Identificazione dei Modelli e Analisi dei Dati

Prof. G. De Nicolao

II Prova scritta - 26 Giugno 2006

Cognome	Nome
Matricola	Firma

- Compilare a penna questo foglio all'inizio della prova.
- Durante lo svolgimento della prova, non è consentito l'uso di materiale diverso dai comuni strumenti di calcolo, scrittura e disegno.
- Le risposte devono essere scritte in modo chiaramente leggibile nello spazio immediatamente seguente ogni domanda (se necessario, a seguito di cancellature, passare sul retro).
- Le uniche risposte valide sono quelle riportate nel presente fascicolo, che va consegnato, senza fogli addizionali, al termine della prova.

1.	
2.	
3.	
4.	

- 1. Si considerino delle V.C. i.i.d. $X_i, i = 1, ..., n,$ con $X_i \sim N(m, \sigma^2)$
 - (a) Scrivere l'espressione del momento campionario del secondo ordine M_2 .

$$M_2 = \frac{1}{N} \sum_{i=1}^{N} X_i^2$$

(b) Dimostrare, riportando i passaggi, che il momento campionario del secondo ordine M_2 è uno stimatore non polarizzato di $E[X^2]$.

$$E[M_2] = \frac{1}{N} \sum_{i=1}^{N} E[X_i^2] = \frac{Nm_2}{N} = m_2$$

(c) Dimostrare che M_2 è uno stimatore consistente.

$$Y_i i = X_i^2, \qquad M_2 = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

La media campionaria di Y_i è uno stimatore consistente di $E[Y_i] = E[X_i^2] = m_2 \Rightarrow tesi$.

(d) Dimostrare che M_2 è asintoticamente gaussiano. Per il teorema centrale del limite, la media campionaria delle Y_i è asintoticamente gaussiana. 2. A partire dai dati X_i , $i=1,\ldots,n$, i.i.d., è stata calcolata la stima $\hat{\theta}$ del parametro θ . Lo stimatore è non polarizzato e gaussiano: $\hat{\theta} \sim N(\theta, \sigma_{\hat{\theta}}^2)$. Si considerino i seguenti casi:

1.
$$N=9, \quad \sigma_{\hat{\theta}}^2=1$$

2.
$$N=16$$
, $\sigma_{\hat{\theta}}^2=4$

$$3. \quad N=25, \quad \sigma_{\hat{\theta}}^2=9$$

4.
$$N = 9$$
, $\sigma_{\hat{\theta}}^2 = 16$

5.
$$N = 16$$
, $\sigma_{\hat{\theta}}^2 = 25$

6.
$$N = 25$$
, $\sigma_{\hat{\theta}}^2 = 36$

Scrivere in corrispondenza dei seguenti intervalli di confidenza al 95% per il parametro θ il numero del caso corretto.

3. Si considerino i seguenti dati

$$y(1) = 4$$
 $y(2) = 5$ $y(3) = 5$ $y(3) = 6$
 $x(1) = -2$ $x(2) = -1$ $x(3) = 0$ $x(4) = 3$

Si ipotizza che i dati siano generati dal seguente modello

$$y(t) = \theta_1 + \theta_2 x(t) + v(t), \quad t = 1, 2, 3, 4$$

dove v(t) sono errori di misura i.i.d. $v(t) \sim N(0, 2)$.

(a) Calcolare la stima di Gauss-Markov di θ .

$$\Phi = \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 3 \end{bmatrix}, \quad \Psi = I, \ \sigma^2 = 2, \qquad (\Phi'\Phi)^{-1} = \begin{bmatrix} 4 & 0 \\ 0 & 14 \end{bmatrix}^{-1}$$

$$\theta^{M} = \left[\begin{array}{ccc} \frac{1}{4} & 0 \\ 0 & \frac{1}{14} \end{array} \right] \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ -1 & -1 & 0 & 3 \end{array} \right] \left[\begin{array}{c} 4 \\ 5 \\ 5 \\ 6 \end{array} \right] = \left[\begin{array}{cccc} \frac{1}{4} & 0 \\ 0 & \frac{1}{14} \end{array} \right] \left[\begin{array}{c} 20 \\ 9 \end{array} \right] = \left[\begin{array}{c} 5 \\ \frac{5}{14} \end{array} \right]$$

(b) Calcolare $Var[\theta^M]$.

