Identificazione dei Modelli e Analisi dei Dati MN

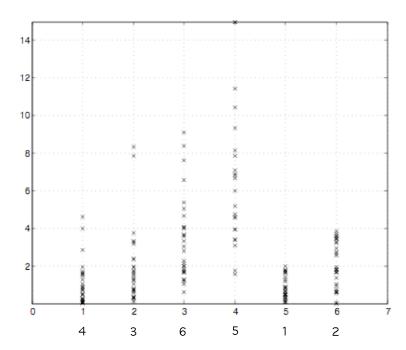
Prof. G. De Nicolao

Prova scritta - 2 Maggio 2005

Cognome	Nome
Matricola	Firma

- Compilare a penna questo foglio all'inizio della prova.
- Durante lo svolgimento della prova, non è consentito l'uso di materiale diverso dai comuni strumenti di calcolo, scrittura e disegno.
- Le risposte devono essere scritte in modo chiaramente leggibile nello spazio immediatamente seguente ogni domanda (se necessario, a seguito di cancellature, passare sul retro).
- Le uniche risposte valide sono quelle riportate nel presente fascicolo, che va consegnato, senza fogli addizionali, al termine della prova.

1.	5
2.	10
3.	6
4.	6


1. Si considerino le seguenti densità di probabilità (in tutti i casi $f_X(x) = 0, x < 0$):

1.
$$f_X(x) = 1/2$$
, $0 < x < 2$ 2. $f_X(x) = 1/4$, $0 < x < 4$

3.
$$f_X(x) = e^{-x}$$
 4. $f_X(x) = 2e^{-2x}$

5.
$$f_X(x) = Erlang_2(\lambda = 2)$$
 6. $f_X(x) = Erlang_2(\lambda = 4)$

Nel seguente grafico sono riportati 30 valori estratti da ciascuna delle densità. Scrivere sopra ciascun diagramma di dispersione il numero della corrispondente densità.

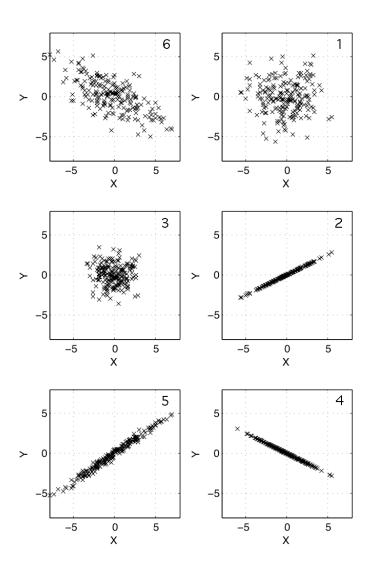
2.	2. Dire se le seguenti affermazioni sono vere o false: (Punteggio: risposta esatta =1, errore=-1, non risponde =0)		
		V	F
	(a) Se A e B sono eventi indipendenti, allora $P(A+B) = P(A+B)$	A) + P((B).
			\boxtimes
	(b) Se la somma di due dadi è uguale a 4, allora la probab primo sia uguale a 1 è pari a $1/3$.	oilità ch	ne il
		\boxtimes	
	(c) Due eventi A e B non possono essere sia incompatibili cladenti.	ne indip	oen-
			\boxtimes
	(d) La probabilità di avere più di un successo in n prove di uguale a $1-npq-q^n$.	Bernou	lli è
			\boxtimes
	(e) La probabilità di non avere nessun evento di Poisson in un di lunghezza T è uguale a $e^{-\lambda T}$.	ı interv	allo
		\boxtimes	
	(f) Date due V.C. congiunte X e Y , $P(x_1 < X \le x_2, y_1 < F_{XY}(x_2, y_2) - F_{XY}(x_2, y_1) - F_{XY}(x_1, y_2) + F_{XY}(x_1, y_2)$		$y_2)$
		\boxtimes	
	(g) Se $V = aX + b$, $W = cX + d$, allora $Cov[V, W] = Cov[X, d]$	Y].	
			\boxtimes
	(h) Se U e V sono V.C. indipendenti entrambe uniformi in [$Y=U-V$ ha una ddp a triangolo in $[-1,1]$.	0, 1], al	lora
		\boxtimes	
	(i) Siano X e Y due V.C. scalari. Allora, $Var[X+Y]=Var[Y]+Cov[X,Y].$	Var[X	[] +
			\boxtimes
	(j) La disuguaglianza di Cebicev afferma che, $\forall \epsilon<0,\; P(X \epsilon)\leq Var[X]/\epsilon^2.$	-E[X]] ≥
			\boxtimes

3. Date due V.C. V e W gaussiane standard indipendenti, si considerino le seguenti alternative per la definizione di X e Y:

1.
$$X = V + 2W$$
$$Y = 2V - W$$

$$2. \quad X = V + 2W$$

$$Y = 0.5V + W$$


3.
$$X = V + W$$
$$Y = V - W$$

4.
$$X = -V + 2W$$
$$Y = 0.5V - W$$

$$5. \quad X = 3V + W$$
$$Y = 2V + W$$

$$6. \quad X = 3V + W$$
$$Y = -2V + W$$

Scrivere sopra gli scatter plot il numero della scelta corretta.

4. Data una V.C X esponenziale con E[X]=1, si considerino le seguenti definizioni per Y:

1.
$$Y = X/2$$

$$2. \quad Y = \sqrt{X}$$

$$3. \quad Y = \ln\left(x+1\right)$$

3

$$4. \quad Y = e^X - 1$$

5.
$$Y = X^2$$

$$6. \quad Y = 2X$$

Scrivere accanto alle seguenti densitá il numero della definizione corrispondente (in tutti i casi $f_Y(y) = 0, y < 0$).

•
$$f_Y(y) = \frac{1}{(y+1)^2}$$

$$f_Y(y) = \frac{1}{(y+1)^2}$$
 4

$$\bullet \ f_Y(y) = e^{1+y-e^y}$$

$$\bullet \ f_Y(y) = \frac{e^{-\sqrt{y}}}{2\sqrt{y}}$$
 5

$$\bullet \ f_Y(y) = 2ye^{-y^2}$$

$$\bullet \ f_Y(y) = \frac{e^{-y/2}}{2} \tag{6}$$

$$\bullet \ f_Y(y) = 2e^{-2y}$$