Identificazione dei Modelli e Analisi dei Dati II

Prof. G. De Nicolao

I prova in itinere - 9 Aprile 2013

Cognome	Nome
Matricola	Firma

- Compilare a penna questo foglio all'inizio della prova.
- Durante lo svolgimento della prova, non è consentito l'uso di materiale diverso dai comuni strumenti di calcolo, scrittura e disegno.
- Le risposte devono essere scritte in modo chiaramente leggibile nello spazio immediatamente seguente ogni domanda (se necessario, a seguito di cancellature, passare sul retro).
- Le uniche risposte valide sono quelle riportate nel presente fascicolo, che va consegnato, senza fogli addizionali, al termine della prova.

1.	
2.	
3.	
4.	

1. Si considerino delle V.C. i.i.d. $X_i \sim N(0, \theta + \sigma^2)$, dove σ^2 è una quantità nota. Ricavare, riportando i passaggi, la stima a massima verosimiglianza di θ .

2. Si considerino n prove di Bernoulli con probabilità p di successo. Conoscendo il numero dei successi, ricavare, riportando i passaggi, l'espressione dello stimatore ML di p.

3. Si consideri il seguente modello:

$$Y_k = a_k \theta + V_k, k = 1, ..., n, V \sim N(0, \sigma^2 I)$$

dove σ^2 e a_k sono scalari noti.

(a) Ricavare, riportando i passaggi, l'espressione di θ^{ML} .

(b) Scrivere l'espressione di $Var[\theta^{ML}]$.

(c) Supponendo che $\theta \sim N(0,\lambda^2)$ sia una V.C., indipendente da V, ricavare, riportando i passaggi la stima di Bayes θ^B .

(d) Scrivere l'espressione di $Var[\theta^B]$.

4. Dire se le seguenti affermazioni sono vere o false: (Punteggi esatta =1, errore=-1, non risponde =0)	o: risp	osta
	V	F
(a) La stima MAP è sempre unica.		
(b) Lo stimatore a massima verosimiglianza della media di esponenziali coincide con la media campionaria.	V.C. i	.i.d.
(c) La varianza a posteriori $Var[\theta X]$ non dipende dai dati X	ζ.	
(d) Se X e Y sono V.C. scalari congiuntamente gaussiane, allor $y] = \sigma_X^2 - \sigma_{XY}^2/\sigma_Y^2$.	a $Var[$.	X Y =
(e) Date X e Y V.C. scalari e congiuntamente gaussiane, se E non dipende da y , allora X e Y sono indipendenti.	$\mathbb{E}[X Y]$	=y]
(f) Per il modello $Y = \Phi \theta^o + V, V \sim N(0, \sigma^2 \Psi)$, il calcolo di richiede che sia soddisfatta la condizione di identificabilità		non
(g) Per il modello $Y = \Phi \theta^o + V, V \sim N(0, \sigma^2 \Psi)$, la stima ML o polarizzata.	$\mathrm{di}\;\sigma^2$ è	non
(h) La matrice varianza di uno stimatore ML è sempre pari della matrice di informazione di Fisher.	all'inv	erso
(i) Per il modello $Y = \Phi \theta^o + V, V \sim N(0, \sigma^2 \Psi)$, con σ^2 nota, la degli intervalli di confidenza per i parametri θ non dipendi		
(j) L'algoritmo di Gauss-Newton garantisce convergenza ad locale.	un min	imo