
Advanced Automation and Control

Laboratory 2

Prof. Davide M. Raimondo with the collaboration of Dr. Marcello Torchio

Mixed Integer Linear Programming

Problem description

The production process of smart washing machines at the ACME company can be conducted in three
different ways: (i) manually, (ii) semi-automatically, and (iii) automatically. However, the acquisition of
new technology such as the semi-automatic or the automatic one requires a fixed cost of respectively 2000
(semi-automatic) and 4500 (automatic) euros. Each of the production approaches involves the allocation
of different amounts of human resources. In particular, the manual production demands 2 minute of
qualified work, 40 minutes of non-qualified work and 4 minutes of assemblage. If the semi-automatic
solution would be chosen, 4 minutes of qualified work, 20 minutes of non-qualified work, and 8 minutes
for the assemblage would be required. Finally, 8, 10 and 12 minutes respectively would be required for the
automatic method. ACME has a pool of 4000 minutes of qualified work, 8000 minutes of non-qualified
work and 12000 minutes of assembly. The production costs of a washing machine are 45 euros if produced
manually, 40 euros if produced semi-automatically, and 35 euros if produced automatically. Each smart
washing machine is sold at 90 euros. From a commercial point of view, the ACME company is interested
in the following objective:

Find the optimal number of washing machines to be produced in order to maximize the profit

A mixed integer linear program can be derived in order to support the decision-making process at ACME.

Problem formulation

The optimization variables of the problem are x1, x2 and x3 (continuous) which are used to represent
the number of washing machines produced using the manual, semi-automatic, and automatic methods
respectively and δ2, δ3 (binary) which are used to indicate whether a certain technology is acquired or
not. In particular

δ2 = 1↔ x2 > 0

δ3 = 1↔ x3 > 0

1



The optimization problem can be formulated as follows

max
x1,x2,x3,δ2,δ3

85x1 + 65x2 + 55x3 − 2000δ2 − 4500δ3

subject to

2x1 + 4x2 + 8x3≤ 4000
40x1 + 20x2 + 10x3≤ 8000

4x1 + 8x2 + 12x3≤ 12000
εδ2 − x2≤ 0
εδ3 − x3≤ 0

x2 − U2δ2≤ 0
x3 − U3δ3≤ 0
x1, x2, x3≥ 0

δ2, δ3 ∈ {0, 1}

.

where U2 and U3 are upper bounds on the optimization variables x2 and x3 (please compute the tightest
upper bounds for such variables).

The solution of the problems above has been addressed in the scripts:

• MILP example glpk.m (it relies on the MATLAB function glpk for solving MILPs)

• MILP example yalmip.m (it makes use of Yalmip, a free MATLAB Toolbox for rapid proto-
typing of optimization problems)

Both scripts make use of the MPT Toolbox which, among the many features, includes Yalmip and allows
the plotting of polyhedra. To execute the scripts use the commands:

• [x,fval,exitflag]=MILP example glpk(1)

• [x,fval,exitflag]=MILP example yalmip(1)

Both functions accept one argument which represents a flag that if set to 1 allows the plotting of isocost
lines. The ouput arguments xout, δout, fval and exitflag provide respectively the optimal value of the
continuous and binary variables, the optimal cost and a flag indicating whether the optimization was
completed successfully or any problem occurred (problem not feasible, unbounded, etc.). Note that the
meaning of exitflag is different when provided by yalmip or glpk (see the scripts for further details).

In order to account for the presence of binary variables, Yalmip relies on the function binvar. Glpk
has a structure similar to linprog but accepts among its arguments the parameter vartype. This latter
is a string which contains a ’C’ or a ’B’ to indicate that a certain variable is continous or discrete. In
our case, for example, the string ’CCCBB’ would indicate that x1, x2, x3 are continuous while δ2, δ3 are
binary. Please use help binvar and help glpk for further information.

Both scripts make use of the function Polyhedron (use help Polyhedron to see how it works) in or-
der to plot feasible sets and iso-cost lines. The scripts come with detailed comments (use the editor to
see inside the files) which should help the reader in understanding the routines. The scripts return also
the time required by glpk and yalmip to solve the MILP programs. While Yalmip is quicker to program,
it is usually slower in solving the optimization (conversion overhead).

Using the glpk script and then the yalmip one:

1. Solve the optimization problem. Are the obtained outcomes meaningful? Why? Could you explain
why the feasible sets are so different depending on the values of the binary variables?

2. Solve now the problem with 3500 minutes as maximum number of qualified work. What happens
now? Is the result meaningful? Please replace sdpvar with intvar in Yalmip and ’C’ with ’I’ in the
vartype of glpk. These modifications allow to specify that x1, x2, x3 are integer. Are the obtained
results now meaningful?

2

http://people.ee.ethz.ch/~mpt/3/


3. Assume now that if the number of produced units goes over 400, then the plant needs an expansion
of the production site which comes at a price of 5000 euros. Please reformulate in Yalmip the
optimization problem taking into account this extra problem. What is now the optimal solution?

4. Assume now the price for the site expansion is of 8000 euros. What happens in this case?

5. Please formulate the problem with the expansion site costs in glpk (this implies the reformulation
of the logical statement into mixed-integer constraints.

3