$$Var\left[\theta^{M}\right] = \sigma^{2} \left(\Phi' \Psi^{-1} \Phi\right)^{-1} = 2 \begin{bmatrix} \frac{1}{4} & 0\\ 0 & \frac{1}{14} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{7} \end{bmatrix}$$

(c) Eseguire la validazione del modello stimato utilizzando il test χ^2 .

$$\epsilon^{M} := Y - \Phi \Theta^{M} = \begin{bmatrix} 4 \\ 5 \\ 5 \\ 6 \end{bmatrix} - \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} \frac{70}{14} \\ \frac{5}{14} \end{bmatrix} = \begin{bmatrix} \frac{56}{14} \\ \frac{70}{14} \\ \frac{70}{14} \\ \frac{84}{14} \end{bmatrix} - \begin{bmatrix} \frac{60}{14} \\ \frac{65}{14} \\ \frac{70}{14} \\ \frac{85}{14} \end{bmatrix} = \begin{bmatrix} -\frac{4}{14} \\ \frac{5}{14} \\ 0 \\ -\frac{1}{14} \end{bmatrix}$$

$$\frac{\epsilon'\epsilon}{\sigma^2} = \frac{16 + 25 + 1}{2 \times 14^2} = 0.11 < 5.991$$

 $P\left(\chi_2^2 > 5.991\right) = 0.05 \Rightarrow \text{Modello validato}$

4. Dire se le seguenti affermazioni sono vere o false: (Punteggi esatta =1, errore=-1, non risponde =0)	o: risp	osta
	V	F
(a) Uno stimatore polarizzato può avere varianza minore di tore polarizzato.	uno sti	ma-
	\boxtimes	
(b) Dato un vettore casuale X , con $X_i, i=1,\ldots,n$, i.i.d., standard, allora $X'X$ è una V.C. χ^2 a $n-1$ gradi di liber		iane
		\boxtimes
(c) Date due V.C. $X, Y,$ congiuntamente gaussiane, non può $Var[X Y=y] > Var[X].$	mai es	sere
	\boxtimes	
(d) Se considero stimatori non polarizzati, lo stimatore a mi anza minimizza anche l'errore quadratico medio.	nima v	vari-
	\boxtimes	
(e) Dati due stimatori $\hat{\theta}_1$, $\hat{\theta}_2$, si supponga che $Var[\hat{\theta}_1] = 1, V$ $E[\hat{\theta}_1] - \theta^0 = 1.5, E[\hat{\theta}_2] - \theta^0 = 1$. Allora, $\hat{\theta}_1$ è preferibile a		=2,
		\boxtimes
(f) Date delle V.C. i.i.d. $X_i, i = 1,, N$, allora M_1 è gaussi	ano.	
		\boxtimes
(g) Date delle V.C. i.i.d. gaussiane X_i , $i=1,\ldots,100$, Var nita, l'ampiezza dell'intervallo di confidenza al 95% per la dipende dai dati X_i .		
		\boxtimes
(h) Si considerino due V.C. X e Y incorrelate. Se esiste y tale cl $y \in E[X]$ allora X e Y non sono gaussiane.	ne E[X]	Y =
	\boxtimes	
(i) Sotto l'ipotesi $I2$ non esiste alcuno stimatore lineare non p $\hat{\theta} \text{ tale che } Var[\hat{\theta}] < Var[\theta^M].$	polariz	zato
	\boxtimes	
(j) Per lo stimatore BLUE con $\Psi=I$, risulta $FPE=\frac{n+q}{n-q}S$ è il numero dei dati e q è il numero dei parametri.	$SR ext{ dov}$	ve n
	\square	

5. Il seguente codice MatLab implementa la stima BLUE di un modello lineare che predice l'altezza h in funzione del peso w (w e h sono vettori colonna). Si ipotizza $\Psi = I$. Evidenziare e correggere eventuali errori.

```
n = length(w);
Phi = (ones(n) w);
thetaBLUE+ = Phi \ h;
epsilon = h - Phi * thetaBLUE;
SSR = epsilon.*epsilon;
sigma2hat=SSR/(n-2);
Vartheta=sigma2hat*inv(Phi*Phi');
Vartheta=sigma2hat*inv(Phi'*Phi);
Shift = [ones(n,1) w];
SSR = epsilon**epsilon;
SSR = epsilon**epsilon;
Vartheta=sigma2hat*inv(Phi'*Phi);
```