Identificazione dei Modelli e Analisi dei Dati

Prof. G. De Nicolao 25 Giugno 2010

Cognome	Nome
Matricola	Firma

- Compilare a penna questo foglio all'inizio della prova.
- Durante lo svolgimento della prova, non è consentito l'uso di materiale diverso dai comuni strumenti di calcolo, scrittura e disegno.
- Le risposte devono essere scritte in modo chiaramente leggibile nello spazio immediatamente seguente ogni domanda (se necessario, a seguito di cancellature, passare sul retro).
- Le uniche risposte valide sono quelle riportate nel presente fascicolo, che va consegnato, senza fogli addizionali, al termine della prova.

1.	
2.	
3.	
4.	

- 1. Si consideri una coppia di V.C. X e Y.
 - (a) Definire quando le due V.C si dicono indipendenti.

(b) Definire quando le due V.C si dicono incorrelate.

 $(c)\ \ Dimostrare, riportando i passaggi, che l'indipendenza implica l'incorrelazione.$

2. Data una V.C. X,si definisca $Y=e^{-x}.$ Ricavare, riportando i passaggi, la d.d.p. di Y.

3. Si considerino i seguenti dati

$$x_1 = 0$$
 $x_2 = \pi/2$ $x_3 = \pi$ $x_3 = 3\pi/2$
 $y_1 = 2$ $y_2 = 0.3$ $y_3 = -3$ $y_4 = -0.1$

Per il modello

$$Y_k = \theta_1 sin(x_k) + \theta_2 cos(x_k) + V_k, Var[V] = \Psi$$

vi sono le seguenti scelte per la matrice Ψ :

- (a) $\Psi = 0.5I$
- (b) $\Psi = 2I$
- (c) $\Psi = diag\{2, 1, 2, 1\}$
- (d) $\Psi = diag\{1, 0.5, 1, 0.5\}$

Scrivere accanto alle matrici che forniscono $Var[\theta^{BLUE}]$ la lettera della corrispondente matrice $\Psi.$

$$Var[\theta^{BLUE}] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \dots$$

$$Var[\theta^{BLUE}] = \begin{bmatrix} 0.25 & 0 \\ 0 & 0.25 \end{bmatrix} \qquad \dots$$

$$Var[\theta^{BLUE}] = \begin{bmatrix} 0.25 & 0 \\ 0 & 0.5 \end{bmatrix} \qquad \dots$$

$$Var[\theta^{BLUE}] = \begin{bmatrix} 0.5 & 0 \\ 0 & 1 \end{bmatrix} \qquad \dots$$

4. Il seguente codice MATLAB calcola le medie, la matrice di covarianza e il coefficiente di correlazione per le variabili casuali W de H (peso e altezza), rispettivamente. I vettori colonna h e w contengono altezze e pesi di soggetti estratti a caso dalla popolazione. Trovare gli eventuali errori presenti nel codice e correggerli.

```
medie=mean([h; w])
EW=medie(1);
EH=medie(2);
cov_WH=cov([h; w]);
corr_WH=cov_WH(1,2)/(cov_WH(1,1)*cov_WH(2,2));
```

5. Dire se le seguenti affermazioni sono vere o false: (Punteggio: risposta esatta =1, errore=-1, non risponde =0)				
		V	F	
(a)	Siano date le osservazioni i.i.d. $X_i, i=1,\ldots,n, X_i \sim R$ Allora, S_2 è gaussiano.	$N(m, \sigma$	r^2).	
(b)	I momenti campionari sono stimatori non polarizzati e con	sistent	i.	
(c)	L'ampiezza dell'intervallo di confidenza per la media campiosservazioni i.i.d. gaussiane è inversamente proporzionale a n di osservazioni.			
(d)	Relativamente alla stima della media di osservazioni i.i.d quadratico medio commesso dalla media campionaria pari			
(e)	Se $X_i \sim N(0,1)$, $i = 1,, n$, sono V.C. indipendenti, all distribuito come un χ^2_{n-1} .	ora M	è è	
(f)	Il momento centrale del secondo ordine S_2 è polarizzato, a mente non polarizzato, consistente e asintoticamente gauss		.ca-	
(g)	Se $\Psi = \sigma^2 I$ allora, θ^{LS} coincide con θ^M .			
(h)	Se il numero n di dati è pari al numero q di parametri, la c di identificabilità è soddisfatta se e solo se det $\Phi \neq 0$.	ondizio	one	
(i)	Sotto l'Ipotesi I2 la stima BLUE θ^M è un vettore congiu gaussiano.	ntame	nte	
(j)	Sotto l'ipotesi I2, quando si identificano modelli gerarchic che $E[E[SSR^V]] = \sigma^2(2n+q)$ dove q indica il numero di Idel modello.			