue to clarify
How is the sliding manifold designed when one of the previously
described canonical forms is selected?
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Elements of Design

Design of σ(x) for the Canonical Forms

Reduced Form

The state vector is split into x1 and x2. For the sake of simplicity,

σ(x) = σ(x1, x2) = [C1 C2]
[
x1
x2

]
= 0

with C2 being not singular.

In sliding mode{
x2 = C−1

2 C1x1
ẋ1 = A1(x, t) = A1(x1,−C−1

2 C1x1, t)
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Elements of Design

Design of σ(x) for the Canonical Forms

Reduced Form

If A1 is linear,

ẋ1 = A1(x, t) = A11x1 +A12x2

then, the reduced order dynamics is

ẋ1 = [A11 −A12C
−1
2 C1]x1 = [A11 +A12F ]x1

If (A11, A12) is controllable, it is possible to choose F so that the
reduced order system has the desired dynamics in sliding mode
(eigenvalues assignment, optimality, etc.).

Given F , since F = −C−1
2 C1, one can easily design

σ(x) = [C1 C2][x1 x2]T
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Elements of Design

Design of σ(x) for the Canonical Forms

Controllability Form

The system is split into m subsystems

One has
σi = cT

i xi, i = 1, . . . ,m

Major requirement: to select ci for each subsystem so that the
overall controlled system in sliding mode is asymptotically
stable.

The dynamics of each subsystem in sliding mode can be assigned by
selecting the the components of ci.

Each equivalent subsystem has order ni − 1 and has a canonical
controllability (Brunovsky) form. The corresponding characteristic
polynomial has the components of ci as coefficients.
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Elements of Design

Design of σ(x) for the Canonical Forms

Decoupled Input-Output Form

It is analogous to the case of the controllability form.

Normal Form

The so-called “zero-dynamics”, obtained by posing equal to zero the
outputs and their derivatives (i.e. the external variables),{

z = 0
η̇ = γ(0, η)

has to be asymptotically stable.

A typical choice of the sliding variable components is:
σi = cT

i zi, i = 1, . . . ,m.

ci is chosen as in the controllability form so as to assign the
dynamics to the equivalent reduced order subsystem having zi has
state vector.
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Elements of Design

Existence of the Sliding Mode

After the design of the sliding manifold it is necessary to guarantee the
existence of the sliding mode.

Note:
A sliding mode exists if in a vicinity of the sliding manifold σ(x) = 0 the
vector tangent to the state trajectory of the controlled system is always
directed towards the sliding manifold.
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Elements of Design

Existence of the Sliding Mode: Ideal and Practical Sliding
Mode

An ideal sliding mode is enforced if the state trajectory of
the controlled system is such that

σ(x(t)) = 0, t ≥ tr, tr reaching time

To have an ideal sliding mode, the control variable has to
switch at infinity frequency. This is not possible in practice.
The system trajectory oscillates around the sliding manifold
(chattering).
The state evolution in a vicinity of the sliding manifold is
called practical sliding mode.
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Elements of Design

Existence of the Sliding Mode: Ideal and Practical Sliding
Mode
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Elements of Design

The Existence Problem

Note:
The existence problem is a stability problem!

The existence of a sliding mode requires that the state trajectories,
at least from a neighborhood of s(x) = 0 (attraction region), tend
towards the sliding manifold.

The attraction domain can coincide with the whole state space
(globally reachable sliding mode).

The existence of a sliding mode can be proved by using a Lyapunov
function V (x).
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Elements of Design

Existence Condition

In case of single input systems:

V (x) = 1
2σ

2(x)

Note that σ̇ depends on the control variable (then it is discontinuous on
σ = 0!).

The control variable has to be chosen so that in the attraction
region:

V̇ (x) = σσ̇ < 0 reachability condition
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Elements of Design

To Prove the Finite Time Convergence

An alternative way to express the reachability condition is the following
(for the sake of simplicity the single input case is considered):

σσ̇ ≤ −γ|σ| η − reachability condition

with γ > 0, that is
V̇ (x) ≤ −γ′

√
V (x)

In this case it is possible to find an upper bound for the reaching time
tr, by integrating the η-reachability condition between t = 0 (or t0) and
t = tr:

σ(tr)− σ(0) = 0− σ(0) ≤ −γ(tr − 0)

tr ≤
|σ(0)|
γ
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Elements of Design

Useful References
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