Identificazione dei Modelli e Analisi dei Dati LS

Prof. G. De Nicolao

I prova in itinere - 24 Novembre 2009

Cognome	Nome
Matricola	Firma

- Compilare a penna questo foglio all'inizio della prova.
- Durante lo svolgimento della prova, non è consentito l'uso di materiale diverso dai comuni strumenti di calcolo, scrittura e disegno.
- Le risposte devono essere scritte in modo chiaramente leggibile nello spazio immediatamente seguente ogni domanda (se necessario, a seguito di cancellature, passare sul retro).
- Le uniche risposte valide sono quelle riportate nel presente fascicolo, che va consegnato, senza fogli addizionali, al termine della prova.

1.	
2.	
3.	
4.	

1. Si considerino una V.C. scalare θ di tipo esponenziale, con $E[\theta]=1/\lambda,$ ed un vettore casuale X tale che

$$X|\theta \sim N(\theta, \sigma^2 I)$$

I parametri λ e σ^2 sono noti.

(a) Scrivere, motivando la risposta, l'espressione del problema di ottimizzazione la cui soluzione fornisce θ^{MAP} .

(b) Si supponga che $X=\begin{bmatrix}2&4&3\\\\\text{tando i passaggi, il valore di }\theta^{MAP}$. Calcolare, riportando i passaggi, il valore di θ^{MAP} .

2. Siano $X_i \sim N(\theta, \sigma_i^2), \ i=1,\ldots,n$ delle V.C. tra loro indipendenti con σ_i^2 note. Ricavare, riportando i passaggi, lo stimatore θ^{ML} .

3. Si consideri il seguente modello:

$$Y_i = \theta_1 x_i + \theta_2^3 + V_i, i = 1, 2, 3, V \sim N(0, I)$$

$$x_1 = 1, x_2 = -2, x_3 = 1$$

$$Y_1 = 3, Y_2 = -1, Y_3 = 1$$

(a) Supponendo che $\theta^k=\left[\begin{array}{cc}1&1\end{array}\right]$, ricavare θ^{k+1} mediante l'algoritmo di Gauss-Newton.

(b) Calcolare θ^{ML} senza usare algoritmi iterativi.

4. Dire se le seguenti affermazioni sono vere o false: (Punteggio: risposta esatta =1, errore=-1, non risponde =0)	ì
V = F	7
(a) La stima a massima verosimiglianza si basa sull'ipotesi che le osservazioni siano i.i.d	-
]
(b) Siano $X_i \sim N(\theta, \sigma_i^2)$, $i = 1,, n$ delle V.C. tra loro indipendenti Allora, θ^{ML} coincide con la media campionaria se e solo se $\sigma_i^2 = \sigma^2$ $\forall i$.	
]
(c) Se X e θ sono incorrelate, la varianza dell'errore di stima dello stimatore MS lineare è pari a $Var[\theta]$.	-
]
(d) La stima θ^B , se esiste, è unica.	
]
(e) Se $f_{\theta}(\theta)$ è costante, allora $\theta^{MAP} = \theta^{ML}$.	
]
(f) Per il modello $Y=\Phi\theta^o+V, V\sim N(0,\sigma^2\Psi),\;\theta^{ML}$ è gaussiana se o solo se σ^2 è nota.	9
]
(g) Per il modello $Y=\Phi\theta^o+V, V\sim N(0,\sigma^2I)$, relativamente alla stima θ^{ML} , la V.C. SSR è gaussiana.	ì
]
(h) Si consideri lo stimatore di Bayes per il modello $Y = \Phi\theta + V, V \sim N(0, \Sigma_V), \theta \sim N(0, \Sigma_\theta), \ \Sigma_V = \sigma^2\Psi > 0, \ \sigma^2\Sigma_\theta > 0, \ \theta \in V$ indipendenti. Allora, θ^B non dipende da σ^2 .	
]
(i) Per il modello $Y=\Phi(\theta^o)+V, V\sim N(0,\sigma^2\Psi)$, il vettore dei residu $\epsilon:=Y-\Phi(\theta^{ML})$ è gaussiano.	i
]
(j) Il test F per modelli lineari nei parametri assume la gaussianità de dati.	i
]